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Structure-based studies led to the identification of a constrained derivative of S-trityl-L-cysteine (STLC)
scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives
were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070,
and F-3065, were identified as modest HCV NS5B inhibitors with ICsg values between 22.3 and 39.7 pM.
F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc

reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feolb reporter system. Binding

Keywords:

Antiviral agents
Hepatitis C

HCV NS5B polymerase
Inhibitors

STLC derivatives

mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by
further chemical modification at one of the trityl phenyl group.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Hepatitis C virus (HCV) infection represents a major public-
health concern. It is estimated that over 200 million people, ~3%
of the world population, are chronically infected with the virus
[1-3]. HCV has an array of immune evasion strategies and can
persist in the host for years. Individuals with chronic HCV infection
are at increased risk of developing cirrhosis and hepatocellular
carcinoma [3—7]. Currently, HCV infections are treated by
a combination of pegylated-interferon, the nucleoside analog
ribavirin, and one of two recently approved HCV protease inhibi-
tors, Boceprevir or Telaprevir [8—13]. However, this therapy is
limited in efficacy against the various HCV genotypes. Furthermore,
in addition to its high cost, the current treatment is associated with
severe side effects and a complicated dosing regimen that may limit
patient compliance [11,12]. Also the possibility of selecting drug
resistant HCV variants remains [12,13]. Therefore, the development

* Corresponding author. Tel.: +1 973 972 8653; fax: +1 973 972 5594.
** Corresponding author. Tel.: +33 4 72448135; fax: +33 4 72431214.
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uniroma€l.it (R. Ragno), kaushik@umdnj.edu (N. Kaushik-Basu).

0223-5234/$ — see front matter © 2012 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ejmech.2012.01.010

of additional, efficacious and more cost effective HCV antiviral
therapies that target viral proteins and have limited effects on host
biological processes is a priority.

HCV is a member of the Flaviviridae family. The positive sense,
9.6 kb RNA genome is translated into a single 3000 amino acid
polyprotein via an IRES sequence located within the 5 non-
translated region (NTR) of the viral genome [14,15]. The viral pol-
yprotein is processed by both host and viral proteases into indi-
vidual viral proteins consisting of four structural (core, E1, E2, and
p7) and six nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A,
and NS5B) [16]. HCV replicates exclusively in the cytoplasm of host
cells. Replication of the viral RNA genome is mediated by the RNA-
dependent RNA polymerase (RdRp) activity of the HCV nonstruc-
tural protein NS5B [17—19]. Because of the absolute requirement of
NS5B to synthesize nascent HCV RNA, NS5B represents an attractive
target for the development of anti-HCV inhibitors [20,21].
Furthermore, host cells lack RdRp. Therefore, an inhibitor that
blocks RdRp activity should, in theory, have minimal or no effect on
host biological processes. Though, a number of NIs and NNIs with
potent in vitro anti-NS5B activity have been identified in recent
years, they have presented challenges of toxicity and selection of
resistant viruses, thus necessitating identification of better NS5B
inhibitor scaffolds.
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The structure of NS5B has been extensively characterized. The
66 kDa viral polymerase resembles a “right hand” with the active
site contained in the palm domain and the RNA interacting region
in the finger and thumb domains [22—25]. Current NS5B inhibitors
can be divided into two classes, nucleoside inhibitors (NI) and non-
nucleoside inhibitors (NNI). Once converted by host proteins into
nucleotides, NIs cause RNA-chain termination upon incorporation
by NS5B into the nascent RNA chains. NNIs bind to one of the five
allosteric sites on NS5B and inhibit the initiation step of RNA
synthesis.

Recently, we reported on the utility of three-dimensional
quantitative structure-activity relationship (3D-QSAR) in combi-
nation with ligand-based and structure-based alignment proce-
dures for in silico screening of new HCV NS5B polymerase
inhibitors [26]. This investigation identified four new NS5B inhib-
itors from forty candidates examined from the NCI diversity set
[26]. The most interesting hit, NSC123526 (Fig. 1), has been re-
ported to be active against other viruses [27] and can be simply
viewed as a constrained derivative of the S-trityl-i-cysteine (STLC)
scaffold. STLC derivatives are versatile compounds endowed with
antileukemic activity [28] and are also reported to inhibit the
human mitotic kinesin Eg5 (HMKEg) by a non-competitive mech-
anism [29].

Herein, we describe molecular modeling studies that led us to
explore the potential of STLC and its derivatives to inhibit HCV
NS5B RdRp activity in vitro. Further, we examined the effect of STLC
derivatives on intracellular HCV NS5B RdRp activity and on HCV
RNA replication. Among the tested STLC derivatives, we identified
three compounds as novel HCV NS5B inhibitor leads. These
compounds merit further optimization through classical medicinal
chemistry and virtual screening.

D.B. Nichols et al. / European Journal of Medicinal Chemistry 49 (2012) 191199

2. Results and discussion
2.1. Molecular modeling

Recently, we utilized structure-based 3-D QSAR modeling to
identify NS5B thumb-binding inhibitors and reported on the
identification of NSC123526 as a modest HCV NS5B inhibitor [26].
NSC123526 can be considered as a constrained STLC derivative
(Fig. 1). Since STLC derivative NSC123139 (Fig. 1) was found to be
most potent in inhibiting HMKEg, we performed cross-docking
experiments to investigate whether it could also bind the HCV-
NS5B thumb domain [26,29]. Fig. 2 depicts the docked conforma-
tion of NSC123139 in HCV-NS5B and HMKEg.

The activity of the docked NSC123139 (Predicted pICsg = 5.64)
was predicted by our 3-D QSAR model in the same range of
NSC123526 (Experimental plCsp = 4.33, predicted plCsg = 5.4) [26].
However, NSC123139 exhibited a much weaker inhibition of NS5B
RdRp activity in vitro (Table 1), compared to NSC123526, as
previously reported [26].

Based on the above partial results, we tested a series of STLC
derivatives for their ability to inhibit NS5B, with the objective of
identifying new lead scaffolds. While our investigations with
additional STLC derivatives were still ongoing, the co-crystal
structures of HMKEg with NSC123139 (pdb entry code 2wog and
2xae) and other STLCs (2xr2 and 3ken) were released [30]. Never-
theless, docking calculations performed through Autodock Vina,
were in good agreement with the experimental results
(rmsd = 0.44) and with similar docking calculations previously
reported [31], thus supporting our protocol.

