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the manufacturer’s instructions, for the production of
CXCL9, CXCL10, and CXCL11, respectively.

Cell migration assay

Migration assays were performed in transwell culture
inserts (BD Falcon) of 6.4-mm diameter and 3-pm pore

filters. MDA-MB231 and MDA-MB468 cells (1 x 10%
well) were cultured in the lower chamber of a 24-well
plate (BD Falcon) in 0.5 ml L-15 medium. After 2 days,
IL-2-activated NK cells derived from PBMCs and

- LMNGCs in 0.2 ml L-15 medium were added to the upper

chamber (1 x 10%well), and cells were allowed to
migrate for 2 h.
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Fig. 2 Phenotypic analyses of human PB and liver NK cells. a Flow and FasL on electronically gated CD3~CD356™ NK cells was analyzed

cytometric (FCM) analyses of PBMCs and LMNCs cultivated with
IL-2 for 5 days were performed after staining with mAbs against CD3
and CD56. FCM profiles are representative of five and six indepen-
dent experiments (using PBMCs and LMNCs, respectively). Percent-
ages of NK and NKT cells are indicated (mean £ SEM, PBMC;
n =15, LMNC; n = 6). b Expression of cytotoxic effector molecules
on NK cell subsets among LMNCs or PBMCs freshly isolated or
cultivated with or without [L-2 was analyzed. Expression of TRAIL

by FCM. Numbers above the lesion marker line indicate the
percentages of cells expressing TRAIL and FasL, and numbers below
the line indicate the median florescence intensity of expression of
whole NK cells (mean & SEM, n = 4 each). PBMCs were obtained
from the corresponding LMNC donor. Histogram profiles are
representative of independent experiments. Dotted lines represent
negative control staining with isotype-matched mAbs. *P < 0.05 PB
NK cells versus liver NK cells
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Enzyme-linked immunosorbent assay

The supernatants from the cell migration assay and
coculture of MDA-MB231 or MDA-MB468 with IFN-y for
2 or 6 h were used. IFN-y and CXCL10 levels in the cell
culture supernatants were determined by an enzyme-linked
immunosorbent assay (ELISA) with the Quantikine kit
(R&D Systems), according to the manufacturer instruc-
tions. Absorbance was measured at 492 nm on a microplate
reader (MTP-300; CORONA Electric, Ibaraki, Japan).

Statistical analysis

Data are presented as mean = SEM. The statistical dif-
ferences of the results were analyzed by the 2-tailed, paired
t test and Mann—-Whitney U test, using Excel. P values of
<0.05 were considered statistically significant.

Results
Phenotypic properties of human NK cells

NK cells are abundant in the liver in contrast to their rela-
tively small percentage in the peripheral lymphatics and
other lymphatic organs in humans [10]. While NK cells in
circulating lymphocytes have been phenotypically and
functionally defined, those that reside in the liver remain to
be characterized. We phenotypically analyzed the LMNCs
that were extracted from the perfusates of allograft livers
during liver transplantation surgery. The proportions of
CD56YCD3~ NK and CD567CD3" NKT cells in the
LMNGC:s extracted from liver perfusates were significantly
higher than those in the PBMCs (Fig. 1a). Although this
non-destructive method might allow some extent of con-
tamination with circulating mononuclear cells, these data
were consistent with previous reports using the enzymatic
dissociation method [15]. Among CD567CD3~ NK cells,
CDs56brsht cells, which constitutively expressed TRAIL,
were abundant in LMINCs but were almost undetectable in
PBMCs (Fig. 1b—d). On effector molecule analyses, the
expression of TRAIL was significantly upregulated in both
liver and PB NK cells after cultivation with IL-2 for 5 days.
Both the proportion of the TRAIL™ fraction and the staining
intensity of liver NK cells were significantly higher than
those of PB NK cells (Fig. 2a). Neither PB nor liver NK
cells expressed FasL even after IL-2 stimulation (Fig. 2b).
We further analyzed the C-type lectin-like receptors CD94,
NKG2A, and NKG2C and killer cell immunoglobulin-like
receptors (KIR) such as CD158a and CD158b (Fig. 3).
CD94 recognizes the non-classical MHC class Ib molecule
HILA-E, whereas KIRs are MHC class I-restricted molecules
that recognize HLA-A, HLA-B, HLA-C, and HLA-G
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Fig. 3 IL-2 stimulation maintained the expression of C-type lectin-like p
receptors and killer cell immunoglobulin-like receptors (KIR) in both
human PB and liver NK cells. Expression of the C-type lectin-like
receptors CD94, NKG2A and NKG2C, and KIR such as CD158a and
CD158b on NK cell subsets among LMNCs or PBMCs freshly isolated
or cultivated with or without II-2 was analyzed. Expression on
electronically gated CD37CD36% NK cells was analyzed by FCM.
Numbers above the lesion marker /ine indicate the percentages of cells
expressing each molecule, and numbers below the line indicate the
median florescence intensity of expression of whole NK cells (mean =+
SEM, n = 4 each). PBMCs were obtained from the corresponding
LMNC donor. Histogram profiles are representative of independent
experiments. Dotted lines represent negative control staining with
isotype-matched mAbs. *P < 0.05 PB NK cells versus liver NK cells

