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To identify the host factors implicated in the regulation of hepatitis C virus (HCV) genome replication, we
performed comparative proteome analyses of HCV replication complex {(RC)-rich membrane fractions
prepared from cells harboring genome-length bicistronic HCV RNA at the exponential and stationary growth
phases. We found that the eukaryotic chaperonin T-complex polypeptide 1 (TCP1)-ring complex/chaperonin-
containing TCP1 (TRIC/CCT) plays a role in the replication possibly through an interaction between subunit
CCT5 and the viral RNA polymerase NS5B. siRNA-mediated knockdown of CCT5 suppressed RNA replication

g‘?g:g;?: .C virus and production of the infectious virus. Gain-of-function activity was shown following co-transfection with

Replication whole eight TRIC/CCT subunits. HCV RNA synthesis was inhibited by an anti-CCT5 antibody in a cell-free

Non-structural protein assay. These suggest that recruitment of the chaperonin by the viral nonstructural proteins to the RC,

Chaperonin which potentially facilitate folding of the RC component(s) into the mature active form, may be important
for efficient replication of the HCV genome.

© 2010 Elsevier Inc. All rights reserved.

Introduction structures, possibly in a lipid-raft structure (Aizaki et al, 2004; Shi

Hepatitis C virus (HCV) is a major cause of chronic liver diseases,
such as chronic hepatitis, hepatic steatosis, cirrhosis, and hepatocel-
lular carcinoma (Hoofnagle, 2002; Manns et al, 2006; Saito et al,,
1990; Seeff and Hoofnagle, 2003). HCV is an enveloped positive-
strand RNA virus belonging to the Hepacivirus genus of the
Flaviviridae family. Its genome of ~9.6 kb encodes a polyprotein
precursor of ~3000 amino acids (aa) (Suzuki et al,, 2007; Taguwa et
al, 2008). The precursor polyprotein is post- or cotranslationafly
processed by both viral and host proteases into af least ten viral
products, The nonstructural (NS) proteins NS3-NS5B are necessary
and sufficient for autonomous HCV RNA replication. They form a
membrane-associated replication complex (RC), in which NS5B is the
RNA-dependent RNA polymerase (RdRp) that is responsible for
copying the RNA genome of the virus during replication. The HCV
RC has been detected in detergent-resistant membrane {DRM)
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et al,, 2003). Cell-free RC replication activity has also been demon-
strated in crude membrane fractions of HCV subgenomic replicon cells
(Aizaki et al., 2004; Ali et al., 2002; Hara et al., 2009; Hardy et al., 2003:
Yang et al,, 2004); these cell-free systems provide semi-intact RdRp
assays for biochemical dissection of viral replication.

In general, any process that occurs during viral replication is
dependent on the host cell machinery and requires close interaction
between viral and cellular proteins. Although evidence that host cell
factors interact with HCV NS proteins and are involved in viral
replication is accumulating (Moriishi and Matsuura, 2007), the
cellular components of HCV RC and their functional roles in viral
replication are not fully understood.

Recently, using comparative proteome analysis, we identified 27
cellular proteins that were highly enriched in the DRM fraction of
HCV replicon cells relative to parental cells. Subsequent analyses
demonstrated that one of the identified proteins, creatine kinase B,
a key ATP-generating enzyme, is important for efficient replication of
the HCV genome and for production of the infectious virus (Hara et al,,
2009).

In this study, to extend our investigation and to increase our
understanding of the precise components of HCV RC and the
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mechanisms of viral genome replication, we designed another com-
parative proteomic approach in which cells harboring genome-length
bicistronic HCV RNA at the exponential growth phase (showing rapid
replication of viral RNA) were compared with cells at the confluent-
growth phase (showing poor replication of viral RNA). This strategy
revealed that the chaperonin T-complex polypeptide (TCP1)-ring
complex/chaperonin-containing TCP1 (TRiC/CCT) participates in HCV
RNA replication and virion production possibly through an interaction
between CCT5 (chaperonin-containing TCP1, subunit 5) and NS5B.

Results
CCT5 and Hsc70 are enriched in the DRM fraction containing the HCV RC

Recently, we analyzed the protein content of DRM fractions
prepared from HCV subgenomic replicons and parental Huh-7 cells
and identified 27 cellular proteins that were enriched in the DRM
fraction prepared from the replicon cells (Hara et al,, 2009). These were
identified as factors that may be involved in the HCV RC and in viral
replication. In fact, subsequent silencing of several genes coding for
these proteins resulted in the inhibition of HCV RNA replication (Hara
et al, 2009). However, it is likely that proteins unrelated to HCV
replication are also included in the identified groups because long-term
culture of the replicon cells under the selective pressure of G418 selects
for a subpopulation of the parental cells and may induce changes in their
protein expression profiles. Thus, to minimize interline differences
in culture background, we further designed a comparative proteome
analysis using a single cell line as follows.