The above docking protocol was also applied to the other STLCs.
In addition, we analyzed the Autodock Vina proposed binding

1 R-=Ph
2 R-=1B
S STLC  R-=H 3 Rkt O CORH
P COH  NSC123139 R-= Me 4 R.=iPr (
/—< NSC140909 R- = CO,H g AR
R—@——-S NH,  NSC123138R-=Cl o - o/oione! O :
y NSC126217 R-= Br 7 R.= CFy
l E-3205 R-=MeO g o _p2
X 9 R-=n-Bu roc
O COoH O COsH O COzH O CO,H
QT s T/ —~
Q S  NH | p S Ha Q s /N—-— R——S NH,
NSC123529 NSC136870 10 11 R-=nPr
12 R-=i-Pr

F-3065

13 R-=-CH(Me)Et
14 R-=-CH(Et);

F-3070

Fig. 1. Structures of NSC123526, STLC, STDC and STLC derivatives.
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B

Fig. 2. Molecular docking of STLC derivatives in NS5B. Panel A: Docked conformations of NSC123139 (red-colored carbon atoms) and NSC123526 (green-colored carbon atoms)
within NS5B thumb domain. Panel B: HMKEg (PDB entry code 2fme) with docked conformation of NSC123139 (red-colored carbon atoms) and the experimental bound NSC123526
(green-colored carbon atoms). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

mode of the two most active compounds, F-3065 and F-3070, cross-
docked into the 15 NS5B-NNI co-crystal structures as previously
described by us [26]. As expected, docked conformations of F-3065
and F-3070 ((R) and (S) enantiomers of the same compound,
respectively) exhibited the lowest binding energy in the PDB entry
2d3u. Further, the bound conformations of F-3065 and F-3070, in
agreement with the biological data, revealed that the cysteine
stereocenter does not affect the overall binding mode, wherein the
terminal amino acid group is involved in a hydrogen bonding
network, as shown in the ligplot diagrams in Fig. 3. In particular the
a~amino acid portion of F-3065 makes two hydrogen bonds, one
between its amino group and the carbonyl group of Trp528 (N---O
distance = 3.01 A) and the other between a carboxy oxygen and the
g-amino group of Lys533 (O---N distance = 2.98 A) (Fig. 3A). The
ligplot diagram of the (S) enantiomer F-3070, that forms two
hydrogen bonds with its two carboxy oxygens, one with the gua-
nidinic nitrogen of Arg501 (O---N distance = 3.21 A) and the other
with e-amino group of Lys533 (O--N distance 3.05—3.22 A), is
shown in Fig. 3B. This type of hydrogen bonding network was
observed in all other STLC derivatives (Fig. 5) suggesting that
hydrogen bonds are the leading interactions.

Other notable interactions are hydrophobic in nature, and the
trityl moieties are buried in the thumb allosteric binding side
(Fig. 4). For both F-3065 and F-3070, one phenyl is placed in
a pocket formed by Leu419, Arg422, Met423 and Trp528, while the
other two benzenes fill-up two depressions on the enzyme surface.
By comparing the binding mode of the most active STLCs with that
of the experimental co-crystallized compound found in 2d3u and
considering the conserved binding modes shown in Fig. 5, we
believe the STLC can be used as a starting scaffold, whose activity
could be improved by inserting a side chain in one of the two
surface bound benzene rings to better fill the binding cleft formed
by Leud19, Met423, 11e482, Val485, Ala486, Leu489 and Leud97
(Fig. 6) and occupied by a 2-(4-cyanophenyl)thiophene group in the
original complex (PDB ID 2d3u). As expected and within the limit of
any predictive model, the application of our 3-D QSAR to all the
new STLCs, predicted these compounds to have activities between
the 10—100 pM range (data not shown).

2.2. Chemistry

A total of 35 STLC derivatives were utilized in this study (Fig. 1
and Scheme 1). STLC and 14 derivatives (1-14) have been re-
ported previously [29,31]. Compounds F-3070 and F-3065 were
purchased from Bachem, while STDC (NSC123676), NSC123139,
NSC136870, NSC140909, NSC123529, NSC123138, and NSC126217
were procured from NCI/NIH. In accordance with published liter-
ature, 12 STLC derivatives were newly synthesized for this inves-
tigation (Scheme 1), Starting aryldiphenylmethanol compounds 15
were prepared in good yields from appropriate esters (ArCO;Me)
and phenylmagnesium chloride (data not shown) [32]. Condensa-
tion of cysteamine.HCl (16) with Ar(Ph),COH (Ar = 4-Me—Ph, 4-
Et—Ph, 4-n-Pr—Ph, 4-MeS—Ph, 4-I-Ph, 4-(Ph)-Ph and 2-
naphthyl) 15a—g in TFA gave final compounds 17a—g in 29—47%
yield (Scheme 1). Treatment of L-cysteine (18) or L-penicillamine
(19) with Ar(Ph),COH (Ar = 4-(n-CsHyy)-Ph, 4-(n-CgHq3)-Ph, 4-PrO-
Ph and 4-n-Bu-Ph) 15h—k in the presence of BFs;-Et;0 afforded
target compounds 17h—1 in 30—55% yield (Scheme 1).

2.3. Biological studies

With the objective of identifying novel HCV NS5B inhibitors, we
investigated STLC and its derivatives employing the in vitro NS5B
RdRp inhibition assay as described previously [33—35]. Recombi-
nant HCV NS5B (genotype 1b) carrying an N-terminal His-tag and
C-terminal 21-amino acid truncation (NS5BCA21) was purified to
homogeneity by Ni-NTA chromatography and used as a source of
enzyme [33—35]. Wedelolactone, a documented NS5B inhibitor,
was employed as an internal reference standard, and yielded an ICsq
value of 36.0 uM (data not shown), consistent with our previously
reported value [34]. In order to identify a wider range of NS5B
inhibitor candidates, preliminary screening of STLC and its deriva-
tives was conducted at 100 uM compound concentration. While the
parent STLC molecule yielded only ~12% inhibition of NS5B RdRp
activity during preliminary screening, its thirty-five derivatives,
with the exception of 171, exhibited a much higher inhibition
ranging from 14 to 83% (Table 1). Of these, three compounds 9, F-
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Table 1
Anti-HCV NS5B RdRp activity of STLC derivatives.

Compound % Inhibition® ICso (M)®

STLC 126 £ 23 n.d.

STDC 17.0 £ 0.6 nd.

NSC123139 231+ 16 nd.

NSC136870 1 234+29 n.d.

NSC140909 309 £+ 3.7 n.d.

NSC123529 147 £ 1.5 n.d.

NSC123138 283 +59 n.d.

NSC126217 20.2 +£ 25 n.d.

1 224+ 54 nd.
226+ 2.0 nd.

3 36824 nd.

4 312+15 n.d.

5 205+1.1 n.d.

6 369+ 2.5 nd.

7 435 + 08 nd.

8 443 + 3.0 n.d.

9 60.0 + 3.4 39.7 £ 09

10 172 £29 n.d.

11 191 + 1.7 n.d.

12 225422 nd.

13 340 + 11 nd.

14 331+07 n.d.

17a 317+ 18 nd.

17b 287 +2.1 n.d.

17¢ 274 + 42 nd.

17d 240+ 45 n.d.

17e 36.7 + 2.1 n.d.

17f 36.0+ 1.0 n.d.

17g 333423 n.d.

17h 283 +59 n.d.

17i 16.1 £ 3.0 n.d.

17j 14.0 + 3.3 nd.

17k 220+ 14 n.d.

171 n.i nd.

F-3070 828 +13 223 +59

E-3205 40.2 + 0.7 nd.

F-3065 76.7 +24 24.6 + 6.0

n.d,, not determined.
n.i,, no inhibition.

@ Percent inhibition was determined at 100 pM concentration of the indicated
compound and represents an average of at least two independent measurements in
duplicate.

® The ICso values of the compounds were determined from dose-response curves
employing 8—12 concentrations of each compound in duplicate in two independent
experiments. Curves were fitted to data points using nonlinear regression analysis
and ICsg values were interpolated from the resulting curves using GraphPad Prism
3.03 software.