molecules. All freshly isolated PB and liver NK cells
expressed CD94, and cell subpopulations expressed
CD158a/CD158b (Fig. 3). No statistically significant differ-
ences were observed in the expression of CD94, NKG2A,
NKG2C, CD158a, and CD158b between PB and liver NK
cells. IL-2 stimulation maintained the expression of these
molecules in both liver and PB NK cells, indicating that these
cellsretain their ability to protect self-MHC class I-expressing
cells from NK cell-mediated death. On the analyses of the
cytotoxicity-associated receptors, including NKp30, NKp44,
NKp46, and NKG2D, no statistically significant differences
were found between PB and liver NK cells even after IL-2
stimulation (Fig. 4). Although liver NK cells tended to
express higher levels of NKp44 and NKp46 than did PB NK
cells, the differences did not reach statistical significance.

Breast cancer cells express the death-inducing receptor

Susceptibility to TRAIL-induced apoptosis may be related
to the expression levels of multiple receptors on target
cells. TRAIL binds to at least four receptors: two of these
are death-inducing receptors (TRAIL-R1/DR4 and TRAIL-
R2/DRS5) containing cytoplasmic death domains and signal
apoptosis, whereas the other two are death-inhibitory
receptors (TRAIL-R3/DcR1 and TRAIL-R4/DcR2) that
lack a functional death domain and do not mediate apop-
tosis; all have similar affinities for TRAIL and the latter
two may act as decoys [16, 17]. The susceptibility to
TRAIL-induced apoptosis is related to the expression lev-
els of those receptors in tumor cells. We investigated the
expression patterns of TRAIL-DR and TRAIL-DcR in both
normal mammary gland and breast cancer tissue samples.
Ductal cells in normal mammary gland tissues expressed
TRAIL-DR4 together with TRAIL-DcR1 (Fig. 5a). Breast
cancer cells showed a much higher expression of TRAIL-
DR4 than did normal mammary gland cells, but little
TRAIL-DcR1, regardless of the HER2 type. Similar to the
clinical breast cancer tissues, all the tested breast cancer
cell lines expressed high TRAIL-DR4 together with
TRAIL-DRS, but no TRAIL-DcR1 and TRAIL-DcR2,
regardless of their HER2 status (Fig. 5b).
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Fig. 4 IL-2 stimulation led to elevated expression of NKp30, NKp44,
and NKG2D in both human PB and liver NK cells. Expression of the
cytotoxicity-associated receptors, including NKp30, NKp44, NKp46,
and NKG2D, in NK cell subsets among LMNCs or PBMCs freshly
isolated or cultivated with or without IL-2 was analyzed. Expression
in electronically gated CD3~CD36" NK cells was analyzed by FCM.
Numbers above the lesion marker line indicate the percentages of
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cells expressing each molecule, and numbers below the line indicate
the median florescence intensity of expression of whole NK cells
(mean = SEM, n =4 each). PBMCs were obtained from the
corresponding LMNC donor. Histogram profiles are representative
of independent experiments. Dotfed lines represent negative control
staining with isotype-matched mAbs.
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IL-2-stimulated NK cells showed significant
cytotoxicity against breast cancer cells

