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Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A

and B in vitro
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ARTICLE INFO ABSTRACT
Article history: Background: Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication.
Received 26 April 2012 Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replica-
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tion is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to inter-
act with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA
polymerase (RdRp), was proposed first.

Keywords: Methods: CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column
HOV ’ chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB.

Results: CyPA at a high concentration (50x higher than that of RdRp) but not at low concentration activated

RNA polymerase ° P Valt
Cyclophilin A HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity
Cyclophilin B and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated

RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected
cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports.
Conclusions: CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding.
CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different.

General significance: These data suggest that both CyPA and CyPB are excellent targets for the treatment of

HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hepatitis C virus (HCV'), which belongs to the Flaviviridae family,
has a positive-strand RNA genome, and its replication is regulated by
viral and cellular proteins [1]. The genome encodes a large precursor
polyprotein that is cleaved by host and viral proteases to generate
at least 10 functional viral proteins: core, envelope 1 (E1), E2, p7,
nonstructural protein 2 (NS2), NS3, NS4A, NS4B, NS5A, and NS5B
[2]. NS5B is an RNA-dependent RNA polymerase (RdRp) [3-5].

Abbreviations: BSA, bovine serum albumin; CsA, cyclosporine A; CyP, cyclophilin; DTT,
dithiothreitol; E, envelope; EDTA, ethylenediaminetetraacetic acid; GST, glutathione
S-transferase; HCV, hepatitis C virus; NS, nonstructural protein; PPl, peptidy! prolyl cis/
trans-isomerases; Peg-IFN, pegylated interferon-o; PMSF, phenylmethanesulfonylfluoride;
RT-PCR, reverse transcription polymerase chain reaction; RdRp, RNA-dependent RNA poly-
merase; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis;
SVR, sustained virological response; APPI, PPl knockout; wt, wild type

* Corresponding author at: Choju Medical Institute, Fukushimura Hospital, 19-4
Azanakayama, Noyori-cho, Toyohashi, Aichi 441-8124, Japan. Tel.: +81 532 46 7511;
fax: +81 532 46 8940.

E-mail address: toyoda_tetsuya@yahoo.co.jp (T. Toyoda).

0304-4165/% ~ see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doiorg/10.1016/.bbagen.2012.08.017

HCV frequently establishes a persistent infection that leads to
chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma [G,7].
More than 170 million individuals worldwide are infected with HCV
[8], and the challenge of developing HCV treatment continues. First,
combination therapy with pegylated interferon o (Peg-IFNat) and
ribavirin led to a sustained virological response (SVR) in approxi-
mately 55% of patients infected with any HCV genotype and 42-46%
of patients with genotype 1 [9,10]. However, many patients could
not tolerate the serious adverse effects. Triple therapy consisting of
an NS3/NS4A protease inhibitor (boceprevir or telaprevir), Peg-IFN
(o-2a or a-2b), and ribavirin was then introduced, and it has become
the standard regimen for genotype 1 infection. SVR improved signifi-
cantly (from 63% to 75%), and the treatment duration decreased from
12 to 6 months [11,12]. However, triple therapy is more toxic than
combination therapy {13].

Nonimmunosuppressant cyclosporine A (CsA) analogues/CyP
inhibitors such as DEBIO-025 (Alisporivir) [14], NIM811 [15], and
SCY-635 [16] are also the most expected candidates for use as
anti-HCV drugs because their resistance selection is rare compared
with other direct-acting antiviral agents, and the HCV resistant to



L. Weng et al. / Biochimica et Biophysica Acta 1820 (2012) 1886-1892 1887

CyP inhibitors acquired mutations that allowed for reduced depen-
dence on CyPs [17,18].