3070, and F-3065 having >60% anti-NS5B activity at 100 uM were
further pursued for their IC5g value determination. This analysis
resulted in the identification of F-3070 and F-3065 with near
similar ICsq values, as the two most potent of the 36 STLC deriva-
tives examined in this investigation, while 9 exhibited ~ 1.6—1.8-
fold higher ICso value compared to the two afore-mentioned
compounds. Together, these data suggest that STLC scaffold may
offer further scope for improvement of its anti-NS5B activity.

To evaluate the anti-HCV activity of STLC compounds in a more
biologically relevant setting, we employed the BHK-NS5B-FRLuc
reporter and the Huh7/Rep-Feolb reporter systems [36,37]. The
former reporter system carries stably transfected NS5B and a bicis-
tronic reporter gene, (+)FLuc-(—)UTR-RLuc for cell based investi-
gations of HCV NS5B RdRp inhibitors [36]. The advantage of this
system is that it can simultaneously measure intracellular HCV
NS5B RdRp activity as reflected by the ratio of Renilla to firefly
luciferase luminescence and cellular viability which is reflected by
the firefly luciferase luminescence, thus enabling the identification
of potent non-toxic inhibitors. The Huh7/Rep-Feolb reporter
system, on the other hand, autonomously replicates the subgenomic
HCV genotype 1b replicon RNA carrying the firefly luciferase
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Fig. 3. Panel A: Ligplot diagram for F-3065 docked in NS5B (PDB ID 2d3u). Panel B:
Ligplot diagram for F-3070 docked in NS5B (PDB ID 2d3u).

reporter as an indicator of HCV RNA replication, and has been widely
employed to identify inhibitors of HCV RNA replication [37].

Only three STLC derivatives F-3070, F-3065, and E-3205
inhibited intracellular NS5B RdRp activity in the BHK-NS5B-FRLuc
reporter at 100 uM concentration (Table 2). The two more potent
of these, F-3070 and F-3065 exhibited >84% inhibition while E-
3205 displayed only ~44% inhibition of NS5B RdRp activity,
consistent with the in vitro data. In terms of their cytotoxicity
parameters, F-3070 and F-3065 did not affect cell viability at
100 puM, as was evident from equivalent levels of firefly luciferase
luminescence in compound treated cells versus DMSO controls.
Treatment with E-3205 however, decreased cell viability by ~70%
at 100 pM concentration. The remaining thirty-three STLC deriva-
tives as well as the parent molecule, exhibited >50% reduction in
cell viability at 100 uM, with only a marginal 15—30% decrease in
intracellular NS5B activity (data not shown), consistent with the
in vitro RdRp data.

In the Huh7/Rep-Feolb reporter system, compounds F-3070
and F-3065 exhibited an overall similar pattern of cell viability and
HCV RNA replication inhibition, corresponding to ~73—74% and
~89—-91%, respectively at 100 uM concentration (Table 2). E-3205,
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Fig. 4. Docked conformation of F-3065 (orange) and F-3070 (cyan) in NS5B (PDB ID
2d3u). The enzyme surface is shown in atom type color. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

however, exhibited decreased cell viability (44%) compared to the
other two compounds, though its inhibition of HCV RNA replication
(~89%) was similar. It is worth noting here that the inhibition
observed in this system may be partly attributed to the cellular
toxicity effects of these compounds.

The results in this present study suggest that STLC derivatives
inhibit HCV RNA replication by targeting the NS5B polymerase. It is
possible that other host factors such as HMKEg are also targeted by
STLCs in the HCV replicase complex and needs to be elucidated.
These studies provide a platform to optimize the STLC scaffold as
a potent anti-NS5B inhibitor. An extensive focused virtual screening
approach is ongoing on a database constituted of more than 500 K
trityl cysteine analogs to optimize the newly reported lead
compounds.

3. Conclusion

In summary, STLC derivatives were identified as novel inhibitors
of HCV NS5B polymerase activity in vitro and in cell based assays.

Fig. 5. STLC analogues docked within the HCV NS5B (in pink ribbon) thumb allosteric
surface. The compounds overlap in this pocket. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. F-3065 (orange) and F-3070 (cyan) overlapped on the 2d3u co-crystallized
ligand (green). HCV NS5B (PDB ID 2d3u, in pink ribbon) and the thumb allosteric
surface (in atom type color) are also shown. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

This study validates structure-based molecular modeling coupled
with 3-D QSAR prediction, as a viable strategy for identification of
new structural scaffolds targeting NS5B. STLC binding mode anal-
ysis revealed a common way by which STLCs bind to the HCV NS5B
thumb allosteric site and further suggested that improved STLC
derivatives may be achieved by chemical modification at one of the
trityl phenyl ring.

4. Experimental section
4.1. Molecular modeling

All molecules were generated by means of molecular mechanics
of Chemaxon Marvin software (http://www.chemaxon.com/).
Molecular graphics images were produced using UCSF Chimera
package from the Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco on a 3 GHz
AMD CPU equipped IBM-compatible workstation with the Debian
5.0 version of the Linux operating system. Different from the
previous protocol, the faster Autodock Vina [38] docking program
was used in place of Autodock for all docking studies. Docking
assessment was conducted via re-docking, re-docking modeled,
cross-docking and cross-docking modeled as previously reported
[26]. Autodock Vina proved to be as good as Autodock (data not
shown), but much faster in calculations. The compounds were then
submitted for structure-based molecular alignment through cross-
docking protocols as previously reported [26]. For activity predic-
tions, the previously developed SB 3-D QSAR model was applied
without any modification [26]. The program ligplot v. 4.0 was used
[39] to generate the ligand/NS5B interaction maps.

4.2. Chemistry

General methods: Melting points were determined using a Biichi
capillary instrument and are uncorrected. Optical rotations were
measured at the sodium D line (589 nm) at 25 °C with a Per-
kin—Elmer 241 polarimeter using a 1 dm path length cell. 'H and
3¢ NMR spectra were recorded on a Bruker 300, 400 or 500 MHz
spectrometers. Chemical shifts () are in parts per million. The
following abbreviations were used to designate the multiplicities:
s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
br = broad. Mass spectra were recorded with a Perkin—Elmer SCIEX
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Scheme 1. Synthesis of STLC derivatives 17a—1. Reagents and conditions: (a) TFA, rt, 3 h; (b) BF3-Et;0, AcOH, 1t, 2 h.

API spectrometer. Elemental analyses were performed on a Ther-
moquest Flash 1112 series EA analyzer. Elemental analyses were
found to be within +0.4 of the theoritical values. Purity of tested
compounds was >95%. All commercially available reagents and
solvents were used without further purification. STLC and deriva-
tives 1—14 have been previously described [29]. E-3205, F-3070 and
F-3065 were purchased from Bachem. STDC (NSC124676),
NSC123139, NSC136870, NSC140909, NSC123529, NSC123138, and
NSC126217 were procured from NCI/NIH.

4.2.1. General procedure for preparation of compounds 17a—g

At 0 °C and under argon atmosphere, a solution of cysteamine
HCl (16) (1.33 mmol) was added dropwise to a solution of appro-
priate alcohol 15 (1.33 mmol) in TFA (5 mL). The reaction mixture
was stirred at room temperature for 1 h, evaporated and extracted
with a saturated solution of NaHCO3(aq) and EtOAc. The organic

Table 2
Anti-HCV effects of STLC derivatives in cell based reporter assay.