Cytotoxicity assays of NK cells isolated from LMNCs and
PBMCs as effectors and various breast cancer cell lines as
targets were performed. Cells were stimulated by 5-day
culture with IL-2 before use in the cytotoxicity assays.
Liver NK cells showed more vigorous cytotoxicity against
all tested cell lines (MDA-MB231, MDA-MB453, MDA-
MB468, and MCF-7) compared with PB NK cells (Fig. 6).
Addition of trastuzumab enhanced the cytotoxicity of both
liver and PB NK cells toward MDA-MB231, MDA-
MB453, and MCF-7, which express HER2. Although
MDA-MB468 has been reported to be a triple-negative
breast cancer cell line [12], it seemed to express dim HER2
on phenotypic analysis of the breast cancer cell lines in this
study (Fig. 5b). This may explain why trastuzumab did not
promote the cytotoxicity of PB NK cells but somewhat
enhanced the cytotoxicity of liver NK cells toward MDA-
MB468. Nevertheless, these observations suggest the
involvement of HER2/rastuzumab-mediated ADCC.
Despite the strong cytotoxicity exhibited by IL-2-stimu-
lated donor liver NK cells, their cytotoxicities toward
one-haplotype identical allogeneic and autologous lym-
phoblasts were negligible (data not shown).

TRAIL and perforin are involved in the cytotoxicity
of NK cells against breast cancer cells

To determine the contribution of TRAIL to the cytotoxicity
of NK cells against breast cancer cells, the effect of a
neutralizing anti-TRAIL mAb was examined in a cyto-
toxicity assay with PB and liver NK cells as effectors and
MDA-MB231 cells as the target. Both PB and liver NK
cell-induced cytotoxicity was inhibited partially by the
anti-TRAIL mAb alone and more profoundly by the
combination of the anti-TRAIL mAb and CMA, indicating
that TRAIL and perforin are involved in NK cell-mediated
cytotoxicity (Fig. 7). Remarkable levels of inhibition of
NK cell-induced cytotoxicity were observed with anti-
TRAIL mAb at 18-h culture when compared with those at
4 h. This finding is consistent with the results of the pre-
vious study with a mouse model demonstrating that death
receptor-mediated NK cell kill needs longer incubation
times than perforin-mediated NK cell kill [18].

NK cells were preferentially drawn by chemokines
secreted from breast cancer cells, presumably through
the CXCL10/CXCR3 axis

The distribution of NK cells is known to be associated with
their expression of receptors and ligands for chemokines
secreted from infectious or neoplastic sites [19-21]. We

found that NK cells freshly isolated from PBMCs and
LMNCs highly expressed CXCR3, which binds to the
chemokines CXCL9, CXCL10, and CXCL11 secreted by
breast cancer cells. IL-2 activation increased the levels of
CXCR3 expression on both NK cell types (Fig. 8a, b). We
further investigated the secretion activities of these various
chemokines from the breast cancer cell lines. Significant
levels of CXCL10 were detected in the culture supernatants
of three of four breast cancer cell lines: MDA-MB231,
MDA-MB453, and MDA-MB468 (Fig. 9a). PB or liver
NK cells activated with IL-2 were cultured in the upper
compartment of transwell tissue culture plates in the
presence or in the absence of MDA-MB231 or MDA-
MB468 cells in the lower compartment for 2h. The
migration of PB and liver NK cells through the membrane
was markedly promoted by the presence of tumor cells in
the lower compartment, suggesting that NK cells are
preferentially drawn by chemokines secreted from tumor
cells (Fig. 9b). Significant levels of CXCL10 were detected
only in the culture supernatants in the lower compartment
with MDA-MB231 (Fig. 9¢), suggesting that the CXCL10/
CXCR3 axis plays an important role in the accumulation of
NK cells in tumor sites. The MDA-MB231 cell line pro-
duced a lot more CXCL10 when PB NK cells were added
(Fig. 9a, c), suggesting that soluble factors secreted from
NK cells promoted the production of CXCL10 from this
cell line. Taken together with the fact that CXCL10 is an
IFN-y-inducible protein [22] and that IL-2 augments the
active production of IFN-y from NK cells, we could
assume that IFN-y secreted from NK cells promotes
CXCL10 production from the breast cancer cell line, which
in turn accelerates the migration of CXCR3-expressing NK
cells into the tumor site. Consistent with this hypothesis,
the CXCL10 levels were well correlated with IFN-y levels
in the culture supernatants of the cell migration assay
(Fig. 9d). In addition, we directly confirmed that IFN-y
promoted the production of CXCL10 from MDA-MB231
and MDA-MB468 in a dose-dependent manner (Fig. 9e, f).

