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Introduction

Adenosine 5'-triphosphate (ATP) is the major energy currency
of cells and is involved in a variety of cellular processes, including
the virus life cycle, in which ATP-dependent reactions essential for
virus multiplication are catalyzed by viral-encoded enzymes or
complexes consisting of viral and host-cell proteins [1]. However,
the lack of a real-time monitoring system for ATP has hindered
studies aimed at eclucidating the mechanisms by which cellular
processes are controlled through ATP. A method for measuring
ATP levels in individual living cells has recently been developed
using a genetically-encoded FRET-based indicator for ATP, called
ATeam, which employs the epsilon subunit of a bacterial FoF-
ATPase [2]. The epsilon subunit has several theoretical advan-
tages for use as an ATP indicator; i) small size (14 kDa), ii) high
specific binding to ATP, i) ATP binding induces a global
conformational change and iv) ATP hydrolysis does not occur
following binding [3-5]. The affinity of ATeam for ATP can be
adjusted by changing various amino acid residues in the ATP-
binding domain within the subunit. ATeam has enabled
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rescarchers to cxamine the subcellular compartmentation of
ATP as well as time-dependent changes in cellular ATP levels
under various physiological conditions. For example, the ATeam-
based method has been used to demonstrate that ATP levels
within the mitochondrial matrix are lower than those in the
cytoplasm and the nucleus [2].

Hepatitis C virus (HCV) infects 2-3% of the world population
and is a major cause of chronic hepatitis, liver cirrhosis and
hepatocellular carcinoma [6-8]. HCV possesses a positive-strand
RNA genome and belongs to the family Flaviviridae. A precursor
polyprotein of ~3000 amino acids is post- or co-translationally
processed by both viral and host proteases into at least ten viral
products. The nonstructural (NS) proteins NS3, NS4A, NS4B,
NS5A and NS5B are necessary and sufficient for autonomous
HCV RNA replication. These proteins form a membrane-
associated replication complex (RC), in which NS5B is the
RNA-dependent RNA polymerase (RdRp) responsible for copying
the RINA genome of the virus during replication [9,10]. NS3, in
addition to its protease activity, functions as a viral helicase
capable of separating duplex RNA and DNA in reactions fuelled
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by ATP hydrolysis [11,12]. Consistent with other positive-strand
RNA viruses, replication of HCV genomic RNA is believed to
occur in membrane-bound vesicles. NS3-NS5B proteins, together
with several host-cell proteins, form a membrane-associated RC.
The HCV RC is localized to distinct dot-like structures within the
cytoplasm of HCV replicating cells and can be detected in
detergent-resistant membrane structures [13].

In this study, we first used capillary electrophoresis-time-of-
flight mass spectrometry (CE-TOF MS) and the original ATeam
method to determine ATP levels in cells infected with HCV or
replicating HCV RNA. Using these methods, together with an
ATP consumption assay, we demonstrated that ATP is actively
consumed in cells in which viral RNA replicates, leading to a
reduction in cytoplasmic ATP compared to parental cells. To
further understand the fluctuation and distribution of ATP in
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Visualization of ATP in HCV-Replicating Cells

HCV replicating cells, we developed a system to monitor ATP at
putative subcellular sites of HCV RINA replication in single living
cells by applying ATeam technology to the subgenomic replicon
system. Our results show that, in viral RNA-replicating cells, ATP
levels are elevated at distinct dot-like structures that may play a
supportive role in HCV RNA replication, while cytoplasmic levels
of ATP decrease.

Results

The concentration of ATP is reduced in HCV-infected cells

As a first approach, the concentration of adenosine nucleotides
within HCV-infected and non-infected cells was quantified by CE-
TOF MS analysis. ATP levels were approximately 7- and 50-fold
higher, respectively, than the levels of ADP and AMP in non-
infected Huh-7 cells (Figure 1A). At 9 days post-infection with
HCV particles produced from a wild-type JFH-1 isolate [14], the
intracellular levels of ATP, ADP and AMP were significantly (52—
59%) lower than those in naive Huh-7 cells (Figure 1A). ATP/
ADP and ATP/AMP ratios were comparable among HCV-
infected and non-infected cells (Figure 1B). A similar result was
obtained using JFH-1/4-5 cells that harbor a HCV subgenomic
replicon (SGR) RNA derived from the JFH-1 isolate [15]; the
intracellular ATP level of JFH-1/4-5 cells was lower than that of
parental Huh-7 cells (Figure S1). These findings are basically
consistent with a recent report that phosphorylation-mediated
activation of AMP-activated protein kinase is inhibited in cells
undergoing HCV genome replication, and that ATP/ADP ratios
are similar among cells that do and do not demonstrate HCV
replication [16,17].