Compound BHK-NS5B-FR Luc? Huh7/Rep-Feo1b®
Viability (%) Inhibition (%)  Viability (%) Inhibition (%
F-3070 100.0 85.4 72.6 89.5
E-3205 30.2 44.4 44.2 88.6
F-3065 100.0 84.3 74.1 91.2

3BHK-NS5B-FRLuc and PHuh7/Rep-Feolb reporter cells were treated with the
indicated compounds at 100 uM concentration for 42 h. Cell viability in the BHK-
NS5B-FRLuc reporter® was estimated as the relative levels of Firefly luciferase in
compound treated cells versus DMSO controls, while that in the Huh7/Rep-Feolb
cells® was evaluated by the MTS assay. The inhibitory effect of the compounds on
NS5B RdRp activity? and HCV RNA replicationb is presented as percent of DMSO
treated controls. Data represents an average of three independent experiments in
duplicate.
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phase was dried over MgSOg, filtered, and evaporated under
vacuum. The oil was crystallized from Et;0 or Et;0/pentane 1:1. The
desired compounds 17a—g were obtained by filtration in the range
of 29—-47% yield.

4.2.1.1. 2-[1-(4-Ethylphenyl)-1,1-diphenylmethylthioethanamine
(17a). Starting alcohol = 1-(4-ethylphenyl)-1,1-diphenylmethanol
(15a). Yield: 31%; mp 138-140 °C; 'H NMR (300 MHz,
CD30D + D30): 6 1.23 (t, 3H, ] = 7.5 Hz, CH3), 2.45—-2.59 (m, 4H, 2
CH3), 2.58 (q, 2H, ] = 7.5 Hz, CHy), 717 (d, 2H, | = 8.5 Hz, Hy,),
7.22—7.35 (m, 8H, Hay), 7.43—7.46 (m, 4H, Ha); '3C NMR (100 MHz,
DMSO0-ds): 6 15.3 (CH3), 27.6 (CHy), 28.6 (CHy), 37.7 (CHy), 66.2
(Cq), 126.9 (2x CH), 127.5 (2x CH), 128.2 (4x CH), 129.0 (6x CH),
141.3 (Cq), 142.3 (Cq), 144.2 (2x Cq); MS (ESI): m/z 370 [M + Na]™;
Anal. Calcd for C3H35NS: € 79.49, H 7.25, N 4.03, found: C, 79.47, H
7.20, N 3.97.

4.2.1.2. 2-[1,1-Diphenyl-4-(phenyl)phenylmethylthio Jethanamine
(17b). Starting alcohol = 1-(4-phenylphenyl)-1,1-diphenylme-
thanol (15b). Yield: 30%; mp 160—162 °C; 'H NMR (300 MHz,
CD30D + Dy0): 6 2.50-2.62 (s, 4H, 2 CHy), 7.27—7.63 (m, 19H, Har);
13C NMR (125 MHz, DMSO-dg): 6 28.7 (CHy), 37.8 (CHy), 66.2 (Cq),
126.4 (2x CH), 126.6 (2x CH), 127.0 (2x CH), 127.6 (CH), 128.3 (4x
CH), 128.9 (2x CH), 129.0 (4x CH), 129.6 (2x CH), 138.6 (Cq), 139.2
(Cq), 143.2 (Cq), 143.9 (2x Cq); MS (ESI): m/z 418 [M + Na]*; Anal.
Calcd for Cy7H25NS: € 81.98, H 6.37; N 3.54, found: C 82.26, H 6.44,
N 3.73.

4.2.1.3. 2-[1,1-Diphenyl-4-(propyl)phenylmethylthioethanamine
(17c). Starting  alcohol =  1,1-diphenyl-1-(4-propylphenyl)
methanol (15¢). Yield: 45%; mp 133—135 °C; '"H NMR (300 MHz,
CD3OD + D;0): 6 0.94 (t, 3H, J = 7.3 Hz, CHs), 1.58—1.70 (m, 2H,
CHy), 2.45—-2.49 (m, 2H, CHy), 2.50—2.60 (m, 4H, CHy), 7.14 (d, 2H,
] = 8.3 Hz, Hay), 7.22—7.34 (m, 8H, Ha,), 7.42—7.45 (m, 4H, Ha,); 13C
NMR (100 MHz, DMSO-ds): 6 13.8 (CH3), 23.9 (CH3), 28.6 (CH3), 36.7
(CH3), 37.7 (CHy), 66.2 (Cq), 126.9 (2x CH),128.1 (2x CH), 128.2 (4%
CH), 128.9 (2x CH), 129.0 (4x CH), 140.8 (Cq), 141.3 (Cq), 144.2 (2x
Cq); MS (ESI): m/z 384 [M + Na]*; Anal. Calcd for Ca4H7NS: C,
79.73, H 7.53, N 3.87, found: C 79.55, H 7.40, N 3.82.

4.2.14. 2-[1,1-Diphenyl-4-(methylthio)phenylmethylthioethan-
amine (17d). Starting alcohol = 1,1-diphenyl-1-(4-methylthioph-
enyl)methanol (15d). Yield: 40%; mp 142—144 °C; 'H NMR
(300 MHz, CD30D + D30): 6 2.47 (s, 3H, CHs), 2.50—2.59 (m, 4H,
CHy), 7.20~7.37 (m, 10H, Hy,), 7.43—-7.46 (m, 4H, Ha); 3C NMR
(125 MHz, DMSO-ds): 6 14.3 (CH3), 28.6 (CHz), 37.7 (CH>), 66.0 (Cq),
125.3 (2x CH), 127.0 (2x CH), 128.2 (4x CH), 128.9 (4x CH), 129.6
(2x CH), 137.0 (Cq), 140.3 (Cq), 143.9 (2x Cq); MS (ESI): m/z 388
[M + NaJ*; Anal. Calcd for CpHy3NSz: C 72.28, H 6.34, N 3.83,
found: C 72.00, H 6.35, N 3.77.

4.2.15. 2-[1-(4-Iodophenyl)-1,1-diphenylmethylthioJethanamine (17e).
Starting alcohol = 1-(4-iodophenyl)-1,1-diphenylmethanol (15e).
Yield: 47%; mp 150—152 °C; TH NMR (300 MHz, CD30D + D,0): 6 2.54
(s, 4H, 2 CHy), 7.21—7.36 (m, 8H, Har), 7.41—7.44 (m, 4H, Hay), 7.68 (d,
2H,J = 10.8 Hz, Ha); >C NMR (125 MHz, DMSO-ds): 6 28.8 (CHy), 37.7
(CH,), 66.0 (Cq), 93.4 (Cq), 1271 (2x CH),128.3 (4x CH), 128.9 (4x CH),
1314 (2x CH), 137.0 (2x CH), 143.5 (2x Cq), 143.8 (Cq); MS (ESI): m/z
468 [M + Na]™; Anal. Calcd for Co1HygINS: C 56.63, H 4.53, N 3.15,
found: C 56.60, H 4.61, N 3.22.