HCV replication efficiency is dependent on the conditions of host
cell growth. High cell density of the replicon culture has a reversible
inhibitory effect on viral replication (Nelson and Tang, 2006;
Pietschmann et al.,, 2001). Fig. 1A demonstrates that a high level of
HCV RNA was detected in cells harboring the genome-length
bicistronic HCV RNA, Con1 strain of genotype 1b (RCYM1) in the
growth phase, whereas the RNA level declined sharply when the cells
reached the stationary phase. We further compared the synthesis
of HCV RNA in cell-free reaction mixtures containing the viral RC
isolated from the RCYM1 cells at various cell densities (Fig. 1B).
Replication activity was highest at the mid-log phase of cell growth
(day 4 after seeding). By contrast, little or no RNA synthesis was
observed under the confluent-growth cell culture (day 8), confirming
the critical role of host cell growth conditions in the replication of the
HCV genome.

Thus, to identify the host cell proteins required for HCV replication,
we designed a two-dimensional fluorescence difference gel electro-

phoresis (2D-DIGE)-based comparative proteomics analysis of RC-
rich DRM fractions prepared from RCYM1 cells at the mid-log and
confluent-growth phases. Protein spots that reproducibly showed a
greater than 1.5-fold difference in the mid-log growth- and the
confluent phases were excised and digested by trypsin or lysylendo-
peptidase. Matrix-assisted laser desorption ionization-time-of-flight
(MALDI-TOF) mass spectrometry (MS), which allows identification of
the corresponding proteins in 9 cases (Table 1). Two increased spots
that showed an increase in levels (their stereoscopic images are
shown in Fig. 2A) were identified as CCT5 and Hsc70. CCT5, an epsilon
subumit of chaperonin TRiC/CCT, is a 900-kDa toroid-shaped complex
consisting of eight different subunits (Valpuesta et al.,, 2002; Yaffe
et al,, 1992). Hsc70, a member of the HSP70 family, is a 71-kDa heat
shock cognate protein (Dworniczak and Mirault, 1987). Independent
of the proteome analyses, DRM fractions and whole cell lysates
were prepared fromi RCYM1 cells at two different growth phases (as
above) and were analyzed by immunoblotting (Fig. 2B). Steady-state
levels of CCT5 and Hsc70 were obviously higher in the DRM fraction
prepared from the cells that were at the mid-log growth phase
compared with those at the confluent phase. However, in the whole
cell analyses, they were shown to be present at comparable levels
during the two different growth phases. These results suggest that
expression of CCT5 and Hsc70 is not enhanced in proliferating cells
and that the enrichment of these proteins in the DRM fraction is
possibly due to their post-translational modification. It should be
noted that in the previous proteome analysis, CCT5 and other TRiC/
CCT subunits, such as CCT1 and CCT2, were identified as proteins that
were enriched in the DRM fraction prepared from subgenomic
replicon-containing cells compared with that prepared from parental
cells (Hara et al, 2009). We showed that CCT5 and CCT1 were
enriched in the DRM fractions of cells transfected with the HCV
genomic RNA derived from JFH-1 isolate as well as of subgenomic
replicon cells (Fig, 2C).

TRIC/CCT participates in replication of the HCV genome

We investigated gain- and loss-of-functions of TRIC/CCT and Hsc70
with respect to the replication of HCV RNA. Seventy-two hours after
RCYM1 cells were transfected with eight plasmids corresponding to
each of the TRIC/CCT subunits, the level of HCV RNA in the cells
(determined by quantitative RT-PCR) significantly increased to 2-fold
that observed in the control cells. However, exogenous expression of
Hsc70 in the RCYM1 cells showed no effect on the viral RNA (Fig. 3A).
siRNAs targeted to CCT5 or Hsc70 and consisting of pools of three
target-specific siRNAs or control nonspecific siRNAs were transfected
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Fig. 1. Effect of cell growth on HCV RNA replication. (A) Measurement of HCV RNA (open squares} and total cellular RNA {closed circles) in RCYM1 cells at the time of harvest (days
after seeding ). (B} DRM fractions obtained from RCYM1 and parental Huh-7 cells harvested as indicated (day) were analyzed by cell-free RNA replication assay. RNA extracted from

each sample was analyzed by agarose gel electrophoresis and autoradiograph.
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Table 1

Selected cellular proteins that reproducibly increased and decreased in membrane fraction of RCYM1 cells at exponential growth phase.
Av, ratio T-test Coverage (%) Protein name Molecular function Gl
Increased proteins
1.58 0.017 31 CCT5 Protein folding 33879913
1.54 0.005 35 HSPAS (Hsc70) Protein folding 24657660
Decreased proteins
—1.95 0.028 44 Creatine kinase isozyme CK-B gene, exon 8 Energy pathway/metabolism 180568
—1.53 0.011 16 Chain C, Human Sirt2 Histone deacetylase Cell cycle control 15826438
—2.14 0.001 33 Proteasomne regulatory particle subunit p44S10 Metabolism 15341748
—1.71 0.004 21 Aldehyde dehydrogenase Metabolism 178388
—1.85 0.004 40 Aminoacylase 1 Metabolism 12804328
-—2.77 0.003 15 Eukaryotic translation initiation factor 3, subunit 3 gamma Metabolism {translation regulator activity) 6685512
—243 0.014 20 Intraflagellar transport protein 74 homolog Cell growth and/or maintenance 10439078

