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Our recent study indicated that peripheral B cells in chronic hepatitis C (CHC) patients were infected
with hepatitis C virus (HCV). It was also demonstrated that the frequency of CD27* B cells, i.e. memory
phenotype, was significantly reduced in the peripheral blood of CHC patients. An assumption was made
by these findings that the CD27* B cells are susceptible to apoptosis when infected with HCV. Therefore,
in this study, the susceptibility of CD27* B cells to apoptosis in CHC patients was analyzed. Contrary to

our assumption, it was found that CD27* B cells are more resistant to apoptosis than the counterpart

subset, i.e. CD27- B cells. The rationale for this finding is discussed with regard to the possible role for

Ki ds: : f S ¥

H?'Vwor memory B cells as an HCV reservoir for persistent infection in CHC patients.

Memory B cell © 2010 Elsevier B.V. All rights reserved.
Apoptosis

Hepatitis C virus (HCV) infection has been recognized as one of
the major causes of chronic liver diseases, including chronic hep-
atitis, cirrhosis and, eventually hepatocellular carcinoma, affecting
nearly 200 million people worldwide (Lauer and Walker, 2001).
The liver is considered to be the primary and main target of HCV
infection. However, extrahepatic manifestations, such as mixed
cryoglobulinemia, a systemic immune complex-mediated disorder
characterized by B cell proliferation that may evolve into overt B
cellnon-Hodgkin’s lymphoma, have been demonstrated (Agnello et
al., 1992; Zuckerman et al., 1997). The occurrence of B cell abnor-
malities often noticed among patients persistently infected with
the HCV has suggested the possibility that HCV infects not only
hepatocytes but also peripheral B cells. Recent studies including
ours have demonstrated that peripheral B cells are in fact infected
with HCV (Inokuchi et al., 2009; Ito et al., 2010), which suggest the
unprecedented role for B cells in HCV pathogenesis.

Two major human peripheral B cell subsets have been iden-
tified based on the expression of CD27, a member of the tumor
necrosis factor receptor family. Functional differences between the
two subsets have been extensively investigated and it is now gen-
erally accepted that CD27 is a memory B cell marker (Agematsu
et al., 2000). Our previous study demonstrated that the frequency
of peripheral CD27* memory B cell subset in chronic hepatitis C
(CHC) patients is significantly reduced (Mizuochi et al., 2010). To

Abbreviations: CHC, chronic hepatitis C patients; HCV, hepatitis C virus.
* Corresponding author. Tel.: +81 42 561 0771; fax: +81 42 562 7875.
E-mail address: miz@nih.go.jp (T. Mizuochi).
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elucidate the reason of this reduction, in this study, we compared
the susceptibility of the peripheral CD27* and CD27~ B cell subsets
to apoptosis in CHC patients. Our results demonstrated that CD27*
memory B cells in CHC patients are more resistant to apoptosis than
CD27- Bcells. The rationale for this finding is discussed with regard
to the possible role for memory B cells in HCV pathogenesis.

A total of 26 CHC patients were enrolled in this study
(male/female: 15/11, mean age: 59.6+6.9 years old, mean
serum ALT levels: 65.54+31.7IU/L, mean serum AST levels:
53.2+24.41U/L, HCV genotype: 1b=23, 2a=3, mean HCV RNA:
2493 + 959 KIU/mL). All of them were confirmed to be negative for
other viral infections, including hepatitis B virus (HBV) and human
immunodeficiency virus (HIV). The study protocols were approved
by the Review Board at the National Institute of Infectious Diseases.
All donors gave written informed consent. The controls were 15
healthy blood donors at the Tokyo Red Cross Blood Center (Tokyo,
Japan), who were confirmed to be negative for HCV, HBV, and HIV.
HCV genotype was determined by PCR of the core region with
genotype-specific primers (Ohno et al., 1997). HCV RNA was quan-
tified by the Roche Amplicor assay (Roche Diagnostics, Branchberg,
NJ), and results were standardized to international units (IU). Deter-
mination of serum levels of ALT and AST was performed using
standard methods.