CyP was originally discovered as a cellular factor with high affinity for
CsA [18]. CyPs comprise a family of peptidyl prolyl cis/trans-isomerases
(PPI) that catalyze the cis-trans interconversion of peptide bonds
amino terminal to proline residues, facilitating protein conformation
changes [20]. CyPs are potential antiviral targets because CyPA was
found to play a critical role in human immunodeficiency virus-1 infection
[21,22]. The role of human CyPs as cellular cofactors in HCV replication
was first suggested upon discovery of the anti-HCV effect of CsA
[23-26]. Although the completion of a binding assay and the mapping
of resistance initially suggested that NS5B was a viral target for CsA
[27-29], recent papers have pointed to CyPA and NS5A as the central
virus-host interaction involved in HCV replication {30-36]. Despite this
unfavorable evidence, we analyzed the effect of CyPA and CyPB on HCV
RdRp of various genotypes in vitro and found differences in genotype
specificity and the mechanism of HCV RdRp activation.

2. Materials and methods
2.1. Purification of HCV RdRp

HCV RNA RdRps with C-terminal 21 amino acid deletion of 1a
(H77 and RMT), 1b (HCR6, NN, and Con1), and 2a (JFH1 and ]6CF)
were expressed in E. coli Rosetta/pLysS and purified as described
previously [37-40]. The purified HCV RdRps (5 pM, >95% pure)
were stocked in 20 mM Tris-HCI (pH 8.0), 500 mM NaCl, 1 mM
ethylenediaminetetraacetic acid (EDTA), 5 mM dithiothreitol (DTT),
5% glycerol, and 1 mM phenylmethanesulfonylfluoride (PMSF) at
— 80 °C. The yield of HCV RdRps is approximately 1.7 mg from a 1-L
bacterial culture. The purified HCV RdRps were as shown in Fig. S1 of
Weng et al. [38]. The protein purities were determined by sodium
dodecyl sulfate polyacrylamide gel electrophoresis analysis (SDS-PAGE),
using Image] 1.46 (http://rsbweb.nih.gov/ij/).

2.2. Construction of CyP-expressing plasmids

Human CyPA and CyPB were cloned from total RNA extracted from
293T cells, using a reverse transcription-polymerase chain reaction
(RT-PCR) kit (Takara, Dalian, China) as published previously [29].
After being digested with BamHI and EcoR], they were cloned into
the same site of pGEX-6P-3 (GE Healthcare, Bucks, UK), resulting in
pGEXCyPA and pGEXCyPB, respectively. CyPBAPPI, the enzymatic in-
active mutant of CyPB, was PCR cloned into pGEX-6P-3 from
pCMV-CyPBAPPIFL [29], resulting in pGEXCyPBAPPI. CyPAAPPI was
produced by the introduction of the R55A and F60A mutations using
a QuickChangell Site-Directed Mutagenesis Kit (Stratagene, St. Clara,
CA, USA) and primers (5-GTTCCTGCTTTCACGCCATTATTCCAGGGG
CCATGTGTCAGGGTG-3' and 5'-CACCCTGACACATGGCCCCTGGAATAA
TGGCGTGAAAGCAGGAAC-3').

2.3. Purification of CyPs

E. coli Rosetta were transformed wusing pGEXCyPA,
PGEXCyPAAPPI, pGEXCyPB, and pGEXCyPBAPPL. GST-tagged CyPA,
CyPB, CyPAAPPI, and CyPBAPPI were induced with 1 mM isopropyl
[3-D-1-thiogalactopyranoside at 18 °C for 4 h. The bacteria were
harvested and stocked at — 20 °C. After thawing on ice, the bacteria

were lysed in 4 packed cell volumes of phosphate-buffered saline, °

0.1% Triton X-100, 1 mM EDTA, 1 mM DTT, and 1 mM PMSF. After
being clarified by centrifugation at 10,000 xg for 30 min at 4 °C and
filtered through a 0.45-um nitrocellulose filter, the extract was incu-
bated with Glutathione Sepharose 4B (GE Healthcare) for 30 min at
4 °C. After the resin was washed with 50 mM Tris-HCI (pH 8.0),
500 mM NaCl, 1 mM EDTA, 1 mM DTT, and 1 mM PMSF, the
GST-CyP was eluted using 50 mM Tris-HCl (pH 8.0), 500 mM Nadl,

1 mM EDTA, 1 mM DTT, 10 mM reduced glutathione, and 1 mM
PMSF, followed by gel filtration through a Superdex 200 column
(GE Healthcare) in 20 mM Tris-HCl (pH 8.0), 500 mM Na(Cl, 1 mM
EDTA, 1 mM DTT, and 10% glycerol. The eluted GST-CyP were diluted
to 50 mM NaCl and applied to a MonoQ (GE Healthcare) in 20 mM
Tris-HCl (pH 9.0), 50 mM NaCl, 1 mM EDTA, 1 mM DTT, and 10%
glycerol. GST-CyPB and GST-CyPBAPPl were chromatographed
using a continuous NaCl gradient of 50-1000 mM. The purified
CyPs were stocked at — 20 °C.