Measurement of ATP levels in HCV-replicating cells using

ATeam

To visualize ATP levels in living cells undergoing HCV
genomic replication, one of the ATeam indicators, AT1.03YEMK,
which has a high affinity for ATP, was introduced into HCV
replicon cells carrying SGR RNA or into parental Huh-7 cells and
was imaged using confocal fluorescence microscopy. Consistent
with previous observations in HeLa cells [2], this ATP indicator
was distributed throughout the cytoplasm. FRET signals (Venus/
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Figure 1. Levels of adenosine nucleotides in HCV-infected and non-infected Huh-7 cells determined by CE-TOF MS. (A) ATP levels
were reduced in HCV-infected cells. ATP, ADP, and AMP metabolites in Huh-7 cells with (gray bars) and without (open bars) HCV infection were
measured by CE-TOFMS. (B) Ratios of ATP/ADP and ATP/AMP were calculated from the results depicted in (A). All data are presented as means and
standard deviation (SD) values for three independent samples. Statistical differences between HCV-infected and non-infected cells were evaluated

using Student’s t-test.
doi:10.1371/journal.ppat.1002561.g001
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CFP fluorescence emission ratios), which reflect ATP levels in
living cells, were calculated from the fluorescent images of CFP
and Venus, a variant of YFP that is resistant to intracellular pH
[18], within the cytoplasm of individual cells. Each independent
measurement was plotted as indicated in Figure 2. Uniform
Venus/ CFP ratios were observed in Huh-7 cells. These ratios were
reduced dramatically following combined treatment with 2-
deoxyglucose (2DG) and Oligomycin A (OliA), which inhibit
glycolysis and the oxidative phosphorylation of ADP to ATP,
respectively [2]. When AT1.03Y"™X was expressed in the HCV
replicon-harboring cells JFH-1/4-1, JFH-1/4-5 (genotype 2a) and
NK5.1/0-9 (genotype 1b) [15], Venus/CFP ratios were signifi-
cantly lower than those seen in parental Huh-7 cells. This result is
consistent with the mass spectrometry results shown in Figures 1A
and S1. Venus/CFP ratios were more variable in the replicon-
carrying cells compared to Huh-7 cells. It is possible that ATP
levels in the replicon cells correlate with viral replication levels,
which may vary among the cells tested.

The consumption of ATP is increased in HCV-replicating

cells

It has been reported that ATP is involved in different steps in
the course of HCV replication such as in the initiation of RNA
synthesis by NS5B RdRp [9]. NS3 unwinds RNA in an ATP-
dependent manner and may be involved in viral replication
[11,19,20]. NS4A has been shown to enhance the ability of the
NS3 helicase to bind RNA in the presence of ATP [21]. In
addition, ATP is generally used as a material in RNA synthesis.
Together with the above results (Figures 1 and 2), one may
hypothesize that active consumption of ATP in cells where HCV
RNA replicates efficiently results in lower levels of cytoplasmic
ATP compared to cells in the absence of the viral RNA. To study

Visualization of ATP in HCV-Replicating Cells

the influence of HCV RNA replication on the consumption of
ATP in cells, we used permeabilized HCV replicon cells [13,22].

Following the addition of ATP to permeabilized cells, reduced
ATP levels were detected using a luciferase-based assay (see
Materials and Methods for details). Fifteen minutes after the
addition of ATP, ATP levels in permeabilized replicon-carrying
cells JFH-1/4-1, JFH-1/4-5 and NK5.1/0-9) were reduced by
82-95%, and this reduction was greater than that observed in
control Huh-7 cells (47%)(¥Figure 3). When the replication of HCV
RNA was inhibited by pre-treatment of the cells with the cytidine
analogue inhibitor of HCV NS5B polymerase, PSI-6130 [23,24],
for 3 days, the reduction in ATP levels in the replicon cells was
comparable to that of Huh-7 cells. A decrease in ATP reduction in
the replicon cells was observed even following a 15-min treatment
with the inhibitor. An effect of inhibition of viral replication on
cytoplasmic ATP levels in replicon cells was also observed by
ATeam-based analysis of Venus/CFP ratios following inhibition of
replication by IFN-alpha (Figure S2). These results suggest that
ATP is actively consumed during viral replication in HCV
replicon cells, leading to decreased levels of ATP in the cytoplasm.

Development of a system to monitor ATP levels at
putative subcellular sites of HCV replication in single
living cells