(Coiled-coil domain-containing protein 2)

Three paired samples of RC-rich membrane fractions at the exponential- and confluent-growth phases of RCYM1 cultures were analyzed. The proteins representing a more than 1.5-

fold increase or decrease (—) reproducibly and significantly are indicated.

Coverage {%): the ratio of the portion of protein sequence covered by matched peptides to the whole sequence.

Gl: Genlnfo Identifier number.

into RCYMT1 cells. After 72 h, the HCV RNA level was reduced by 42%
and 27% in the cells transfected with siRNAs against CCT5 and Hsc70,
respectively, compared with controls (Fig. 3B). TRiC/CCT possibly
interacts with Hsc70, and its complex formation contributes to
increasing the efficiency of protein folding (Cuéllar et al., 2008). Our
results suggest the involvement of TRiC/CCT and Hsc70 in the HCV
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life cycle. In particular, TRiC/CCT may play an important role in the
replication of the viral genome.

To verify the specificity of the knockdown of CCT5 siRNA, we
further synthesized two siRNAs targeted to different regions used in
the above CCT5 siRNA and assessed their knockdown effect on HCV
genome replication (Fig. 3C, upper panel). As expected, transfection of
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Fig. 2. Comparison of protein levels in DRM fractions prepared from RCYMT cells at the exponential and stationary growth phases. (A) Three-dimensional images of CCT5 and Hsc70
analyzed by Ettan DIGE (GE Healthcare). Spots corresponding to CCT5/Hsc70 at exponential and stationary growith phases of the cells, respectively, are shewn in green and red.
(B) Equal amounts of protein in the DR} fractions prepared from RCYM1 cells at the exponential and stationary growth phases or corresponding whole cell lysates were analyzed by
immunoblotting with Abs against CCT5, Hsc70 or fintillin-1, {C) Enrichment of CCT1 and CCT5 in the DR fractions of HCV RNA replicating cells. Equal amounts of DRM oF non-DRM
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Fig. 3. Involvement of TRIiC/CCT in HCV replication (A and D). Overexpression of all eight subunits of TRIC/CCT (TRiC/CCT); seven subunits, CCT1, 2, 3, 4, 6, 7, and 8 (CCT1-4, 6-8);
subunit CCT5 only (CCT5); Hsc70; or control GFP in RCYM1 cells. HCV RNA levels were determined 48 h post-transfection (B and C). Knockdown of endogenous CCT5 or Hsc70 in
RCYM1 cells, which were transfected with three types of siRNAs against CCT5 (siCCT5-1, -2, and -3), siRNA against Hsc70 (siHsc70), or control siRNA (siCont), and were harvested at
72 h post-transfection. siCCT5-1 and siHsc70 consisted of pools of three target-specific siRNAs. Immunoblotting for CCT1, CCT5, Hsc70 and GAPDH was performed (A, C and D;
fower). (E) Celi-free de novo viral RNA synthesis assays were performed in the presence of anti-CCT5 Ab or control mouse IgG. Cytoplasmic fractions from SGR-N (replicon) and
parental Huh-7 cells were used. An arrow indicates the synthesized HCV RNA. Error bars denote standard deviations with asterisks indicating statistical significance (*P<0.01).

RCYM1 cells with each CCT5 siRNA resulted in a reduction in viral RNA
to a level of about 50% of that observed in cells treated with control
siRNAs. Immunoblotting confirmed the efficient reduction in expres-
sion of endogenous CCT5 and the lack of cytotoxic effect exerted by
the CCT5 siRNAs (Fig. 3C, middle and lower panels).

Having confirmed the upregulation of HCV RNA by ectopic
expression of all the TRiC/CCT subunits, we further addressed the
possibility that CCT5, independent of the complete TRiC/CCT complex,
might have a role in prometing replication of HCV RNA. Transfection
with either a CCT5 expression plasmid alone or with seven plasmids
expressing all the TRIC/CCT subunits except CCT5 resulted in no or
only a slight increase in the level of HCV RNA, indicating that all CCT
subunits are required for HCV replication (Fig. 3D).