2.4. In vitro HCV transcription with CyPs

In vitro HCV transcription with CyPs was done as previously
described [37-40]. Briefly, the indicated amounts of the CyPs were in-
cubated in 50 mM Tris-HCI (pH 7.5), 200 mM.monopotassium gluta-
mate, 3.5 mM MnCl,, 1 mM DTT, 0.5 mM GTP, 200 nM of a 184-nt in
vitro transcribed model RNA template (SL12-1S), 100 U/mL of human
placental RNase inhibitor, and 100 nM HCV RdRp at 29 °C for 30 min.
After preincubation, RdRp was incubated for an additional 90 min
with 50 pM ATP, 50 puM CTP, or 5 uM [a->?P]JUTP. The RNA products
were analyzed using 6% PAGE containing 8 M urea after being purified
by phenol/chloroform extraction and ethanol precipitation. The amount
of RNA products was analyzed using Typhoon Trio (GE Healthcare).

2.5. RNA filter-binding assay with CyPA and CyPB

An RNA filter-binding assay with CyPA and CyPB was performed as
previously described {37,38,40]. Briefly, [>?P]-SL12-1S was incubated
in 25 pL of 50 mM Tris-HCl (pH 7.5), 200 mM monopotassium gluta-
mate, 3.5 mM MnCl,, 1 mM DTT, and 5 pmol of HCV RdRp with
375 pmol (75x) of CyPA and 25 pmol (5x) of CyPB at 29 °C for
30 min.

2.6. Chemicals and radioisotopes

[a-*2PJUTP (800 Ci/mmol, 40 mCi/mL) was purchased from
PerkinElmer Life Sciences (Waltham, MA, USA). The nucleotides
were purchased from GE Healthcare. The human placental RNase
inhibitor T7 RNA polymerase and PrimeSTAR HS DNA polymerase
were purchased from Takara. The bacteria were purchased from
Novagen (Merck Chemicals, Darmstadt, Germany).

2.7. Statistical analysis

The statistical data were evaluated using Student's t test, with
p<0.05 indicating statistical significance.

3. Results
3.1. Purification of CyPA and B

First, glutathione S-transferase (GST)-tagged CyPA, CyPB, the PPI
inactive CyPA (CyPAAPPI), and CyPB (CyPBAPPI) were purified
using Glutathione Sepharose 4B affinity chromatography. CyPA and
CyPAAPPI were further purified through a Superdex 200 column
(Fig. S1). After the Superdex 200 gel filtration, to remove the contam-
inating nucleic acids, CyPB and CyPBAPPI were further purified
through MonoQ anion exchange chromatography by a continuous
NaCl gradient of 50-1000 mM because CyPB has a strong affinity for
nucleic acids. Each was eluted with 210-385 mM NaCl (Fig. S2). The
purification scheme and purified CyPs are shown in Fig. 1. The yields
of CyPA and CyPAAPP] were approximately 3 mg from a 1-L bacterial
culture. CyPA and CyPAAPPI were > 95% pure and stocked at 5 mg/mL
in 20 mM Tris-HCl (pH 8.0), 500 mM Nacl, 1 mM EDTA, 1 mM DTT,
and 10% glycerol. CyPB and CyPBAPPI were stocked at 5 mg/mL in
20 mM Tris-HCl (pH 9.0), 500 mM Na(l, 1 mM EDTA, 1 mM DTT,
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Fig. 1. Cyclophilin purification. The purification schemes of cyclophilin A (CyPA) and the peptidyl prolyl isomerase-inactive mutant protein of CyPA (CyPAAPPI) (A), cyclophilin B
(CyPB) and CyPBAPPI (B), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (C) with 5 pmol each of purified glutathione S-transferase (GST; 28.3 kDa),
GST-CyPA (44.9 kDa), GST-CyPAAPPI (44.7 kDa), GST-CyPB (52.1 kDa), and GST-CyPBAPPI (52 kDa) were separated through 10% SDS-PAGE and stained with Coomassie brilliant
blue. The sizes of the molecular weight standards (M) are indicated on the right side of the gel. Their final elution profiles are shown in Figs. S1 and S2.