The following fluorescence-conjugated antibodies (Abs)
were used for flow cytometry: Allophycocyanin-anti-CD19 (Cat.
MHCD1905; Invitrogen, Carlsbad, CA); PE-anti-CD27 (Cat. IM2578;
Beckman Coulter, Fullerton, CA); and FITC-anti-CD27 (Cat. 555440;
BD Biosciences, San Jose, CA). Cells were washed twice with cold
PBS containing 0.2% BSA, followed by incubation with an appro-
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Fig. 1. Flow cytometric analysis of PBMC from normal subjects and CHC patients. Lymphocytes were identified by forward and orthogonal light scatter characteristics.
Percentages of CD19" cells (A), CD27" cells (B), CD27* (%) in CD19* cells (C) and CD27*CD19" cells (D) in normal (n=15) and CHC patients (n=26) are shown with SEM bars

and p-values.

priate combination of directly conjugated Abs for 30 min on ice.
Stained cells were analyzed by FACSCallibur (Becton Dickinson,
San Jose, CA). Data were collected using CellQuest software (Becton
Dickinson, San Jose, CA) and were analyzed using Flow]Jo software
(Tree Star Inc., Ashland, OR).

Levels of Annexin V binding to both CD27* and CD27~ B cells
were assessed with a commercially available Annexin V apopto-
sis detection kit Annexin V-FITC (PN IM3546, Beckman Coulter,
Fullerton, CA) according to the manufacturer’s instructions.

Unpaired (two-tailed) Student’s t-test was applied at the 95%
confidence level (p <0.05) using Prism ver.4 (GraphPad Software,
Inc., San Diego, CA) in all cases.

We first analyzed the frequencies of peripheral blood CD19*
cells, i.e. B cells. They were not statistically different (p=0.1739)
between normal subjects and CHC patients as shown in Fig. 1A.
When the percentages of peripheral CD27* cells were analyzed,
a statistically significant (p=0.0022) decrease was noticed in CHC
patients when compared to normal subjects (Fig. 1B). The percent-
ages of peripheral CD27* cells in CD19* cells were then analyzed. A
significant (p = 0.0002) decrease was noticed in CHC patients when

compared to normal subjects (Fig. 1C). It was also verified that
the frequencies of peripheral CD27*CD19" cells were significantly
(p=0.01111) reduced in CHC patients (Fig. 1D). These results are in
good agreement with those of Racanelli et al. (2006). In their report,
patients with higher plasma HCV loads had lower percentages of
CD27* B cells, thus suggesting that high HCV replication is asso-
ciated with a reduction in CD27* B cells. They hypothesized that,
under conditions of persisting HCV antigenemia, memory B cells
not receiving specific B cell receptor triggering before having T-
cell help would be pushed to enhance immunoglobulin production
and prone to apoptosis (Racanelli et al., 2006), which may explain
the reduction of CD27* memory B cells in HCV-infected patients.
We next examined this possibility by analyzing apoptosis in both
peripheral blood CD27* and CD27~ B cells.

The levels of spontaneous apoptosis among peripheral blood
CD27* and CD27~ B cells in both normal subjects and CHC patients
were analyzed using three-color flow cytometry by staining with
allophycocyanin-anti-CD19, PE-anti-CD27 and Annexin V-FITC. As
shown in Fig. 2A, CD27~ B cells bound to much larger amounts of
Annexin V than CD27* B cells in CHC patients. In contrast, the pat-
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Fig. 2. Annexin V binding to CD27* aﬁd CD27- B cells. Representative staining patterns for Annexin V binding to CD27* (red line) and CD27- (green line) B cells are shown in
CHC patients (A). Blue lines indicate background (bkg) staining in negative controls. Summary of data on Annexin V binding to CD27* (red bar) and CD27~ (green bar) B cells
in normal subjects (n=8) and CHC patients (n=9) are shown with SEM bars and p-value (B). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.).
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terns of Annexin V binding were similar between CD27* and CD27~
B cells in normal subjects (data not shown). The percentages of each
cell subset bound to large amounts of Annexin V are shown in Fig. 2B
(the cut-off point was tentatively set at a fluorescence intensity of
2000). It was concluded that, CD27~ B cells were more vulnerable
to apoptosis than CD27* B cells upon HCV infection; in other words,
CD27* B cells were apparently resistant to apoptosis.