TRIC/CCT is generaily known as a cytosolic chaperone {Valpuesta
et al., 2002). However, it is enriched in the DRM fraction of HCV-

replicating cells during the exponential growth phase (Fig. 2B). We
used immunofluorescence staining to investigate whether TRiC/CCT is
localized in the intracellular membrane compartments where repli-
cation of the viral genome occurs (Fig. 4). The de novo-synthesized
RdRp was labeled by bromouridine triphosphate (BrUTP} incorpora-
tion in the presence of actinomycin D, and brominated nucleotides
were detected with a specific antibody (Ab)}. Fluorescence staining
in distinct speckles of various sizes was found in the cytoplasm of the
HCV subgenomic replicon cells, whereas no signal was detected in
the control cells, indicating that the observed BrUTP-incorporating
RNA is mostly viral, newly synthesized viral RNA (Fig. 4A). Double
immunofluorescence staining showed that a certain section of CCT5
co-distributed with the BrUTP-labeled RNA (Fig. 44), which is known
to co-exist with HCV NS proteins in viral replicating cells (Shi et al.,
2003). We further observed that CCT5 was at least partially colocalized
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Fig. 4. Inmunofluorescence analysis of CCT5 in SGR-N and Huh-7 celis (A} and HCVcc-infected cells (B). The primary Abs used were anti-CCT5 goat polyclonal Ab (red), anti-BrUTP
monoclonal Ab (green), and anti-NS5A monocional Ab (green). Merged images of red and green signals {A) or of red, green and blue (nucleus) signals (B} are shown. The high
magnification panel is an enlarged image of a white square of the merge panel. {C) Colocalization of NS5A protein with the viral RNA. The replicon cells were permeabilized with
Iysolecithin and labeled with BrUTP, followed by staining with anti-NS5A rabbit polyclonal Ab {red) and the anti-BrUTP monoclonal Ab (green). DIC, difierential interference

contrast.

with the viral NS protein in certain compartments sharing a dot-
like structure in Huh-7 cells infected with HCV JFH-1 infectious
HCV (HCVcc) derived from HCV genotype 2a (Fig. 4B) as well as in the
replicon cells (data not shown). Fig. 4C indicated co-localization of
BriTP-labeled RNA with NS5A.

To further address the role of TRIC/CCT in HCV genome replication,
we performed immunodepletion and in vitro replication analyses,
which have been used for studying the genome replication of several

viruses (Daikoku et al., 2006; Garcin et al., 1993; Liu et al., 2009). Cell
extracts prepared from the HCV-replicating cells were reacted with
either a mouse monoclonal Ab against CCT5 or mouse IgG derived
from preimmune serum, followed by celi-free synthesis of HCV
RNA. Fig. 3E shows that treatment with anti-CCT5 ADb inhibited
viral RNA synthesis, whereas the control lgG did not affect the
process, suggesting that TRIC/CCT participates directly in HCV RNA
replication.
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CCT5 interacts with HCV NS5B

The genome replication machinery of HCV is a membrane-
associated complex composed of multiple factors including viral NS
proteins. Given the involvement of TRIC/CCT in HCV RNA synthesis,
we next examined its possible interaction with HCV NS proteins. A
first attempt to immunoprecipitate the viral proteins with antibodies
against TRiC/CCT subunits in the replicon cells was unsuccessful (data
not shown), suggesting that endogenous levels of TRiC/CCT is not
sufficient to pull out NS5B. Next, dual (myc/FLAG)-tagged NS3, NS5A,
or NS5B proteins derived from the genotype 1b NIHJ1 strain were co-
expressed with CCT5 in Huh-7 cells and then subjected to two-step
immunoprecipitation with anti-myc and anti-FLAG Abs (Ichimura
et al., 2005; Shirakura et al.,, 2007). An empty plasmid was used as a
negative control in the analyses. As shown in Fig. 54, CCT5 specifically
interacted with NS5B. Little or no interaction was found between
CCT5 and NS3 or NS5A. To determine the NS5B region required for
the interaction with CCT5, various deletion mutants of HA-NS5B were
constructed and their interactions with CCT5 were analyzed as
described above. CCT5 was shown to be coimmunoprecipitated with
either a full-length NS5B (aa 1-591}), an N-terminal deletion (aa 71~
591) or a C-terminal deletion (aa 1-570), but not with deletions aa
215-591 or aa 320-591 (Fig. 5B), suggesting that aa 71-214 of NS5B
are importart for its interaction with CCT5.

Knockdown of CCT5 results in the reduction of propagation of infectious
HCV

We further examined whether the knockdown of CCT5 would
abrogate the production of infectious HCV (HCVec), derived from JFH-
1 (Fig. 6). At 72 h post-transfection with each CCT5 siRNA, HCV RNA

A —
<]
5 8 3 ¢
ie: = = 2 3
anti-iMyc, FLAG — V
iB:anti-CCT5 m
IB:anti-FLAG|
Lysate —
IB:anti-CCT5
B > > o
oy
2z8 % %¢g
iP: ¥ ™ ™ N .
anti-HA o= Kk 8 & -
1B:anti-CCT5 e
IB:anti-CCT5
Lysate .
IB:anti-HA