and 10% glycerol. The yields of CyPB and CyPBAPPI were approxi-
mately 1 mg from a 1-L bacterial culture. The purities of CyPB and
CyPBAPPI were >95% and >90%, respectively.

3.2. HCV 1b and JFH1 (2a) transcription in vitro with CyPA and CyPB

The dose-response effects of CyPA and CyPB were examined using
an in vitro transcription system of HCR6 (1b) and JFH1 (2a) RdRp
wild type (wt). CyPA and CyPB were added to the optimal HCV in
vitro transcription condition while the RNA synthesis was in the log
phase {4,37]. RdRp (100 nM) was incubated with 0, 50 (ratio to
RdRp: 0.5x), 100 (1x), 200 (2x), 500 (5x), and 1000 nM (10x)
CyPA and CyPB, GST, or bovine serum albumin (BSA) in GTP (the ini-
tiating nucleotide) and an RNA template for 30 min, followed by
elongation with ATP, CTP, and UTP for 90 min. CyPA enhancement
was further tested using 2 (20x), 5 (50x), 7.5 (75x), and 10
(100x) pM because the enhancement effect of CyPA under 1 pM
(10x) was unclear. Fig. S3 shows the autoradiography of HCV HCRG
(1b) and JFH1 (2a) RdRpwt with CyPA and CyPB, the graphs of
which were drawn using the data from 3 independent experiments
(Fig. 2).

The CyPA activation of both RdRps showed 2 reaction speeds. The
first-order ratio of CyPA to HCR6 (1b) RdRpwt<50x is fitted as a linear
regression curve, the equation for which is y =0.07x (CyPA-to-RdRp
ratio) + 0.7. The linear regression curve fitting of the ratio >50x is
y=0.4x (CyPA-to-RdRp ratio) —17 when calculated from 3 points.
That of CyPA to JFH1 (2a) RdRpwt is fitted to a similar linear regression,
y=0.09x (CyPA-to-RdRp ratio) + 0.9 (the CyPA-to-RdRp ratio<50x).
HCVR6 (1b) and JFH1 (2a) RdRps were activated by 100x CyPA to
25-40.2- and 19- & 1-fold, respectively.

The CyPB activation of HCR6 (1b) RdRpwt occurred in a
dose-dependent manner and fitted a sigmoid curve, and the enhance-
ment effect reached a plateau (9.4 x) at the ratio of 5x. Neither GST
nor BSA enhanced HCR6 (1b) RdRpwt. CyPB, GST, and BSA did not en-
hance JFH1 (2a) RdRpwt (<1.5x) at the concentrations described
earlier.

3.3. Effect of the PPI inactive mutant proteins of CyPA and CyPB

CyP has PPl activity. To test the contribution of PPI activity to HCV
HCR6 (1b) and JFH1 (2a) RdRpwt activation, the activation effect of
the PPI inactive mutant proteins, CyPAAPP] at 100x (10 pM) and
CyPBAPPI at 2x (200 nM), were tested together with 100x (10 pM)
GST and BSA (Fig. 3). CyPA enhanced JFH1 (2a) RdRpwt 17.6x,
whereas CyPAAPPI enhanced it 16.2x. This difference is statistically
significant (Student's t test, p<0.05). CyPA enhanced HCR6 (1b)
RdRpwt activity 27.7x, whereas CyPAAPPI enhanced it 16.0x. BSA
slightly inhibited both RdRps at the same concentration in this exper-
iment. As shown in Fig. 2C and D, it can be concluded that BSA has no
effect on HCV transcription. GST enhanced JFH1 (2a) RdRpwt activity
5.0%, but it did not affect HCR6 (1b) RdRpwt activity. CyPB enhanced
HCR6 (1b) RdRpwt activity 2.3x, whereas CyPBAPPI enhanced it 1.7x.
This difference is also statistically significant (Student's t test,
p<0.05). JFH1 (2a) RdRpwt was not activated by CyPB or CyPBAPPI.