Hepatocytes have long been recognized as main cellular sites for
HCV infection. However, this does not necessarily imply that hep-
atocytes are the exclusive targets for HCV infection. It would be of
benefit for HCV to seek other cellular compartments as reservoirs
in the event that the liver becomes unsuitable for HCV replication,
possibly due to cellular destruction caused by the host immune
response. Our recent study verified that peripheral CD19* B cells
in CHC are in fact infected with HCV, thus suggesting a new viral
reservoir during the course of natural HCV infection in humans (Ito
et al., 2010). Interestingly, another recent study of ours demon-
strated that CD27* B cells are recruited from peripheral blood to
the inflammatory site of the liver of CHC patients (Mizuochi et al.,
2010). The present study thus may offer new insights into the role
of memory B cells in HCV pathogenesis. We assume that memory B
cells are the main extrahepatic reservoir of HCV infection because
of their long life span which may be correlated with their apparent
resistance to apoptosis. This would be a robust strategy for HCV in
order to secure sites for persistent infection.

In conclusion, the present study demonstrated that CD27* B cell
subsets in CHC patients are resistant to apoptosis. The long-life
of memory CD27* B cells may be suitable for persistent infection
of HCV. Therefore, elimination of peripheral CD27* B cells in CHC
patients with anti-B cell monoclonal antibodies, such as rituximab,
would be effective for HCV clearance in CHC patients. Additional
study with large sample number and infection with distinct HCV
genotype may offer further information. '
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Hepatitis C virus (HCV) is an enveloped
positive-stranded RNA virus of approxi-
mately 9.6 kb that belongs to the Flaviviridae
family (Suzuki etal.,2007). HCV infection is
a global health problem affecting nearly 200
million people (Lauer and Walker, 2001).
The infection causes prolonged and per-
sistent disease in over half of viral carriers
that often leads to chronic hepatitis, cirrho-
sis, and hepatocellular carcinoma (Afdhal,
2004). Recent studies have suggested that
HCV infects not only hepatocytes but also
peripheral mononuclear lymphocytes,
particularly B cells, which express CD81,
a widely expressed tetraspanin molecule.
CD81 has been shown to interact with the
E2 region of HCV envelope proteins (Pileri
et al., 1998) and is thus regarded as one of
the key molecules involved in HCV infec-
tion. HCV infection of B cells is the likely
cause of various B cell dysregulation dis-
orders. Herein, we propose that HCV uses
peripheral B cells as reservoirs for persistent
infection, which are in turn responsible for
HCV pathogenesis.

Although the liver is considered the pri-
mary and main target of HCV infection,
extrahepatic manifestations such as mixed
cryoglobulinemia, a systemic immune
complex-mediated disorder characterized
by B cell proliferation that may evolve into
overt B cell non-Hodgkin’s lymphoma
(B-NHL), are often recognized among
patients persistently infected with HCV
(Agnello et al., 1992; Zuckerman et al,
1997). Epidemiological evidence strongly
suggests a close association between chronic
HCV infection and B-NHL occurrence
(Turner et al., 2003; de Sanjose et al., 2008).
A pathogenic role of HCV in B cell disorders
has been further demonstrated by studies
in which the clinical resolution of B cell
dysfunctions was observed after successful
regimens of anti-HCV treatment (Mazzaro
etal., 1996; Agnello etal.,2002). Based on the
aforementioned data, Antonellietal. (2008)
postulated a role of B cells in HCV patho-
genesis. In accordance with this notion,
our recent study clearly demonstrated