Fig. 5. CCT5 interacts with HCV NS5B. (A) CCT5 was co-expressed with MEF-tagged-
NS5B, -NS5A, or -NS3 protein of strain NIHJ1 in cells, followed by two-step immunopre-
cipitation (IP) with anti-FLAG and anti-myc Abs. Immunoprecipitates were subjected
to immunoblotting wirhvanti-€CT5 Ab (1B). (B) Full-length NS5B (1-591) or its deletions
(71-591, 215-591, 320-591, 1-570) along with a HA tag were co-expressed with CCT5.
IP and IB were performed as described above.
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Fig. 6. Knockdown of endogenous CCT5 in HCVcc-infected cells. The cells were
transfected with siRNAs against CCT5 (siCCT5-2, -3) or with control siRNAs (siCont). At
72 h post-transfection, the viral core protein levels in cells were determined (upper
panel). Collected culture supernatants were inoculated into naive Huh7.5.1 cells
and intracellular core proteins were determined at 72 h post-infection (middle panel).
Cells transfected with siRNAs were analyzed by immunoblotting with anti-CCT5 or
anti-GAPDH Ab (lower panel). Error bars denote standard deviations with asterisks
indicating statistical significance (*P<0.05; **P<0.01).

levels in Huh-7 cells infected with HCVce were reduced by 25-35%
compared with controls. Accordingly, virion production from CCT5
siRNA-transfected cultures was significantly decreased, as determined
by initracellular HCV core protein levels at 72 h after the infection of
naive cells with culture supernatants taken from transfected cells.
These results demonstrate that reduction of the HCV RNA replication
by siRNA-mediated knockdown of CCT5 results in reduction of the
propagation of the infectious virus.

Discussion

The chaperone-assisted protein-folding pathway is a process in
living cells that results from coordinated interactions between
multiple proteins that often form multi-component complexes.
Several steps in the viral life cycle, such as protein processing, genome
replication, and viral assembly, are regulated by cellular chaperones.
Hsp90, one of the most abundant proteins in unstressed cells, has
been implicated in HCV RNA replication (Nakagawa et al, 2007;
Okamoto et al,, 2006, 2008; Taguwa et al, 2008, 2009; Ujino et al,,
2009}. FKBPS, a member of the FKBP506-binding protein family, and
hB-ind1, human butyrate-induced transcript 1, play key roles through
their interaction with HCV NS5A and Hsp90 (Okamoto et al,, 2006,
2008; Taguwa et al,, 2008, 2009). Hsp90 has also been imiplicated
in viral enzymatic activities including those of the influenza virus
(Momose et al,, 2002; Naito et al., 2007}, herpes simplex virus (Burch
and Weller, 2005), Flock house virus (Kampmueller and Miller, 2005),
and hepatitis B virus (Hu et al., 2004).

in our former study, comparative proteome analyses of the viral
RC-rich DRM fractions prepared from subgenomic replicon cells
and Huh-7 cells were carried out to identify host factors involved
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in HCV replication (Hara et al,, 2009). We extended the proteomics
by modifying our protocol of the analysis to reduce the interline
differences in culture background and analyzed the DRM samples
derived from the mid-log and confluent-growth phases of single cell
line. Here, we identified two proteins, CCT5 and Hsc70, showing an
increase in levels at the mid-log growth phase. Although CCT5 was
also identified in the former study as expected, Hsc70 was not
included in the list of proteins identified in the study (Hara et al.,
2009). This difference may be due to the use of cells carrying the full-
length replicon RNA in this study.

In this study, we demonstrated that TRiC/CCT participates in HCV
RNA replication and virion production possibly through its interaction
with NS5B. TRiC/CCT is a group II chaperonin that assists in protein
folding in eukaryotic cells and forms a double-ring-like hexadecamer
complex. Although relatively little is known about its function
compared with that of the group [ chaperonins such as bacterial
GroEL, several mammalian proteins whose folding is mediated by
TRIC/CCT have been identified, such as actin, tubulin, and von Hippel-
Lindau tumor suppressor protein (Farr et al., 1997; Feldman et al,,
2003; Frydman and Hartl, 1996; Meyer et al., 2003; Tian et al,, 1995).
With regard to viral proteins, the Epstein-Barr virus nuclear antigen,
HBV capsid protein, and p4 of M-PMV have been identified as TRiC/
CCT-interacting proteins (Yam et al., 2008). However, the functional
significance of their interactions in the viral life cycles has yet to be
determined. Here we demonstrated that the reduction in CCI5
expression in HCV replicon cells and in virus-infected cells inhibits
HCV RNA replication {Figs. 3B and C) and virus production (Fig. 6)
respectively. Gain-of-function was also shown by co-transfection of
the replicon cells with eight constructs corresponding to all the TRIC/
CCT subunits (Figs. 3A and D).