3.4. CyP activation steps of HCV transcription

The HCV transcription steps of CyP enhancement were analyzed
by the sequential addition of CyPs during in vitro transcription
(Fig. 4). CyPA enhanced HCR6 (1b) and JFH1 (2a) RdRpwt, whereas
CyPB enhanced HCR6 (1b) RdRpwt when HCV RdRps were incubated
with them from the start of transcription (initiation). The CyP effect
was then tested after their addition during the elongation period
after HCV RdRps was initiated with GTP. CyPA (100x; 10 pM) and
CyPB (5x; 500 nM) were added to HCV RdRps after the 30-min incu-
bation with GTP, when 3 GTPs were incorporated at the 5’ end of the
products. CyPB did not enhance HCR6 (1b) or JFH1 (2a) RdRp when
added during the elongation period, although it enhanced HCV
RdRp when added at the start of transcription. CyPA enhanced
HCR6 (1b) and JFH1 (2a) RdRp activity only 1.6x (Student's t test,
p<0.05) and 2.1x (p<0.01), respectively, when added during the
elongation step. These results suggest that CyPA and CyPB activated
only the transcription initiation step of HCV RdRps.
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Fig. 2. Dose-response curve of cyclophilin A (CyPA) and cyclophilin B (CyPB) in hepatitis C virus (HCV) transcription in vitro. The dose-response curve of the HCV RdRp activation of
CyPA in HCR6 (1b) RdRpwt (A) and JFH1 (2a) RdRpwt (B) CyPB in HCR6 (1b) RdRpwt (C) and JFH1 (2a) RdRpwt was drawn from the image analysis of Fig. S3. Insets A and B in-
dicate that of 0, 0.5%, 1x, 2x, 5x, and 10x of CyPA to RdRp. The first-order ratio of the curves of A and B were fit by linear regression, and the calculated equations are indicated in
the graph. The mean relative polymerase activation ratio and standard deviation (error bar) were calculated from 3 independent measurements.

The effects of 75x CyPA and 5x CyPB on the RNA-binding activity of
HCR6 (1b) and JFH1 (2a) RdRp were then tested (Fig. 4E). The effects of
HCR6 (1b) and JFH1 (2a) RdRp with CyPA were 10.1- 4 0.56- and 6.6- 4

35
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Polymerase activation ratio

RdRp CyPB CyPBdelPPI

Fig. 3. Effects of cyclophilin A (CyPA) and cyclophilin B {CyPB) with and without
peptidyl prolyl isomerases activity on hepatitis C virus (HCV) JFH1 (2a) and HCR6
(1b) RdRp. HCV HCR6 (1b) and JFH1 (2a) RdRpwt (100 nM) were incubated with
100x (10 uM) of CyPA, CyPAAPPI, glutathione S-transferase (GST), and bovine serum
albumin (BSA) (A). HCV RdRps were incubated with 5x (500 nM) of CyPB, CyPBAPPI,
GST, and BSA (B). The mean relative polymerase activity and standard deviation (error
bar) were calculated from 3 independent measurements. *p<0.01 (Student’s t test).

0.68-fold of that without CyPA, respectively. The effect of HCR6 (1b)
RdRp with CyPB was 3.1-40.3-fold of that without CyPB. The
RNA-binding activity of HCV RdRps was thus enhanced by the addition
of CyPA and CyPB.

3.5. Effect of CyP activation on RdRp of various HCV genotypes

The CsA sensitivity differed among the HCV genotypes [41]. There-
fore, we tested the effects of CyPA and CyPB activation on NN (1b),
H77 (1a), RMT (1a), and J6CF (2a) RdRp (Fig. 5). RdRp activity was
compared with and without 50x (5 pM) CyPA and 5x (500 nM)
CyPB. At their respective concentrations, CyPA activated all of the
tested HCV RdRps by 3.9-5.3x, but CyPB activated only 1b RdRps
(8-10x). CyPB slightly activated J6CF (2a) RdRp (approximately
4x), but it did not activate the 1a or JFH1 (2a) RdRps (1.4-1.8x).