that HCV infects and may replicate in the
peripheral CD19* B cells of chronic hepa-
titis C (CHC) patients (Ito et al., 2010a).
In order to determine how HCV evades
antiviral innate immune responses that are
normally induced in B cells, we analyzed
expression levels of [FN- in peripheral B
cells of CHC patients because type I IFN
plays a critical role in the antiviral innate
immune response. We found that HCV
infection failed to trigger antiviral immune
responses, such as IFN-f production, in B
cells of CHC patients (Ito etal., 2010b). This
suggests that HCV evades antiviral innate
immune responses in peripheral B cells and
uses these cells as reservoirs for its persistent
infection in the host.

The idea that B cells may serve as HCV
reservoirs was advocated by Muller et al.
(1993). Several subsequently published

papers also favored the notion of HCV
lymphotropism (Ducoulombier et al.,
2004; Blackard et al., 2006; Pal et al., 2006).
Figure 1 illustrates the possible process of
HCYV infection in B cells based on previous
studies using human hepatocyte-derived
cell lines (Burlone and Budkowska, 2009;
Georgel et al.,, 2010). Among B cell sub-
sets, memory B cells are assumed to be
the main reservoirs of HCV infection pri-
marily because of their long lifespans. In
support of this notion, our recent study
indicated that CD19" CD27* cells (i.e.,
memory B cell phenotype) express a high
amount of CXCR3, a chemokine receptor,
and are recruited to the inflammatory site
in the liver of CHC patients where IFN-
v-inducible protein-10, a CXCR3 ligand,
is highly produced (Mizuochi et al., 2010;
Figure 1). This unique strategy seems to
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FIGURE 1 | Proposed lifecycle of HCV in B cell. The life cycle of the hepatitis C virus (HCV) has several
specific steps. Virus entry is mediated by the direct interaction of envelope glycoproteins with co-receptors,
presumably E2-CD81 binding. CLDN1 and SR-Bl are not expressed in B cell. Innate immunity response
against HCV is suppressed by HCV infection. Some HCV-encoding proteins, i.e., core and NS3, have been
proven to be expressed in B cells. HCV RNA replication was examined by nested PCR and in situ
hybridization. Mechanisms of virus assembly, vesicle fusion, and virion release in B cell remain unknown.
LDLR, low-density lipoprotein receptor; SR-BI, scavenger receptor class B type I; SR-BII, scavenger
receptor class B type II; CLDN1, claudin-1; OCLN, occludin; CXCR3, chemokine (C-X-C motif) receptor 3;
IP-10, interferon gamma-induced protein-10.

www.frontiersin.org

August 2011 | Volume 2 | Article 177 | 1




Ito et al.

B cells as HCV reservoirs

be beneficial for HCV in securing sites for
persistent infection. HCV may search for
reservoir sites in cellular compartments
other than hepatocytes in case the liver
becomes unsuitable for HCV replication,
perhaps because of cellular destruction
caused by the host immune response and/
or by irrelevant conditions for successful
virus replication, such as the development
of cirrhosis or hepatocellular carcinoma.