4.2.1.6. 2-[1-(4-Methylphenyl)-1,1-diphenylmethylthioJethanamine

(17f). Startingalcohol = 1-(4-methylphenyl)-1,1-diphenylmethanol
(15f). Yield: 29%; mp 138—140°C; THNMR (300 MHz, CD30D + D30):
0 2.32 (s, 3H, CH3), 2.48—2.55 (m, 4H, 2 CHy), 7.13 (d, 2H, ] = 8.1 Hz,

Har), 7.24-7.34 (m, 8H, Ha;), 7.41-7.45 (m, 4H, Ha); °C NMR
(100 MHz, DMSO-dg): 6 20.5 (CH3), 29.0 (CHy), 37.9 (CHz), 66.2 (Cq),
126.9 (2x CH), 128.2 (4x CH), 128.7 (2x CH), 129.0 (6x CH), 136.1
(Cq), 1411 (Cq), 144.2 (2x Cq); MS (ESI): mfz 356 [M + Na]*; Anal.
Calcd for Cz5H,3NS: € 79.23, H 6.95, N 4.20, found: C 78.88, H 7.03,
N 4.19.

4.2.1.7. 2-[1-(2-Naphthyl)-1,1-(diphenyl)methylthio]ethanamine
(17g). Starting alcohol = 1-(2-naphthyl)-1,1-diphenylmethanol
(15g) [32,40]. Yield: 32%; mp 126—128 °C; 'H NMR (300 MHz,
CD30D + D,0): 6 2.34—2.47 (s, 4H, 2 CH,), 7.21-7.34 (m, 6H, Ha,),
743749 (m, 6H, Ha), 7.55 (dd, 1H, ] = 1.9, 8.9 Hz, Hp;), 7.70—7.83
(m, 4H, Ha.); 13C NMR (100 MHz, DMSO-dg): 6 35.6 (CH,), 40.8
(CH3y), 66.0 (Cq), 126.4 (CH), 126.5 (CH), 126.8 (2x CH), 127.2 (CH),
127.3 (CH), 127.5 (CH), 128.1 (5x CH), 128.2 (CH), 129.1 (4x CH),
131.6 (Cq), 132.3 (Cq), 141.9 (Cq), 144.5 (2x Cq); MS (ESD): m/z 392
[M + Na]*; Anal. Caled for Co5H»3NS: € 81.26, H 6.27, N 3.79, found:
C81.38, H6.31, N 3.89.

4.2.2. General procedure for preparation of compounds 17h—1

At 0 °C and under argon atmosphere, a solution of BF3-Et,0
(1.33 mmol) was added dropwise to a solution of appropriate
alcohol 15 (0.86 mmol), L-cysteine (18) or L-penicillamine (19)
(0.77 mmol) in AcOH (1 mL). The reaction mixture was stirred at
room temperature for 3 h. Addition of 10% solution of NaOAc (2 mL),
then Hy0 (2 mL) led to the formation of a gum. After elimination of
the supernatant, the final compound was precipitated by addition
of pentane or Et;0. The desired compounds 17h—1 were obtained
by filtration in the range of 30—55% yield.

4.2.2.1. S-[1-(4-Pentylphenyl)-1,1-diphenylmethyl]-L-cysteine

(17h). Starting alcohol = 1-(4-pentylphenyl)-1,1-diphenylme-
thanol (15h). Yield: 55%; mp 127—129 °C; [a]33 = +61 (c = 0.52
in MeOH); 'H NMR (300 MHz, CD30D + D;0): 6 0.91 (t, 3H,
J = 6.7 Hz, CH3), 1.32—1.39 (m, 4H, 2 CHy), 1.56—1.66 (m, 2H, CHy),
2.59 (broad t, 2H, ] = 7.9 Hz, CH>), 2.70 (dd, 1H, J = 9.2,13.5 Hz, CH>),
2.82 (dd, 1H,J = 4.2,13.5 Hz, CH3), 3.04 (dd, 1H,J = 4.2, 9.2 Hz, CH),
713 (d, 2H, J = 8.5 Hz, Ha,), 7.20—7.35 (m, 8H, Ha), 7.43—7.46 (m,
4H, Hp,); C NMR (100 MHz, CD30D): 6 14.4 (CHs), 23.6 (CH,), 32.3
(CHy), 32.7 (CH3), 34.0 (CH3), 36.4 (CH3), 54.6 (CH), 68.0 (Cq), 128.0
(2x CH), 129.1 (6x CH), 130.6 (2x CH), 130.7 (4x CH), 142.8 (Cq),
143.0 (Cq), 145.8 (2x Cq), 172.0 (CO); MS (ESI): m/z 456 [M + Na]™;
Anal. Calcd for C;7H31NO,S: C74.79,H 7.21, N 3.23, found: C 74.79, H
717, N 3.25.

4.2.2.2. S-[1-(4-Hexylphenyl)-1,1-diphenylmethyl]-.-cysteine (17i).
Starting alcohol = 1-(4-hexylphenyl)-1,1-diphenylmethanol (15i).
Yield: 40%; mp 129—131 °C; [0]%y = +53 (c = 0.54 in MeOH). 'H
NMR (300 MHz, CDsOD + D,0): 6 0.90 (t, 3H, ] = 6.7 Hz, CH3),
1.30—1.42 (m, 6H, 3 CH3), 1.54—1.66 (m, 2H, CH3), 2.59 (broad t, 2H,
J= 79 Hz, CHy), 2.70 (dd, 1H, J = 9.2, 13.5 Hz, CH,), 2.82 (dd, 1H,
J =4.2,13.5 Hz, CHy), 3.03 (dd, 1H, J = 4.2, 9.2 Hz, CH), 7.12 (d, 2H,
J = 8.3 Hz, Ha), 7.21=7.35 (m, 8H, Ha,), 7.43—7.46 (m, 4H, Ha,); °C
NMR (100 MHz, CD30D): § 14.4 (CH3), 23.7 (CHy), 30.1 (CHy), 32.5
(CHy), 32.8 (CH3), 34.0 (CHy), 36.4 (CHy), 54.7 (CH), 68.0 (Cq), 128.0
(2x CH), 1291 (6x CH), 130.6 (2x CH), 130.7 (4x CH), 142.8 (Cq),
143.0 (Cq), 145.8 (2x Cq), 172.0 (CO); MS (ESI): m/z 470 [M + Na]™;
Anal. Calcd for CgH33NO,S: C 7513, H 7.43, N 3.13, found: C 74.87, H
730, N 3.02.

4.2.2.3. S-[1,1-Diphenyl-1-(4-propoxyphenyl)methyl]-.~cysteine (17j).

Starting alcohol = 1,1-diphenyl-1-(4-propoxyphenyl)methanol (15j)
[41]. Yield: 43%; mp 144—146 °C; [0)23q = +60 (c = 0.51 in MeOH); 'H
NMR (300 MHz, CD30D + D;0): & 1.03 (t, 3H, J = 7.3 Hz, CHa),
1.72—1.84 (m, 2H, CHy), 2.68 (dd, 1H, ] = 9.2, 13.4 Hz, CHj), 2.83 (dd,
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1H,] = 4.0,13.4 Hz, CH,), 3.04 (dd, 1H, ] = 4.0, 9.2 Hz, CH), 3.92 (t, 2H,

J = 6.4 Hz, CHy), 6.92 (d, 2H, ] = 8.8 Hz, Ha,), 7.22—7.33 (m, 8H, Hay),
7.43—745 (m, 4H, Har); BCNMR (100 MHz, CD30D): 4 10.8 (CHs), 23.6
(CHy), 34.2 (CHa), 55.0 (CH), 67.7 (Cq), 70.5 (CHy), 114.9 (2x CH), 127.9
(2x CH) 129.1 (4x CH), 130.5 (4x CH), 132.0 (2x CH), 1372 (Cq), 146.0
(Cq), 146.1 (Cq), 159.3 (Cq), 172.3 (CO); MS (ESI): m/z 444 [M + NaJ*;
Anal. Calcd for CosHz7NOsS: C 7123, H 6.46, N 332, found: C 71.44, H
6.54, N 3.30.