Discussion

Human NK cells can be divided into the CD56™*™ and
CD56%™ subsets. These subsets have different phenotypic
expression and may have different functions, although the
direct functional significance of the expression levels of the
CD356 antigen remains unknown. We previously demon-
strated that CD36°"8™ NK cells, which constitutively
express low levels of TRAIL, are abundant in the liver [10].
CD56™# NK cells also constitutively express the high-
affinity heterotrimeric IL-2R (IL-2Raffy) [23, 24]; hence,
this subset has a high proliferative response to IL-2 and
expand and survive through the upregulation of bcl-2 in
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«Fig. 5 Breast cancer cells express death-inducing TRAIL-DR4 but
lack death-inhibitory TRAIL-DcR1 and TRAIL-DcR2. a Immunohis-
tochemical expression of TRAIL-DcR1, TRAIL-DcR2, TRAIL-DR4, |
and TRAIL-DRS in normal breast tissue and tumor sites of HER2
(4)- and HER2 (—)-type breast cancer tissues. Immunopathological
findings are representative of three individual samples in each breast
cancer category. Magnification x200. Scale bar 100 um. b Surface
expression of HER2 and TRAIL receptors on the surface of MDA-
MB231, MDA-MB453, MDA-MB468, and MCF-7 was analyzed by
FCM. Dotted lines represent negative control staining with isotype-
matched mAbs. Numbers indicate the mean fluorescence intensity
(MFT) of cells that stained positively for HER2 and TRAIL receptors.
TRAIL, TNF-related apoptosis-inducing ligand; FCM flow cytomet-
ric, mAb monoclonal antibody, TNF tumor necrosis factor

vitro ip response to IL-2 [25, 26]. In contrast, resting
CD56%™ NK cells, which express IL-2Rfy only, show
almost no proliferation in response to even high doses of IL-

2 in vitro [23, 26]. In this study, CD56™&" NK cells
exclusively survived and significantly upregulated TRAIL
expression after in vitro cultivation of both PBMCs and
LMNCs with IL-2 (Fig. 2). IL-2 stimulation also increased
the surface expression of inhibitory receptors such as the
KIR, including CD158a/158b and C-type lectin-like recep-
tors (the CD94/NKG?2 complex). CD94, which is expressed
on essentially all NK cells, uses HLA-E expression as a
sensor for the overall HLA class I level of a cell. In contrast,
individual KIR family members are expressed on certain
NK cell subsets and exhibit finer specificity for HLA class I
allotypes and can distinguish between groups of HLA-A,
HLA-B, and HLA-C allotypes. Ligation of such KIRs/CD94
to HLA class I molecules on self cells results in inhibition of
NK cell cytotoxic activity, as originally predicted by the
“missing-self” hypothesis [1, 27]. This regulation ensures
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that cells expressing none, altered, or reduced MHC-I
molecules, such as malignant or virus-infected cells, are
eliminated by NK cells. The modulated expression of KIRs/
CD9%4 by IL-2 is likely associated with the changed cyto-
toxic target-discriminating ability of NK cells upon their
exposure to IL-2.