At least two important issues remain to
be investigated. First, how do HCV-infected
B cells evade “acquired/adaptive” immune
responses represented by cytotoxic T cells
(CTL)? In peripheral blood, the frequen-
cies of HCV-specific CD8" lymphocytes
with persistent HCV infection are lower
than those with acute HCV infection.
Furthermore, the CTL response to the
HCV antigen is impaired in chronic HCV
patients (Lechner et al., 2000). Interestingly,
the percentage of CTL in peripheral blood
is lower than that in the liver, which may be
advantageous for persistent HCV infection
in B cells. Because the peripheral B cells
of CHC patients express the HCV core as
well as NS3 antigens (Ito etal.,,2010a),both
of which encode functional CTL epitopes
(Hiroishi et al., 2010), it is possible that
HCV-infected B cells are eliminated by CTL
to some extent. However, the fact that sub-
stantial amounts of HCV-infected B cells
are found in CHC patients suggests incom-
plete elimination by CTL by an inhibitory
mechanism, i.e., HCV E2-mediated inhi-
bition of IL-2/IFN-y secretion (Petrovic
et al.,, 2011). Second, do HCV-infected B
cells produce infectious HCV? Stamataki
et al. (2009) demonstrated that the infec-
tious JFH-1 strain of HCV can bind B cells
but fails to establish productive infection.
On the other hand, Inokuchi et al. (2009)
recently demonstrated the presence of neg-
ative-stranded HCV RNA, a marker of viral
replication, in B cells from 4 of 75 (5%)
CHC patients. These results support the
notion that HCV replicates in B cells and
suggest that infectious HCV are produced
in B cells. We have currently been investi-
gating this intriguing issue by using an in
vitro assay system.

In conclusion, lymphoid reservoirs of
HCYV infection may play a role in viral per-
sistence and thereby be involved in its patho-
genesis. Infection and replication of HCV in
peripheral B cells should be regarded as a

considerable impediment to the treatment
of CHC patients undergoing various antivi-
ral regimens. From a therapeutic viewpoint,
it may be beneficial to eliminate peripheral
B cells in CHC patients by administering
anti-B cell antibodies, such as rituximab,
along with combination chemotherapy of
peg-IFN-o and ribavirin, which eliminate
circulating HCV in the blood. Together, this
could lead to a synergistic effect on HCV
clearance in CHC patients.
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Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. It has been suggested that
HCYV infects not only hepatocytes but also mononuclear lymphocytes including B cells that express the CD81 molecule, a putative
HCV receptor. HCV infection of B cells is the likely cause of B-cell dysregulation disorders such as mixed cryoglobulinemia,
rheumatoid factor production, and B-cell lymphoproliferative disorders that may evolve into non-Hodgkin’s lymphoma (NHL).
Epidemiological data indicate an association between HCV chronic infection and the occurrence of B-cell NHL, suggesting that
chronic HCV infection is associated at least in part with B-cell lymphomagenesis. In this paper, we aim to provide an overview of
recent literature, including our own, to elucidate a possible role of HCV chronic infection in B-cell lymphomagenesis.

1; Introduction

Hepatitis C virus (HCV) is an enveloped positive-strand
RNA virus that belongs to the Flaviviridae family [1]. HCV
infection is a worldwide problem affecting nearly 200 million
people [2] and causes prolonged and persistent diseases in
virus carriers, often leading to chronic hepatitis, cirrhosis,
and hepatocellular carcinoma [3]. Although the liver is
considered to be the primary target of HCV infection, extra-
hepatic manifestations, such as mixed cryoglobulinemia,
which is a systemic immune complex-mediated disorder
characterized by B-cell proliferation that may evolve into
overt B-cell non-Hodgkin’s lymphoma (B-NHL), are often
recognized among patients persistently infected with HCV
[4, 5]. In fact, epidemiological evidence strongly suggests a
close link between chronic HCV infection and B-NHL [6, 7].
The pathogenic role of HCV in B-cell disorders has been
suggested in reports wherein a clinical resolution of the B-
cell dysfunctions, stated above, was observed after successful
anti-HCV treatment using interferon (IFN) [8-10]. Based on
such evidences, a possible role of B cells in HCV pathogenesis
has been postulated but not yet conclusively demonstrated.

The objective of this paper is to summarize recent liter-
ature focused on the possible involvement of HCV infection
in B-cell lymphomagenesis, which could offer new insights
into the role of B cells in the pathogenesis of HCV infection.