4.2.2.4. S-[1-(4-Butylphenyl)-1,1-diphenylmethyl]-L-penicillamine
(17k). Starting alcohol = 1-(4-butylphenyl)-1,1-diphenylmethanol
(15k). Yield: 30%; mp 123—125 °C; [0]%39 = +171 (c = 0.54 in
MeOH); TH NMR (300 MHz, CD30D + D;0): § 0.93 (t, 3H,J = 7.3 Hz,
CHs), 1.30 (s, 3H, CH3), 1.32—1.40 (m, 2H, CHy), 142 (s, 3H, CH3),
1.54—1.64 (m, 2H, CHy), 1.85 (s, 1H, CH), 2.59 (t, 2H, ] = 7.5 Hz, CHa),
714 (d, 2H, ] = 8.3 Hz, Ha), 7.19—7.34 (m, 6H, Ha,), 7.56 (d, 2H,
J = 85 Hz, Ha;), 7.67—7.70 (m, 4H, Ha;); 3C NMR (100 MHz,
CD30D): § 14.3 (CH3), 23.4 (CHa), 25.9 (CHs), 27.9 (CH3), 34.7 (CHa),
36.1 (CHy), 53.5 (Cq), 61.9 (CH), 69.2 (Cq), 127.9 (2x CH), 129.0 (6x
CH) 130.7 (2x CH), 130.8 (2x CH), 130.9 (2x CH), 142.9 (Cq), 143.2
(Cq),146.0 (Cq), 146.1 (Cq), 170.6 (CO); MS (ESI): m/z 470 [M + Na]™*;
Anal. Calcd for CgH33N0,S: C 75.13, H 7.43, N 3.13, found: C 75.45,
H, 7.53, N 3.32.

4.2.2.5. S-[1,1-Diphenyl-1-(4-propoxyphenyl)methyl]-L-penicillamine
(171). Starting alcohol = 1,1-diphenyl-1-(4-propoxyphenyl)meth-
anol (15j). Yield: 34%; mp 133—135 °C; [0]%3 = +69 (¢ = 0.15 in
MeOH); 'H NMR (300 MHz, CD30D + D,0): 6 1.03 (t, 3H,J = 7.1 Hz,
CH3), 1.31 (s, 3H, CH3), 1.43 (s, 3H, CH3), 1.74—1.81 (m, 2H, CH3), 1.92
(s, 1H, CH), 3.93 (t, 2H, | = 6.0 Hz, CHy), 6.87 (d, 2H, ] = 8.4 Hz, Ha(),
7.20—7.30 (m, 6H, Ha,), 7.56 (d, 2H, ] = 8.4 Hz, Hp,), 7.64—7.72 (m,
4H, Har): 3C NMR (100 MHz, CD30D): 6 10.8 (CHs), 23.7 (CH3), 25.9
(CHs), 28.4 (CH3), 53.2 (Cq), 62.0 (CH), 69.2 (Cq), 70.5 (CH,), 114.6
(2x CH),127.8 (2x CH) 128.7 (4x CH), 129.5 (4x CH), 131.6 (2x CH),
137.3 (Cq), 146.0 (2x Cq), 159.6 (Cq), 172.6 (CO); MS (ESI): m/z 472
[M + Nal*; Anal. Calcd for Cy7H3;NOsS: C 72.13, H 6.95, N 3.12,
found: C 71.99, H 7.00, N 3.11.

4.3. Biological studies

4.3.1. NS5B inhibition assay

Recombinant NS5B carrying the N-terminal histidine-tag was
purified from the plasmid pThNS5BCA21 expressed in Escherichia
coli DH5a by Ni-NTA chromatography [33,34]. The compounds
were dissolved in dimethylsulfoxide (DMSO) as a 10 mM stock
solution and stored at —20 °C. Serial dilutions were made in DMSO
immediately prior to the assay. The activity of the compounds
against HCV NS5B was evaluated by the standard primer dependent
elongation assay as previously described [33,34]. Briefly, prelimi-
nary screening was performed in the presence or absence of
100 uM STLC or the indicated derivative in a reaction buffer con-
taining 20 mM Tris—HCl (pH 7.0), 100 mM NacCl, 100 mM Na-
glutamate, 0.1 mM DTT, 0.01% BSA, 0.01% Tween-20, 5% glycerol,
20 U/mL of RNasin, 20 pM UTP, 2 pCi [a->2PJUTP, 0.25 uM polyrA/
Uz, 100 ng NS5BCA21 and 1 mM MnCl,. Following 60 min incu-
bation at 30 °C, reactions were terminated by the addition of chilled
5% trichloroacetic acid (TCA) containing 0.5 mM sodium pyro-
phosphate. Reaction products were precipitated on GF-B filters and
quantified on a liquid scintillation counter. NS5B activity in the
presence of DMSO control was set at 100% and that in the presence
of the STLC derivatives was determined relative to this control.
Compounds exhibiting greater than 50% inhibition at 100 uM were
evaluated for their ICs¢p values from dose-response curves
employing 8—12 concentrations of the compounds in duplicate in
two independent experiments. Curves were fitted to data points

using nonlinear regression analysis and ICsg values were interpo-
lated from the dose-response curves using GraphPad Prism 3.03
software.

4.3.2. Cell culture

BHK-NS5B-FRLuc reporter cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM) with 10% heat-inactivated fetal
bovine serum, 5% antibiotic-antimycotic, 5% nonessential amino
acid, 1 mg/mL G418 and 10 pg/mL blasticidin. Huh7/Rep-Feolb
replicon reporter cells were cultivated in DMEM containing 10%
fetal calf serum, 5% antibiotic and 0.5 mg/mL G418. All cell lines
were incubated at 37 °C in the presence of 5% CO, supplement.

4.3.3. BHK-NS5B-FRLuc reporter assay

The effect of the compounds on intracellular NS5B RdRp activity
was screened employing the BHK-NS5B-FRLuc reporter system as
previously described [36]. Briefly, BHK-NS5B-FRLuc reporter cells
were plated at a confluence of 1x10* cells/well in 96 well plates and
incubated with DMSO (1%) or the indicated compound (100 pM) for
42 h. Reporter gene expression was measured with a Dual-Glo
Luciferase Assay Kit (Promega, USA) in accordance with the
manufacturer’s instructions. Effect of the compounds on cell
viability was estimated as the relative levels of firefly luciferase in
compound treated cells versus DMSO controls. The inhibitory effect
of the compounds on the intracellular NS5B RdRp activity was
evaluated from the percent reduction in RLuc to FLuc luminescence
signal in compound treated cells versus DMSO controls.