The significantly upregulated TRAIL expression on the
IL-2-stimulated NK cells implies that they have the ability
to target cancer cells expressing death-inducing receptors.
TRAIL is amember of the TNF superfamily, which includes
TNF and FasL [28]. The expression of TNF and FasL leads
to damage of normal tissues in addition to their proapoptotic
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effect on transformed cells [29, 30], limiting their clinical
applications. Conversely, TRAIL selectively induces
apoptosis in transformed cells but not in most normal cells
[28, 31, 32], making it a promising candidate for tumor
therapy. However, intravenous delivery of recombinant
TRAIL has met with problems, including a short pharma-
cokinetic half-life [32], necessitating frequent and high
doses to produce the desired effect. The use of TRAIL-
expressing NK cells as a delivery vector might promise both
targeted and prolonged delivery of this death ligand.
TRAIL binds DR4 and DRS5, leading to the forma-
tion of the death-inducing signaling complex and the
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Fig. 8 CXC chemokine receptor 3 (CXCR3) expression was signif-
icantly upregulated on both liver and PB NK cells after cultivation
with [L-2. a Histograms representing the log fluorescence intensities
for CXCR3 expression on freshly isolated and IL-2-stimulated liver
and PB NK cells. Dotted lines represent negative control staining with
isotype-matched mAbs. Numbers (mean == SEM) indicate the per-
centages of cells in each group that were positive for CXCR3
expression (PBMCs; n = 6, LMNCs; n = 7). Histogram profiles are
representative of independent experiments. b Numbers indicate the
mean fluorescence intensity (MFI) of cells that stained positively for
CXCR3 on liver and PB NK cells (fresh NK cells open column,
activated NK cells closed column). Data represent mean = SEM
(PBMCs; n =6, LMNCs; n = 7). Statistical analyses were per-
formed using the paired Student’s ¢ test (**P < 0.01). NK natural
killer, LMNC liver mononuclear cell, PBMC peripheral blood
mononuclear cell, mAb monoclonal antibody

Fas-associated protein with death domain. In turn, these
complexes recruit caspase-8 (or caspase-10), which plays an
important role in apoptosis induction either by direct acti-
vation of downstream effector caspases (caspase-3, caspase-
6, and caspase-7) or by cleaving apoptotic molecules (Bcl-2
and Bcl-xL), resulting in further activation of the caspase-9
complex [33]. In this study, breast cancer cells of clinical

samples showed much higher expression of TRAIL-DR4
than normal mammary glands but exhibited little TRAIL-
DcR1, regardless of HER2 type. Similarly, all the tested
breast cancer cell lines expressed TRAIL-DR4 but not
TRAIL-DcR1 and TRAIL-DcR2, regardless of their HER2-
status, suggesting that they are susceptible to TRAIL-
induced apoptosis.

We tested various breast cancer cell lines to evaluate their
susceptibility to NK cell-mediated cytotoxicity. Notably,
liver NK cells showed more vigorous cytotoxicity against all
the tested cell lines than did PB NK cells (Fig. 6), although
the underlying mechanism remains unclear. The contribu-
tion of TRAIL to NK cell cytotoxicity was determined using
the neutralizing anti-TRAIL mAb (Fig. 7). Trastuzumab
addition remarkably enhanced the cytotoxicity of both NK
cell types toward HER2-overexpressing breast cancer cell
lines, indicating that HER2/trastuzumab-mediated ADCC
was involved. As ADCC requires the activation and
engagement of the CD16 FcyR on NK cells by Ab-coated
targets, CD56"™ NK cells, which highly express CD16 (Fcy
receptor IIT), are generally thought to exhibit greater levels
of ADCC than do the CD56"#™" subset [34]. On the other
hand, the majority of CD56"8™ NK cells expanded after
activation with IL-2 expressed CD16 and efficiently medi-
ated ADCC [20], explaining the HER2/trastuzumab-medi-
ated ADCC observed in this study.

The cytotoxic ability of NK cells against cancer cells
presumably requires contact between NK cells and their
target cells. In general, NK cells are detected infrequently
in tumors and their presence in the infiltrate consistently
correlates with a good prognosis and increased patient
survival [35, 36]. Chemokines acting on CXCR3 and
CX3CRI1 are considered major determinants of NK cell
infiltration. CX3CR1 expression in gastric adenocarcinoma
samples directly correlates with the number of NK cells
infiltrating the tumor, and patients with higher CX3CL1
levels had a significantly better prognosis than patients
with low CX3CL1 levels [37]. Similarly, our in vitro
demonstration that the CXCL10/CXCR3 axis plays a role
in the attraction between activated NK cells and breast
cancer cells suggests that this chemokine system recruits
NK cells to cancer cell sites and elicits antitumoral
responses. In addition, we proposed a novel mechanistic
paradigm in which IFN-y secreted from NK cells promotes
the production of CXCLI10 from breast cancer cells, which
in turn further accelerates the migration of CXCR3-
expressing NK cells into the tumor site (Fig. 10).