2. Does HCV Infect and Replicate
in Peripheral B Cells of Chronic
Hepatitis C (CHC) Patients?

HCYV, as the name indicates, has been regarded as a hepa-
totropic virus. However, the possibility that HCV infects
cells other than hepatocytes cannot be excluded. In the early
1990s, the existence of HCV RNA was demonstrated by PCR
in not only serum/plasma [11] and liver tissues [12] but also
in peripheral blood mononuclear cells (PBMCs) of patients
infected with HCV [13, 14]. Muller et al. first reported in
1993 that HCV RNA could be found in B cells [15]. They pre-
dicted that PBMC, particularly B cells, could be sites for HCV
replication and may serve as reservoirs of HCV infection.
Moldvay et al. demonstrated that negative-strand HCV RNA,
a replicative intermediate of HCV, was observed in PBMC of



patients with CHC (6 of 11) by in situ hybridization [16].
Muratori et al. reported negative-strand HCV RNA within
PBMC detected by fluorescein-tagged in situ RT-PCR (12
of 14 patients with CHC) [17]. Further evidence suggested
that HCV replicates in B cells. For example, Morsia et al.
demonstrated the replication of HCV in CD19% B cells by
detecting the negative-strand RNA although their sample size
was very small (1 of 3 patients with CHC was positive) [18].
Around the same time, Pileri et al. demonstrated that the
HCYV envelope protein E2 binds the CD81 molecule that is
expressed on not only hepatocytes but also various cell types
including B cells [19]. This finding thus provided a rationale
for the notion that HCV infects and replicates in B cells.
Several years later, Gong et al. confirmed the existence of
negative-strand HCV RNA in PBMC of patients with CHC
(14 of 35) [20]. Some argued that the negative-strand HCV
RNA in PBMC may be due to mere contamination or passive
absorption by circulating HCV in peripheral blood. They
successfully excluded this possibility by demonstrating the
expression of HCV-encoding protein, NS5, which indicates
that HCV not only replicates but also produces HCV protein
in PBMC. Their results are in agreement with an earlier study
by Sansonno et al. in which HCV core and NS3 proteins were
detected in PMBC of patients with CHC [21].

Occult HCV infection is characterized by the presence of
HCV RNA in the liver and the absence of both HCV RNA
and anti-HCV antibodies in serum. Castillo et al. detected
HCV RNA in PBMC of 40 of 57 (70%) patients with occult
HCYV infection [22]. In a subsequent report, they confirmed
the replication of HCV in PBMC of patients with occult HCV
infection by detecting both positive and negative strands
of HCV RNA using a strand-specific RT-PCR and in situ
hybridization techniques [23]. Meanwhile, Januszkiewicz-
Lewandowska et al. demonstrated the presence of HCV RNA
in PBMC of patients who underwent antiviral chemotherapy
and therefore were HCV-serum negative [24]. Collectively,
these findings not only favor the notion that PBMC,
particularly B cells (discussed later), infected with HCV can
serve as reservoirs for persistent HCV infection but are also
an alert that PBMC of patients with CHC, including patients
with occult CHC, could be potentially infectious even when
HCV RNA is negative in their sera. There has been a debate
over which cell population in PBMC is the main target for
HCV infection. An array of evidence suggests that HCV
replicates in various cell types of PBMC, including peripheral
dendritic cells, monocytes, and macrophages [25-27]. A
recent study by Kondo et al. demonstrated that lymphotropic
HCV (SB strain) could infect not only established T-cell
lines and B-cell lines but also primary naive CD4" T cells,
suggesting that HCV replication in such T cells suppressed
their proliferation and development in Thl commitment
[28]. Under these circumstances, a number of reports have