4. Discussion

Since CsA was discovered to inhibit HCV infection [23-26], the CyP
pathway contributing to HCV replication has been proposed as a po-
tential stratagem for controlling HCV infection. Reports about the
roles of CyPA in HCV replication via NS5A have been accumulating
[33-35,42-44]. However, the effect of CyP inhibitors varied on the
RNA-binding activity of NS5B {41,45], and DEBIO-025 decreased
CyPB levels in patients [46]. Controversial results of CyPA and CyPB
knockout experiments on HCV replicon activity were reported
[29,30,47]. Therefore, the effects of CyPA and CyPB on HCV RdRp
were carefully analyzed again in vitro.

In this study, we demonstrated that CyPA and CyPB activated HCV
1b RdRp in vitro by completely different kinetics using purified CyPs
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Fig. 4. Hepatitis C virus (HCV) RdRp activation effects of cyclophilin A (CyPA) and cyclophilin B (CyPB) on transcription initiation and elongation. The polymerase activation effect of
the timing of the CyPA or CyPB addition was examined. The sequence of the model RNA template (SL12-15) and experimental design are shown in A. CyPA 100x (10 uM) was in-
cubated with HCR6 (1b) RdRpwt (A) and JFH1 (2a) (B) RdRp during preincubation with 0.5 mM GTP (initiation) or after preincubation (elongation). CyPB 5x (500 nM) was in-
cubated with HCVR6 (1b) RdRpwt during preincubation with 0.5 mM GTP (initiation) or after the preincubation (elongation) (C). The mean relative polymerase activation ratio
and standard deviation (error bar) were calculated from 3 independent measurements. The effect of the 100x CyPA and 5x CyPB on RNA template binding was examined (E).

and HCV RdRps (Fig. 2), which indicated that the mechanism of their
HCV RdRp activation differed despite their similar structures [{48-50}.
Kinetic analysis of CyPA on HCR6 (1b) and JFH1 (2a) RdRp indicated
that it had a similar activation mechanism on both HCV RdRps. CyPA
did not activate HCV RdRp at low concentrations, but it did activate it
at >50x molar excess to it. The unusual dose of CyPA activating HCV
RdRp (Fig. 2) postulates that HCV RdRp may be surrounded by CyPA
in vitro and factors involving CyPA and HCV RdRp interaction, such as
NS5A, in the HCV replication complex of the infected cells
[27,28,31,36,51-53] because the interaction of CyPA and HCV RdRp
was weak (Fig. S4).

Although some controversial results were obtained from those of
Heck et al. [54], the studies agree that CyPB also activated HCV 1b
RdRp in vitro. The activation kinetics of CyPB on HCR6 (1b) RdRp
showed a sigmoid-like curve (Fig. 2) that suggested an allosteric ef-
fect of CyPB on RdRp activity. CyPB may interact with HCV RdRp as
a cofactor and directly activate HCR6 (1b) RdRp. The HCV RdRp-
CyPB complex was likely to interact more with CyPB, and its activa-
tion plateaued at the CyPB/RdRp ratio of 5:1 (Fig. 2C). The CyPB

activation curves of Heck et al. [54] also plateaued. These data from
the 2 independent groups support the weak interaction between
CyPB and HCV 1b RdRp (Fig. S4).

CyPA did not show genotype specificity in the current study
(Fig. 5A), a finding that agrees with those of CyPA knockdown,
DEBIO-025, and CsA experiments {30,43,55]. CyPB activation showed
genotype specificity (Fig. 5B) [54]; CyPB activated 1b and J6CF (2a)
RdRp but did not activate 1a or JFH1 (2a) RdRp. Both reports agreed
with the finding that JFH1 (2a) subgenomic replicon was indepen-
dent of CyPB [41]. Although mutations accumulated in the NS5A re-
gion of CsA- or DEBIO-025-resistant HCV replicons, some mutations
were found in the NS5B region {18,27,28,33,45].