A recent study of the three-dimensional structure of the TRIC/CCT
and Hsc70 complex has demonstrated that the apical domain of
the CCT2 (CCT-beta) subunit is involved in the interaction with
Hsc70 (Cuéllar et al, 2008). The complex formation created by the
TRiC/CCT and Hsc70 interaction may promote higher efficiency in the
folding of certain proteins (Cuéllar et al, 2008). In our comparative
proteome analyses, both CCT subunits and Hsc70 were enriched in
the HCV RC-rich membrane fraction of the replicon cells that showed
high viral replication activity (Fig. 2B). Transfection of Hsc70 siRNA
into the replicon cells moderately inhibited viral RNA replication
(Fig. 3B). However, upregulation of HCV replication was not observed
by ectopic expression of Hsc70 (Fig. 3A), and little or no interaction
was observed between Hsc70 and HCV NS proteins in the co-
immunoprecipitation analysis (data not shown). Thus, it is likely that
TRiC/CCT acts as a regulator of HCV replication through participating
in the de novo folding of NS5B RdRp, and Hsc70 might serve to assist
in folding through its interaction with TRiC/CCT. It was recently
reported that Hsc70 is associated with HCV particles and modulates
the viral infectivity (Parent et al., 2009). Here we showed an
additional role of Hsc70 in the HCV life cycle.

HCV genomic single-stranded RNA serves as a template for the
synthesis of the full-length minus strand that is used for the
overproduction of the virus-specific genomic RNA. NS5B RdRp is a
single subunit catalytic component of the viral replication machinery
responsible for both of these processes. It is known that the in vitro
RARp activity of recombinant NS5B expressed in and purified from
insect cells and Escherichia coli is low in many cases. This could be due
to the lack of a suitable cellular environment for favorable RdRp
activity, although the particular conformational features dependent on
the viral isolates may also be involved (Lohmann et al,, 1997; Wenget
al., 2009). In fact, besides interacting with HCV NS proteins, NS5B has
been reported to interact with several host cell proteins. For example,
human vesicle-associated membrane protein-associated protein sub-
type A (VAP-A) and subtype B (VAP-B), which are involved in the
regulation of membrane trafficking, lipid transport and metabolism,
and the unfolded protein response, interact with NS5B and NS5A and

participate in HCV replication (Hamamoto et al., 2005). Recently, VAP-
C, a splicing variant of VAP-B, was found to act as a negative regulator
of viral replication through its interaction with NS5B but not with VAP-
A (Kukihara et al, 2009). Cyclophilin A and B, peptidyl-prolyl
isomerases that facilitate protein folding by catalyzing the cis-trans
interconversion of peptide bonds at proline residues, play a role in
stimulating HCV RNA synthesis through interaction with NS5B (Liu et
al., 2009; Watashi et al., 2005). SNARE-like protein (Tu et al., 1999),
elF4All (Kyono et al., 2002), protein kinase C-related kinase 2 (Kim et
al., 2004), nucleolin (Kim et al., 2004; Hirano et al,, 2003; Shimakami
et al., 2006), and p68 (Goh et al., 2004) are also known to associate
with NS5B and are possibly involved in HCV RNA replication.

We found that the aa 71-214 region in NS5B is important for
interaction with TRIC/CCT. The catalytic domain of HCV RdRp has
a “right-hand” configuration similar to other viral polymerases, such
as HIV-1 reverse transcriptase (Huang et al, 1998) and poliovirus
RdRp (Hansen et al,, 1997), and is divided into the fingers, palm, and
thumb functional subdomains (Lohmann et al, 2000). The region
required for the interaction with TRiC/CCT has been mapped in a part
of the fingers and palm domains of NS5B RdRp. To address how TRiC/
CCT assists in the correct folding or disaggregation of NS5B through
their interaction, leading to the formation of a functional RdRp, work
based on an in vitro reconstitution system using purified proteins is
under way. As all the TRiC/CCT subunits possess essentially identical
ATPase domains, their protein-recognition regions are apparently
divergent, allowing for substrate-binding specificity. It has recently
been reported that TRiC/CCT interacts with the PB2 subunit of the
influenza virus RNA polymerase complex and TRiC/CCT binding site
is located in the central region of PB2, suggesting involvement of TRiC/
CCT in the influenza virus life cycle (Fislova et al., 2010). Eukaryotic
RNA polymerase subunit has also been identified as a binding
partner of TRiIC/CCT from interactome analysis (Yam et al,, 2008). It
would be interesting to examine how conserved the mechanisms
of TRIC/CCT action that result in enhanced replication are among RNA
polymerases.

The recruitment of a chaperonin by viral NS proteins may be
important for understanding regulation of the viral genome replica-
tion. In this study, we demonstrated the involvement of TRIC/CCT in
HCV RNA replication possibly through its interaction between TRiC/
CCT and HCV NS5B. Although possible interaction of subunit CCT5
with NS5B was shown, considering involvement of whole TRIC/CCT
complex in its chaperonin function, whether CCT5 directly interacts
with NS5B is unclear. Further detailed studies are needed to make
clear the manner of TRiC/CCT-NS5B interaction. NS5B RdRp is one of
the main targets for HCV drug discovery. The search for NS5B
inhibitors has resulted in the identification of several binding sites on
NS5B, such as the domain adjacent to the active site and the allosteric
GTP site (De Francesco and Migliaccio, 2005; Laporte et al,, 2008). The
findings obtained here suggest that disturbing the interaction
between NS5B and TRIC/CCT may be a novel approach for an antiviral
chemotherapeutic strategy.