indicated that HCV infects CD81-positive lymphocytes, -

preferentially B cells [18, 29-31]. Our recent study also
clearly demonstrated that HCV RNA and HCV core and
NS3 proteins are detected in CD19* but not in CD19~
PBMC [32]. Furthermore, Inokuchi et al. confirmed that
negative-strand HCV RNA, regarded as a marker of viral
replication, was detected in B cells of patients with CHC [33].
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Considering this evidence, it can be concluded that HCV
infects and replicates in PBMC, particularly in the CD19* B-
cell subset, of patients with CHC. An intriguing question has
emerged as to whether different HCV variants or B-tropic
HCV cause HCV infection in the CD19* B cells of patients
with CHC or not. When cDNA sequences derived from RNA
isolated from plasma and CD19" B cells of randomly selected
patients with CHC were compared, limited variations were
found in the internal ribosome entry site (IRES) region (our
unpublished data). However, as predicted by a computer
program named mfold, these nucleotide substitutions did
not affect RNA secondary structure or thermodynamic
stability of IRES region [34]. Furthermore, the amino acid
sequences in the hypervariable region 1 (HVR1), which
directly reflect clonal variations of HCV, did not show
any distinct differences between plasma and CD19* B cells
of patients with CHC. These results indicate that HCV
RNA isolated from CHC B cells is indistinguishable from
RNA isolated from plasma of the same patient with CHC
(our unpublished data). Sequence polymorphisms located at
IRES and HVRI of E2 were observed in lymphoid cells of
individuals with persistent HCV infection, strongly favoring
the concept of HCV lymphotropism. Recently, HCV variants
observed in B cells showed poor translational activity in
hepatocytes but not in B-cell lines, indicating that adaptive
mutations had occurred in B cells [35]. However, our
results do not support the concept of lymphotropism or
B-tropism of HCV in patients with CHC [30] but instead
are in good agreement with studies by Muller et al. in
which the PCR products obtained from serum and PBMC
specimens of an HCV-positive individual were found to have
nearly identical sequences [15]. Although the number of
clones analyzed was limited, our conclusion that HCV RNA
isolated from CD19* B cells is indistinguishable from RNA
isolated from the plasma of the same patient with CHC is
inconsistent with the concept of B-tropic HCV RNA. Further
investigation .involving a large number of HCV patients
would be necessary to support this conclusion. ‘

Overall, the data accumulated to date strongly suggest
that HCV infects and replicates in the peripheral B cells
of patients with CHC. However, currently it is not known
whether a novel HCV strain, B-tropic HCV RNA, preferen-
tially infects peripheral B cells or not. The role of B cells in
the pathogenesis of HCV infection is examined in the next
section.

3. Peripheral B Cells May Serve as Reservoirs
for Persistent Infection of HCV

As described in the previous section, evidence indicates
that peripheral B cells in patients with CHC were infected
with HCV and thus may serve as HCV reservoirs. This
evidence posed a logical question as to how HCV evades the
innate antiviral immune responses in B cells. However, this
important issue has so far not been formally investigated.
Sensing mechanisms for invading viruses in host
immune cells consist of toll-like-receptor (TLR-) medi-
ated [36] as well as retinoic-acid-inducible-gene-I1-(RIG-

I-) mediated [37] pathways. Both pathways culminate in
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FiGure 1: Impaired innate antiviral immunity in B cells of patients
with chronic hepatitis C.

the translocation of IEN regulatory factor-3 (IRF-3) to the
nucleus to transcribe the IEN-f gene. Type-I IEN, for exam-
ple, IEN-f3, plays a critical role in the innate antiviral immune
response [38, 39]. In our recent study, it was found that
the expression levels of RIG-I and its adaptor molecule, IFN
promoter-stimulator 1 (IPS-1), were substantially enhanced
in CHC B cells. However, dimerization and the subsequent
nuclear translocation of IRF-3 were almost undetectable in
CHC B cells. It has been demonstrated that TANK-binding
kinase-1 (TBK1) and IxB kinase-e (IKKe) are essential
for the phosphorylation of IRF-3 [40]. The constitutive
expression levels of both kinases were found to be markedly
enhanced in CHC B cells. However, the reduced expression
of TBK1 stabilizers, including Hsp90 [41] and DDX3X [42],
and the enhanced expression of the IKK suppressor SIKE
[43], were observed in CHC B cells, suggesting that IRF-3
phosphorylation was downregulated. Hence, transcription of
the IFN-f gene was not augmented. These results strongly
suggest that HCV infection circumvents innate antiviral
immune responses, that is, type I IFN production in B cells,
and (Figure 1) thus, takes advantage of B cells for persistent
infection.