Another controversial result between that of Heck et al. {54] and
ours is the Mg? *-dependency of the CyPB activation. The Mg?* con-
centration in cells is 14-20 mM, and Mg?* ions are distributed al-
most equally throughout the nuclei, mitochondria, and cytosol/
endoplasmic reticulum [56]. The Mn?* concentration in cells varies
from report to report {57,58]. The optimal Mn?* and Mg?™ concen-
trations in the HCV in vitro transcription used in this study were
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Fig. 5. Activation effects of cyclophilin A (CyPA) and cyclophilin B (CyPB) on hepatitis C
virus (HCV) RNA polymerase of genotypes 1a, 1b, and 2a. The polymerase activation ef-
fects of CyPA and CyPB on HCV 1a (H77 and RMT), 1b (HCR6G, NN, and Con1), and 2a
(J6CF and JFH1) were examined. HCV RdRp (100 nM) was incubated with 50x CyPA
and 5x CyPB. The mean relative polymerase activation ratio and standard deviation
(error bar) were calculated from 3 independent measurements.

different from the physiological concentrations in cells {4,37]. How-
ever, under the optimal HCV transcription condition, HCV RdRp acti-
vation was observed by CyPA and CyPB (Fig. 1).

The amount of CyPA varies by cell type [59]. In some cells, CyPB
may also contribute to HCV 1b replication because it localizes in the
endoplasmic reticulum and plasma membranes [60,61], which form
a membrane web in which an HCV replication complex exists [1].

PPI activity of CyPs is essential for HCV replicon activation [32,53].
CyP inhibitors (DEBIO-025, NIM811, and SCY-635) inhibit PPI activity.
The PPI activity of CyPA contributed to HCV RdRp activation and
CyP-NS5A binding [36]. The PPI activity of CyPA partly contributed
to the activation of HCR6 (1b) RdRpwt in vitro (Fig. 3A, p<0.01).
The PPI activity of CyPB may not be essential for RdRp activation be-
cause the activation ratio was not large between CyPB and CyPBAPPI,
although the experiment showed a statistically significant difference
(Fig. 3B). There may be differences in the RdRp activation mecha-
nisms of CyPA with and without PPI activity. This finding will help
with the development of new CyPA inhibitors that target domains
other than PPL

The mechanism of HCV RdRp activation by CyPs is not clear. In the
least, CyPA and CyPB enhanced the early stage of HCV transcription,
including the template RNA binding of HCV RdRp (Fig. 4) [29,41,45].
The productive template-polymerase binding is the late-limiting
step of transcription initiation by HCV RdRp in vitro, and a small frac-
tion of HCV RdRp was active in vitro [62,63]. CyP may enhance this
step on many HCV RdRp molecules to show apparent activation of
RdRp in vitro.

Considering the controversial reports on CyP and HCV replication
[29,33,35,41,43,44], it can be concluded that CyPA is the major factor
of HCV genome replication and that the activation of HCV RdRp may
require other factors such as NS5A to condense CyPA around the
HCV RdRp. Although many HCV treatment approaches have been ap-
plied in addition to Peg-IFN, ribavirin, and NS3/NS4a protease inhibi-
tor [64-67], more effort has to be made to ensure an HCV cure. This

study and that of Heck et al. {54] demonstrated similar activation ki-
netics and genotype specificity of CyPB activation (Figs. 2 and 5).
CyPB also has the potential to activate HCV 1b genome replication
in a limited condition, and it should also be included as the target of
inhibitor development because HCV 1b is the genotype that is most
resistant to treatment [13].
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An accurate and reliable quantitative assay for hepatitis C virus (HCV) is essential for measuring viral propagation and the effi-
cacy of antiviral therapy. There is a growing need for domestic reference panels for evaluation of clinical assay kits because the
performance of these kits may vary with region-specific genotypes or polymorphisms. In this study, we established a reference
panel by selecting 80 donated blood specimens in Japan that tested positive for HCV. Using this panel, we quantified HCV viral
loads using two HCV RNA kits and five core antigen (Ag) kits currently available in Japan. The data from the two HCV RNA as-
say kits showed excellent correlation. Al RNA titers were distributed evenly across a range from 3 to 7 log IU/ml. Although the
data from the five core Ag kits also correlated with RNA titers, the sensitivities of individual kits were not sufficient to quantify
viral load in all samples. As calculated by the correlation with RNA titers, the theoretical lower limits of detection by these core
Ag assays were higher than those for the detection of RNA. Moreover, in several samples in our panel, core Ag levels were under-
estimated compared to RNA titers. Sequence analysis in the HCV core region suggested that polymorphisms at amino acids 47 to
49 of the core Ag were responsible for this underestimation. The panel established in this study will be useful for estimating the
quality of currently available and upcoming HCV assay kits; such quality control is essential for clinical usage of these kits.