4.3.4. Huh7/Rep-Feo1b reporter system

The effect of the compounds on HCV RNA replication was
screened employing the Huh7/Rep-Feo1b replicon reporter cells as
previously described [42]. Briefly, 1x10* Huh7/Rep-Feolb cells
were plated in 96 well plates and treated with 100 uM concentra-
tion of the indicated compound or DMSO for 42 h. The concentra-
tion of DMSO in cell culture was kept constant at 1.0%. Cell viability
was measured by the colorimetric MTS assay employing the Cell-
Titer 96AQueous ONe solution assay reagent (Promega, USA). Inhib-
itory effect of the compounds on HCV RNA replication was
measured as the relative levels of firefly luciferase signals in
compound treated cells versus DMSO controls.
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Introduction

Hepatitis C virus (HCV) is a major cause of chronic liver discase
[1,2]. Currently, approximately 200 million people are infected
with HCV worldwide and are at continued risk of developing
chronic liver diseases such as chronic hepatitis, liver cirrhosis, and
hepatocellular carcinoma [3,4]. Historically, the lack of a cell
culture system capable of producing virus particles hampered
progress in the field of HCV research. Subsequently, a robust
HCV cell culture system was developed using HCV JFH-1 strain
that had been cloned from a fulminant hepatitis patient [5,6,7].
JFH-1 was the first HCV strain that could replicate and produce
HCV particles autonomously i uitro, thereby facilitating investi-
gation of the entire life cycle of the virus. This HCV cell culture
system employed HuH-7 cell line, which was established from a
hepatocellular carcinoma [5,8], as a host. Since the HCV replicon
system enabling HCV subgenomic RNA replication was originally
developed using HuH-7 [9], this cell line has been used in the
research field of HCV most frequently. However, HuH-7 is known
to be heterogeneous. Notably, Saintz et al. reported that HuH-7
cell lines obtained from various laboratories exhibit distinct

PLOS ONE | www.plosone.org

morphological, cell growth, and HCV susceptibility propertics
[10]. We also found that single-cell cloning of HuH-7 maintained
in our laboratory yielded multiple subclones that exhibited
different characteristics of HCV infection and replication [11].
In the present study, we derived cell lines from original HuH-7
obtained from the cell bank and screened to identify a cell line
with improved production of infectious HCV particles. As we
report here, we obtained one such clone (HuH-7T1) and
performed an initial characterization of the HCV life cycle in
this host.

Materials and Methods

Cell culture

The original HuH-7 cell line (catalog number; JCRB0403) was
purchased from Health Science Research Resources Bank (Osaka,
Japan). The cured cell line, Huh-7.5.1, was a kind gift from Dr.
Francis V. Chisari (Scripps Research Institute, La Jolla, CA) [6].
These cell lines were cultured at 37°C in a 5% COg environment
using Dulbecco’s Modified Eagle’s Medium containing 10% fetal
bovine serum.
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Efficient HCV Production in HuH-7 Subclone

Figure 1. HCV production in HuH-7 subclones. (A) Two micrograms of JFH-1 RNA were electroporated into the HuH-7 subciones. Culture
medium was harvested at Days 1, 3, and 5, and HCV core protein levels in the culture medium were measured. Assays were performed three times
independently, and data are presented as mean * standard deviation. (B-D) Comparison of HCV production among HuH-7T1, Huh-7.5.1 and HuH-7.
HCV core protein (B and C) and HCV RNA (D and E) levels in cells and culture medium were measured. Assays were performed three times
independently, and data are presented as mean * standard deviation. (F) HCV-positive cells at Day 3 post-transfection were visualized with anti-core
antibody (green); nuclei were visualized with DAPI (blue). (G) The number of HCV positive cells within a cluster were counted and classified into 2
groups (>5 cells/cluster and 1-5/cluster). More than 100 foci were counted. The percentages of each group are shown.

doi:10.1371/journal.pone.0052697.g001

Single cell cloning by limiting dilution
The original HuH-7 cell line was diluted with medium at 1 cell/
mL ‘and seeded at 100 pL/well in 96-well plates. Six subclones
were obtained and resulting subclones were expanded and stored
—80°C pending further characterization. The characteristics of
obtained subclones were maintained after passages over several
months.

HCV constructs and RNA transfection

pJFH1 is a full-length JFH-1 clone whose construction was
reported previously [5]. pSGR-JFHI-Luc (a JFH-1 subgenomic
replicon construct containing a firefly luciferase-encoding reporter
gene) and pSGR-JFH1/GND-Luc (a replication-defective mutant
construct) also were described previously [12]. pH778.2, a full-
length H778.2 construct, was a kind gift from Dr. Stanley M
Lemon (University of North Carolina at Chapel Hill, Chapel Hill,
NC). This construct is a derivative of strain H77S (genotype la)
harboring an additional mutation, and produces infectious virus in
cultured cells after full-genome RINA transfection [13]. RNA
synthesis and transfection were performed as described previously
[14,15].

Quantification of HCV core protein and RNA

The concentration of HCV core protein in the culture medium
and cell lysate was measured using a chemiluminescent enzyme
immunoassay (Lumipulse Ortho HCV antigen, Fujirebio, Tokyo,
Japan) in accordance with the manufacturer’s instructions. The
concentration of HCV RNA was measured as described previously
(16].

Determination of infectivity titers

To determine the intracellular infectivity of the HCV RNA-
transfected cells, a cell lysate of HCV RNA-transfected cells
cultured in a 10 cm dish was generated by subjecting the cells to
four freeze-thaw cycles. The culture supernatant and cell lysate
were serially diluted and inoculated into naive Huh-7.5.1 seeded at
1x10* cells/well in poly-D-lysine-coated 96-well plates (BD,
Franklin Lakes, NJ), and the inoculated plates were incubated
for another 3 days at 37°C. The cells were then fixed with
methanol, and the infected foci were visualized by staining with
anti-core antibody (clone 2H9 [5,8] for JFH-1 and ¢7-50 (Abcam,
Cambridge, MA) for H77S.2) and Alexa Fluor 488 Goat Anti-

Table 1. Infectivity titers in culture medium and cells of HuH-
7T1 and Huh-7.5.1 transfected with JFH-1 RNA.

Secretion

Cell Line Infectivity

- 134x102+142x1o‘

730 x i 5

*p<0.05 as compared with Huh-7.5.1.
doi:10.1371/journal.pone.0052697.t001
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mouse IgG (Invitrogen, Carlsbad, CA). The infectivity titer was
quantified by counting the stained foci and expressing the value as
the number of focus-forming units (FFU).

Flow cytometric analysis

For cell cycle distribution analyses, cells were labeled with 5-
ethynyl-2'-deoxyuridine (EdU) for 4 h prior to harvest. The
harvested cells were fixed in 4% paraformaldehyde, permeabi-
lized, and stained with anti-nonstructural (NS) 5A antibody (clone
KS0265-1; raised by immunization with JFH-1 NS5A) and Alexa
Fluor 647 Goat Anti-mouse IgG (Invitrogen). Incorporated EdU
was stained with Alexa Fluor 488 azide by using the Click-iT EAU
flow cytometry kit (Invitrogen) according to the manufacturer’s
instructions. Following treatment with RNase A, 7-aminoactino-
mycin D (7-AAD) was added. Samples were analyzed using a
FACS Calibur flow cytometer. The population of cells in GO/Gl,
S, or G2/M phases of the cell cycle was determined using Flow]Jo
software (Tree Star, Inc., Ashland, OR).