It can be assumed that, among B-cell subsets, memory
B cells are the main reservoirs of HCV infection primarily
because of their long lifespans. Supporting this notion, our
recent study indicated that CD19" CD27" cells (memory
B cells [44]) are recruited to the liver of patients with
CHC through the interaction between CXCR3 expressed
on CD19" CD27* cells and IP-10 (IFN-y-inducing protein
10kD) produced in the liver [45]. This strategy would be
beneficial for HCV in securing sites for long-lasting infec-
tion. HCV infection of hepatocytes has long been considered
an a priori assumption. However, this assumption does not
necessarily mean that hepatocytes are the exclusive target of
HCYV infection. HCV may search for reservoir sites in other
cellular compartments if the liver becomes unsuitable for

replication, perhaps due to cellular destruction caused by
the host immune response and/or by the development of
conditions such as cirrhosis and hepatocellular carcinoma.

Lymphoid reservoirs of HCV infection could play a
role in viral persistence [29, 46—48]. Several maneuvers
are employed for persistent infection of HCV [49]. Viral
modulation is an effective strategy to escape host immune
responses [50]. Another strategy is the suppression of
the innate immunity of host by viral components. These
components include HCV E2 protein, which acts as a decoy
target of protein kinase R (PKR) [51]; HCV NS3/4A protein,
which cleaves the adaptor molecules TRIF and IPS-1 and
thereby blocks TLR3 and RIG-I signaling, respectively [52,
53]; HCV NS5A protein, which inhibits IFN-stimulated
genes expression [54] and PKR function [55]; HCV core
protein, which interferes with JAK/STAT signaling [56, 57].
Regardless of the mechanisms, the infection and replication
of HCV in peripheral B cells should be considered barriers to
the treatment of patients with CHC with antiviral regimens.
Based on the notion that peripheral B cells serve as reser-
voirs for persistent HCV infection and from a therapeutic
perspective, it may be beneficial to eliminate peripheral B
cells in patients with CHC by the administration of anti-B-
cell antibodies, such as rituximab, along with combination
therapy with peginterferon and ribavirin to eliminate circu-
lating HCV in the blood, leading to a synergistic effect on
HCV clearance in patients with CHC.

4. HCV Infection and B-Cell Lymphomagenesis

The striking association between HCV infection and type II
mixed cryoglobulinemia (MC) has been well documented
[4, 58, 59]. MC is a benign lymphoproliferative disorder
and is regarded as a variant of low-grade B-NHL. Therefore,
lymphotropism of HCV suggests that HCV could play a
pathogenic role in the clonal proliferation of B cells [60, 61].
Because HCV RNA genomic sequences are not able to
integrate into the host genome, indirect mechanisms of
malignant transformation should be considered. In this
regard, the persistent stimulation of B cells by viral antigens
and/or the enhanced expression of lymphomagenesis-related
genes could be responsible for leading to polyclonal and
later to monoclonal expansion of B cells. Furthermore, the
occurrence of a subsequent transformation may lead to
B-NHL.

A number of epidemiological studies regarding the
association between HCV infection and the occurrence of
B-NHL have been carried out [5, 7, 62—65]. A substantial
geographic as well as demographic variation exists in the
association between HCV infection and risk of B-NHL.
A positive association was found in Italy, Japan, and
USA. A recent case-control study with a large number of
subjects from the International Lymphoma Epidemiology
Consortium based in Europe, North America, and Australia
further confirmed the association between HCV infection
and NHL and specific B-NHL subtypes, that is, diffuse large
B-cell lymphoma (DLBCL), marginal zone lymphoma, and
lymphoplasmacytic lymphoma [6]. In contrast, other studies
from Northern Europe, UK, and Canada failed to show the