patitis C virus (HCV) is a major cause of chronic liver dis-
ase worldwide (15). There is no protective vaccine against
this virus, and once an individual is infected, HCV often estab-
lishes persistent infection and leads to chronic hepatitis, cirrhosis,
and hepatocellular carcinoma (9). The most widely used therapy
for HCV infection is the combined administration of pegylated
alpha interferon and ribavirin (29). However, this treatment is
problematic, as it has limited efficacy, high cost, and severe ad-
verse effects (8, 25). To estimate the outcome of antiviral therapy,
and to understand the state of viral propagation, it is important to
determine the HCV viral load in chronic hepatitis C patients by
the use of accurate and reliable HCV quantitative assays (9, 14).
For this purpose, several commercial assay kits for HCV RNA and
core antigen (Ag) quantification are currently used in Japan. For
quantification of HCV RNA levels, two real-time quantitative re-
verse transcription-PCR (qRT-PCR)-based assay kits are avail-
able, including the COBAS AmpliPrep/COBAS TaqgMan HCV test
(CAP/CTM-RNA; Roche Diagnostics, Tokyo, Japan) and the Ab-
bott RealTime HCV test (ART-RNA; Abbott Japan, Tokyo, Ja-
pan). These assays are known to have high sensitivity and a wide
dynamic range, but they require technical skill and attention to
maintaining the specified conditions (4-6, 16, 24, 33-35). Alter-
natively, HCV viremia can be quantified by assessment of HCV
core Aglevel (1-3,7, 10, 12, 13, 17-22, 27, 30-32). Five HCV core
Ag assay kits are commercially available in Japan, including Archi-
tect HCV Ag (Architect-Ag; Abbott Japan), Lumipulse Ortho
HCV Ag (Lumipulse-Ag; Fujirebio, Tokyo, Japan), Lumispot
Eiken HCV Ag (Lumispot-Ag; Eiken Chemical, Tokyo, Japan),
the Ortho HCV Ag ELISA test (ELISA-Ag; Ortho Clinical Diag-
nostics, Tokyo, Japan), and the Ortho HCV Ag IRMA test (IRMA-
Ag; Ortho Clinical Diagnostics, Tokyo, Japan). These assays have
some disadvantages compared to those measuring HCV RNA
(notably, low sensitivity and narrow range of quantification) but
also have some advantages (including ease of use, reduced risk of
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contamination, reduced cost, and reliability even with samples
stored at room temperature for extended periods of time [1, 32]).
Although core Ag levels are thought to be related closely to HCV
RNA titers, the correlation and linearity of core Ag levels have not
yet been fully evaluated. In addition, these quantitative parame-
ters are known to be affected by nucleotide and amino acid se-
quences at the target regions of the assays (5, 6, 28, 34), and this
sequence variation depends on genotypes or predominant strains
in specific geographical regions.

In this study, we established a Japanese reference panel of sam-
ples for evaluation of HCV RNA and core Ag levels by collecting
donated blood specimens that tested positive for HCV RNA and
anti-HCV antibodies. Using this reference panel, we evaluated the
HCYV loads in these specimens with two HCV RNA assay kits and
five core Ag assay kits and assessed correlations among the data
generated by these kits.

MATERIALS AND METHODS

Preparation of reference panel. To establish a reference panel for HCV
quantitative assays, a total of 80 donated plasma samples were selected. All
of these specimens, supplied by the Japanese Red Cross Blood Centers,
tested positive for the presence of HCV RNA and anti-HCV antibodies.
These samples, collected in Japan from May to September of 2007, were
obtained from Japanese blood donor volunteers in various regions of
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