Materials and methods
Cell culture, transfection, and infection

Human hepatoma Huh-7 and Huh-7.5.1 cells (kindly provided by
Francis V. Chisari from The Scripps Research Institute) and human
embryonic kidney 263T cells were maintained in Dulbecco’s modified
Eagle's mediurn (DMEM) supplemented with 10% fetal calf serum.
Huh-7-derived SGR-N (Shi et al., 2003) and RCYM1 (Murakami et al.,
2006) cells, which possess subgenomic replicon RNA from the HCV-N
strain (Guo et al, 2001; Ikeda et al, 2002) and genome-length HCV
RNA from the Con T strain (Pietschmann et al., 2002 ), were cultured in
the above medium in the presence of 1 mg/ml G418. Cells were
transfected with plasmid DNAs using FUGENE transfection reagents
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(Roche Diagnostics, Tokyo, Japan). Culture media from Huh-7 cells
transfected with in vitro-transcribed RNA corresponding to the full-
length HCV RNA derived from the JFH-1 strain (Wakita et al,, 2005)
were collected, concentrated, and used for the infection assay (Aizaki
et al., 2008).

Ab

Primary Abs used in this study were mouse monoclonal Abs
against FLAG (Sigma-Aldrich, St. Louis, MO), c-myc (Sigma-Aldrich),
CCT5 (Abnova Corporation, Taipei City, Taiwan), flotillin-1 (BD
Biosciences, San Jose, CA), glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) (Chemicon, Temecula, CA), BrdU (Caltag, CA) and HCV
NS5A (Austral Biologicals, San Ramon, CA), a rabbit polyclonal Ab
against hemagglutinin (HA; Sigma-Aldrich), a sheep polyclonal Ab
against bromodeoxyuridine (Biodesign International, Saco, ME), and
goat polyclonal Abs against the individual subunits of CCT (Santa Cruz
Biotechnology, Santa Cruz, CA) and Hsc70 (Santa Cruz Biotechnology).
Anti Hsc70 and CCT5 monoclonal rat Abs were obtained from Abcam
(Tokyo, Japan) and AbD serotec (Oxford, UK). Rabbit polyclonal
antibody to NS5A was described previously (Hamamoto et al., 2005).
Anti NS5B monoclonal Ab was kindly provided by D. Moradpour
(Centre Hospitalier Universitaire Vaudois, University of Lausanne;
Moradpour et al., 2002).

Plasmids

To generate expression plasmids for the NS proteins with dual
epitope tags, DNA fragments encoding the NS3, NS5A, or NS5B
proteins were amplified from HCV strain NIH]J1 (Aizaki et al., 1998) by
PCR and cloned into the EcoRI-EcoRV sites of pcDNA3-MEF, which
includes the MEF tag cassette containing the myc tag, TEV protease
cleavage site, and FLAG tag sequences (Ichimura et al, 2005;
Shirakura et al., 2007). To create a series of NS5B truncation mutants,
each fragment was amplified by PCR and cloned into the EcoRI-Xhol
site of pCMV-HA (Clontech, Mountain View, CA). To generate
expression plasmids for the individual CCT subunits, cDNA fragments
encoding human CCT1 through CCT8 were amplified from the total
cellular RNA by RT-PCR and then cloned into the Smal site of pCAGGS
(Niwa et al,, 1991). All PCR products were confirmed by nucleotide
sequencing.

Proteome analysis

RC-rich membrane fractions from the cells were isolated as
described previously (Aizaki et al., 2004). Briefly, cells were lysed in
hypotonic buffer. After removing the nuclei, the supernatants were
mixed with 70% sucrose, overlaid with 55% and 10% sucrose, and
centrifuged at 38,000 rpm for 14 h. Proteins from the membrane
fractions were then analyzed by 2D-DIGE as described previously
(Hara et al., 2009). Briefly, protein samples were resolved in protein
solubilization buffer (Bio-Rad Laboratories, Tokyo, Japan) and
washed with pH adjustment buffer (7M urea, 2 M thiourea, 4%
CHAPS, 30 mM Tris-HCl [pH 10.0]), before being labeled with
fluorescent dyes; the dyes used were Cy3 for RCYM1 cells samples
taken at the exponential growth phase, Cy5 for cells samples taken at
the confluent phase, and Cy2 for a protein standard containing equal
amounts of both cell samples. Aliguots of the labeled samples were
pooled and applied to Immobiline DryStrip (GE Healthcare, Tokyo,
Japan) for first-dimension separation and to 12.5% polyacrylamide
gels for second-dimension separation. Images of the 2-D gels were
captured on a Typhoon scanner (GE Healthcare), and analyzed
quantitatively using DeCyder v5.0 software (GE Healthcare). Samples
were analyzed in triplicate asindependent cultures and the Student's
t-test was applied using the DeCyder biological variation analysis

module to validate the significance of the differences in spot intensity
detected between the samples.