Immunostaining

Infected cells were cultured on glass cover slips in a 12-well
plate. Cells were fixed in 4% paraformaldehyde and permeabi-
lized. After blocking, HCV-positive cells were visualized by
staining with anti-core antibody (clone 2H9) and Alexa Fluor
488 Goat Anti-mouse IgG, and nuclei were stained with 4', 6-
diamidino-2-phenylindole (DAPI).

Virus entry assay
HCYV pseudo type virus (HCVpp) harboring the JFH-1 E1 and
E2 glycoprotein was prepared as described previously [11]. Target
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Figure 2. Comparison of infection in HuH-7T1 and Huh-7.5.1.
(A) Infection of HCVcc into HuH-7T1 and Huh-7.5.1. The cells were fixed
3 days after infection and infected foci were counted. (B) Infection of
HCVpp into HuH-7T1 and Huh-7.5.1. The cells were harvested 3 days
after infection, and the luciferase activity in the cell lysate was
measured.

doi:10.1371/journal.pone.0052697.g002
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Figure 3. Comparison of replication in HuH-7T1 and Huh-7.5.1.
(A) Five micrograms of JFH-1 subgenomic replicon RNA was electro-
porated into HuH-7T1 and Huh-7.5.1. The cells were harvested at
indicated time points. The luciferase activity in the cell lysates was
normalized to the data at 4 h after transfection; values are expressed as
fold increases. (B and C) Comparison of transfection and translation
efficiencies. Five micrograms of JFH-1/GND-Luc RNA was transfected
into HuH-7T1 and Huh-7.5.1. The cells were harvested at 4 h after
transfection, and the amount of transfected RNA in cells (B) and
luciferase activity in the cell lysates (C) were measured.
doi:10.1371/journal.pone.0052697.g003

cells were seeded into 48-well plates at a density of 2x10* cells/
well. On the following day, a 100-pL aliquot of each diluted
supernatant containing HGVpp was added to each well and
incubated for 3 h. The supernatants were replaced with fresh
medium, and the cells were incubated for 72 h at 37°C. Cells were
lysed with Passive Lysis Buffer (Promega, Madison, WI). Lucifer-
ase activities were quantified using a luciferase assay system
(Promega). Assays were performed in triplicate; data are presented
as mean * standard deviation.

Cell culture-generated HCV JFH-1 virus (HCVcc) was
prepared as follows: culture medium from JFH-1 RNA-transfected
cells was collected and 40-times concentrated using Amicon Ultra-
15 filter units (100-kDa cutoff; Millipore, Bedford, MA) and stored
at —80°C until use. HGVcc was inoculated into target cells, and
infectivity titer was determined as described.

PLOS ONE | www.plosone.org
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Luciferase assay
Luciferase activity of subgenomic reporter replicon RNA-

transfected cell lysate was measured as described previously
[14,15].

Statistical analysis
Significant differences were evaluated using the Student’s t-test.
P<0.05 was considered significant.

Results

Isolation of HuH-7 subclones with improved HCV

production

To obtain cell lines with improved HCV production potential,
we used limiting dilution to establish six subclones (HuH-7T1,
HuH-7T2, HuH-7T3, HuH-7T5, HuH-7T7, and HuH-7T10)
from the original HuH-7 purchased from the cell bank. We
transfected JFH-1 RNA into each of these subclones and measured
the level of core protein in the culture medium. These subclones
displayed a range of core protein production levels. (Fig. 1A).
Compared to the original HuH-7, four (HuH-7T1, HuH-7T3,
HuH-7T5 and HuH-7T10) and two (HuH-7T2 and HuH-7T7)
subclones produced higher or lower amounts of HCV core
protein, respectively. Among these subclones, we chose HuH-7T1
for further characterization because this subclone produced HCV
core protein at the highest level (Fig. 1A). Then, we compared core
protein production of HuH-7T1 with Huh-7.5.1, a cell line
reported to be highly permissive for HCV replication [6]. After
JFH-1 RNA transfection, HCV core protein level in the culture
medium of HuH-7T1 was 17.6-fold higher than that seen with
Huh-7.5.1 (Fig. 1B). HCV core protein levels in cell lysate of
HuH-7T1 were lower at Day 1, but higher at Days 3 and 5 after
transfection, compared to Huh-7.5.1 (Fig. 1C). HCV RNA levels
in the culture medium and cell lysates of these cells showed similar
tendencies (Fig. 1D and 1E). The infectivity titer in culture
medium of HuH-7T1 at Day 5 was 22.5-fold higher than that of
Huh-7.5.1 (Table 1), indicating that HuH-7T1 supported
production of infectious HCV particles to levels higher than those
seen in Huh-7.5.1. The number of HCV-positive cells of HuH-
7T1 at Day 5 also was higher than that seen with Huh-7.5.1
(Fig. 1F). The percentage of HCV positive cell clusters consisting
of more than 5 cells was higher in HuH-7T1 than in Huh-7.5.1
(Fig. 1G). We also assessed if HuH-7T1 produced higher amount
of core protein after infection of HCVec. HuH-7T1 produced
higher amount of HCV core protein than Huh-7.5.1 after JFH-1
virus infection at the same multiplicity of infection (Fig. S1A), and
HCV core protein levels in cell lysate of HuH-7T1 were also
higher than that of Huh-7.5.1 (Fig. S1B). These data indicated
that HuH-7T1 produced infectious HCV particles more efficiently
than Huh-7.5.1 after JFH-1 RNA transfection and JFH-1 virus
infection.

The original HuH-7 could produce higher amount of HCV
core protein than Huh-7.5.1 after JFH-1 RNA transfection
(Fig. 1B). However, in the experiment of HCVcc infection,
HuH-7 produced lower amount of HCV core protein than Huh-
7.5.1 in culture medium (Fig. S1A) and in cell lysate (Fig. S1B).

Analysis of HCV life cycle in HuH-7T1

To clarify the underlying mechanism of the enhanced virus
production in HuH-7T1, we assessed the efficiencies of each step
in the HCV life cycle. The viral infection step was assessed by
using HCVec and HCVpp. The HCVcce system uses cell culture-
generated HCV and detects steps from viral attachment through
replication. On the other hand, the HCVpp system uses the
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Figure 4. Effects of HCV replication on cell proliferation of Huh-7.5.1 and HuH-7T1. (A) Population of HCV-positive cells after JFH-1 RNA
transfection. Two micrograms of JFH-1 RNA was electroporated into Huh-7.5.1 and HuH-7T1 and cultured with or without 10 mg/mL of anti-CD81
antibody (clone JS-81, BD). Cells were harvested at Days 1, 3, and 5. After fixing, cells were stained with anti-NS5A antibody and analyzed by flow
cytometry. (B, C) Cell cycle distribution of HCV-positive and -negative cells after JFH-1 RNA transfection. Two micrograms of JFH-1 RNA was
electroporated into Huh-7.5.1 and HuH-7T1. Cells were puise-labeled with EdU and analyzed for cell cycle distribution. The percentages of cells in GO/
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