Given the efficacy of NK cells to selectively eliminate
abnormal cells, a variety of approaches have been taken to
selectively augment NK cell response to tumors [38, 39].
Several therapeutic cytokines primarily act through NK
cells (e.g., IL-2, IL-12, IL-15, and IFNs), and many studies
have shown that activation of NK cell differentiation and
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Fig. 9 NK cells were preferentially drawn by chemokines secreted
from breast cancer cells, presumably through the CXCL10/CXCR3
axis. a Levels of various chemokines (CXCL9, CXCL10, and
CXCL11) in the culture supernatants of breast cancer cell lines
(MDA-MB231, MDA-MB453, MDA-MB468, and MCF-7) were
analyzed using CBA Flex Sets. Supernatants were collected after
2 days of cultivation. b Migration assays were performed in transwell
culture inserts with 3-pm pore filters. MDA-MB231 and MDA-
MB468 cell lines were cultured in the lower chamber of the plate for
2 days and IL-2-activated NK cells from PBMCs and LMNCs were
added to the upper chamber. After 2 h, the migrated NK cells were
counted. Results are presented as mean migrated cell num-
bers = SEM (n = 3). ¢ Levels of chemokine in the medium of
lower chambers in the migration assays described above were
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measured by CBA assay. Results are the average &= SEM values from
triplicate samples and represent three individual experiments. d Levels
of IFN-y in the medium of lower chambers in the migration assays
described above were measured by ELISA. The results are the
average == SEM values from triplicate samples and represent three
individual experiments. e MDA-MB231 cells were cultured with
various doses of [FN-y for 2 and 6 h, and the levels of CXCL10 in the
medium were measured by CBA assay. Results are the aver-
age = SEM values from triplicate samples and represent three
individual experiments. f MDA-MB468 cells were cultured with
various doses of IFN-y for 2 and 6 h, and the levels of CXCL10 in the
medium were measured by CBA assay. Results are the aver-
age &= SEM values from triplicate samples and represent three
individual experiments

= 176 —



Breast Cancer Res Treat

Breast cancer cell \

/ \\
po ptosis

Enhancement

Fig. 10 Mechanistic paradigm of interaction between NK and breast
cancer cells. [FN-y secreted from NK cells promotes the production of
CXCLI10 from breast cancer cells, which in turn further accelerates
migration of CXCR3-expressing NK cells into the tumor site.
Migrated NK cells kill breast cancer cells by either of the two major
mechanisms that require direct contact between NK cells and target

function leads to more efficient elimination of tumor growth
9 [40-44]. Despite these promising advances, the systemic
administration of cytokines, such as IL-2, which non-spe-
cifically activate a broad range of immune cell types, is
associated with significant toxicity [40, 45]. Recent animal
experiments have demonstrated the ability of adoptive
transfer of NK cells to mount a therapeutic antitumor
response [46, 47], and translational clinical research sug-
gests that NK cells are useful for controlling human
malignancy [48-50]. Our results have proven that PB NK
cells can kill breast cancer cells and liver NK cells can
hinder metastasis of breast cancer to the liver, which sug-
gests the potential therapeutic use of NK cells, i.e., by either
activation of endogenous NK cells or adoptive transfer of in
vitro-activated autologous NK cells. Although liver NK
cells displayed higher cytotoxicity than PB NK cells, no
clinically applicable method for obtaining liver. NK cells
from patients with breast cancer has yet been established.
Alternatively, locally infusing IL-2 into the liver through the
portal vein likely activates endogenous liver NK cells,
which in turn might infiltrate or accumulate to the tumor site
probably through the CXCL10/CXCR3 axis.
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