In vitro RNA replication assay

In vitro replication of HCV RNA was performed as described
previously (Hamamoto et al.,, 2005). Briefly, cytoplasmic fractions of
subgenomic replicon cells were treated with 1% NP-40 at4°Cfor 1 h,
followed by being incubated with 1 mM of ATP, GTP, and UTP; 10 uM
CTP; [*?P]JCTP (1 MBq; 15 TBq/mmol); 10 pg/ml actinomycin D; and
800 U/ml RNase inhibitor (Promega, Madison, WI) for 4 h at 30 °C.
RNA was extracted from the total mixture by using TRI Reagent
(Molecular Research Center, Cincinnati, OH). The RNA was precipi-
tated, eluted in 104 of RNase-free water, and analyzed by 1%
formaldehyde-agarose gel electrophoresis. For the immunodepletion
assay, the cytoplasmic fractions were incubated with anti-CCT5 Ab in
the presence of NP-40 for 4 h before NTP incorporation.

MALDI-TOF MS analysis

Target spots were cut and collected from gels under UV lumines-
cence and rechecked with Typhoon scanner. The spot gels of the target
proteins were subjected to in-gel trypsin digestion and analyzed by
MALDI-TOF MS meter (Voyager-DE STR, Applied Biosystems, Tokyo,
Japan) as described previously (Yanagida et al.,, 2000). All proteins were
identified by peptide mass fingerprinting.

Immunoblot analysis and immunoprecipitation

Immunoblot analysis was performed essentially as described
previously (Aizaki et al, 2004). The membrane was visualized with
SuperSignal West Pico chemiluminescent substrate (Pierce, Rockford,
IL). For immunoprecipitation, cells transfected with plasmids expres-
sing epitope-tagged HCV protein or CCT5 were lysed and then
subjected to two-step precipitations with anti-myc and anti-FLAG Abs
according to the procedures described previously (Ichimura et al,
2005). In some experiments, HA-tagged full-length NS5B (aa 1-591)
or its deletion mutants (aa 71-591, 215-591, 320-591, 1-570) were
co-expressed with CCT5 in cells, followed by single-step immuno-
precipitation and immunoblotting.

Immunofluorescence staining

Cell permeabilization with lysolecithin and detection of de novo-
synthesized viral RNA was performed as described previously (Shi
etal, 2003). Briefly, Huh-7 cells were plated on 8-well chamber slides
at a density of 5x10* cells per well. Cells were incubated with
actinomycin D (5 pg/ul) for 1 h and were washed twice with serum-
free medium, before being incubated for 10 min on ice. The cells were
then incubated in a transcription buffer containing 0.5 mM BrUTP for
30 min. The cells were fixed in 4% formaldehyde for 20 min and then
incubated for 15 min in 0.1% Triton X-100 in phosphate-buffered
saline (PBS). Primary Abs were diluted in 5% bovine serum albumin
in PBS and were incubated with the cells for 1 h. After washing with
PBS, fluorescein-conjugated secondary Abs (Jackson Immunoresearch
Laboratories, West Grove, PA) were added to the cells at a 1:200
dilution for 1 h. The slides were then washed with PBS and mounted
in ProLong Antifade (Molecular Probes, Eugene, OR). Confocal
microscopy was performed on a Zeiss Confocal Laser Scanning
Microscope LSM 518 (Carl Zeiss Microlmaging, Thornwood, NY).

RNA interferenice
Small interfering RNAs (siRNAs) targeted to CCT5 or Hsc70 and

scrambled negative control siRNAs were purchased from Sigma-
Aldrich Japan (Tokyo, Japan). Cells were plated on a 24-well plate with
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antibiotic-free DMEM overnight, and each plate was transfected with
10 nM siRNAs by X-tremeGENE (Roche Diagnostics) according to the
manufacturer's protocol. Forty-eight hours post-transfection, the total
RNA and protein extracts were prepared and subjected to real-time
RT-PCR and immunoblot analyses, respectively.

Quantitation of HCV RNA and core protein

Total RNA was extracted from cells using TRIzol reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer's instructions. Real-
time RT-PCR was performed using TagMan EZ RT-PCR Core Reagents
{PE Applied Biosystems, Foster City, CA) as described previously
(Aizaki et al., 2004; Murakami et al., 2006). HCV core protein levels in
the cells and in the supernatant were quantified using an HCV core
enzyme-linked immunosorbent assay (Ortho-Clinical Diagnostics,

Tokyo, Japan).
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