Moradpour et al. have established functional HCV replicons
that have either an epitope tag or the coding sequence for a green
fluorescent protein (GFP) inserted in frame close to the C-terminus
of NS5A, which they used to demonstrate incorporation of the
NS5A-GFP fusion protein into the viral RC [25]. To further
investigate intracellular changes in ATP during HCV replication,
we generated HCV JFH-1-based subgenomic replicons harboring
an ATeam insertion in the 3’ region of NS5A (SGR-ATeam), as
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Figure 2. ATP fluctuations within the cytoplasm of HCV replicating cells analyzed using the original ATeam. Huh-7 cells carrying a HCV
subgenomic replicon, JFH-1/4-1, JFH-1/4-5 (genotype 2a), and NK5.1/0-9 (genotype 1b) and parental Huh-7 cells were transfected with an ATP probe,
AT1.03"" Forty-eight hours after transfection, the Venus/CFP emission ratio in the cytoplasm of each cell was calculated from fluorescent images
acquired with a confocal microscope FV1000 (Olympus). Huh-7 cells treated with 10 mM 2-DG and 10 pg/ml OliA for 20 min were used as a negative
control. Data are presented as means and standard deviation values (SD) for each cell. Statistical differences among Huh-7 cells were evaluated using
Student’s t-test. Pseudocolored images of Venus channel/CFP channel ratios of representative cells and a pseudocolor scale are shown. in the graph
on the right, each plot indicates the Venus/CFP ratio of each cell. The horizontal lines in the center represent the mean values for each group.

doi:10.1371/journal.ppat.1002561.g002
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Figure 3. ATP consumption in cells replicating HCV RNA. (Left) The indicated cell lines were pretreated with 10 uM PSI-6130 for 3 days or were
cultured in the absence of the drug, followed by trypsinization and permeabilization. ATP-containing reaction buffer plus 10 uM PSI-6130 was added
to some of the non-pre-treated cells (PSI-6130, 15 min; light gray bars). ATP-containing PSI-6130-free reaction buffer was added to the rest of the non
pre-treated cells (PSI-6130, (—); white bars) and to the pre-treated cells (PSI-6130, 3 days; dark gray bars). After 15 min incubation, ATP levels in cell
lysates were measured using a luciferase-based assay. ATP reduction compared to ATP levels at the 0-time point was calculated. The mean values of
three independent samples with SD are displayed. Statistical differences between cells treated with and without treatment with PSI-6130 were
evaluated using Student’s t-test. (Right) HCV RNA titers in cells corresponding to the left panel were determined using real-time quantitative RT-PCR.
Data are presented as means and SD for three independent samples. NTD indicates not detected.

doi:10.1371/journal.ppat.1002561.g003

well as plasmids expressing NS5A-ATeam fusion proteins (NS5A-
ATeam)(Figures 4A and 4C).

- We first tested whether NS5A-ATeam fusion proteins can be
used to monitor ATP levels over a range of concentrations in living
cells. The Venus/CFP ratios in individual cells expressing NS5A
fused cither with AT1.03Y*MX (k7= 1.2 mM at 37°C [2]) or with
a relatively lower affinity version, AT1.03 (AZ=3.3 mM at 37°C
[2]) were measured. As shown in Figure 4B, differences in the
Venus/CFP ratios of NS5A- AT1.03"™™¥ and NS5A-AT1.03
were similar to those of AT1.03YEMX and AT1.03, although
average ratios were lower for NS5A- AT1.03Y*™¥ and NS5A-
AT1.03 compared to AT1.03¥*™® and AT1.03. In the presence
of 2DG and OBA, Venus/CFP ratios of NS5A-AT1.037VEME yere
markedly reduced to levels that were comparable to those of
AT1.03"%, an inactive mutant with R122K/R126K substitutions
[2]. These results demonstrate that NS5A-ATeams can function as
ATP indicators, although their dynamic ranges of Venus/CFP
ratios are slightly smaller than those of the original, non-fused
ATeams.

We next investigated whether the SGR-ATeam could initiate
and sustain transient replication of HCV RNA in cells. A RNA
polymerase I (Pol I)-derived plasmid, which carries SGR/luc-
AT1.03 containing a luciferase reporter gene ([26]; Figure 4C), or
its replication-defective mutant were transfected into Huh-7 cells
and levels of viral replication were determined by measuring
luciferase activity at various time intervals over a five day period
(Figure 4D). Although replication of SGR/luc-AT1.03 was
delayed compared with parental SGR/luc, the luciferase activity
expressed from SGR/luc-AT1.03 rose to approximately a
thousand-fold higher than that expressed from SGR/luc-GND-
AT1.03 at five days post-transfection. It appears that SGR-
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AT1.03, which does not carry the luciferase gene, replicated more
efficiently than SGR/luc-AT1.03, as determined by Western
blotting of the HCV NS5B protein within cells four days post-
transfection (Figure 4E). As indicated in Figure 4F, an abundant
protein of the same size as that expected for the NS5A-ATeam
fusion protein was observed in cells expressing either NS5A-
AT1.03 or SGR-AT1.03, indicating that the NS5A-ATeam fusion
protein is stable and is not cleaved during HCV replication. Thus,
we concluded that the modified replicon constructs in which the
ATeam is incorporated into the NS5A region are functional and
remain capable of efficient transient replication of HCV RNA.

Visualization of ATP levels and distinctive features of ATP
distribution in cells replicating ATeam-tagged SGR

This SGR-ATeam system that was established to analyze
cellular ATP levels was used in living HCV RNA-replicating cells
in which membrane-associated RCs are formed through the
interaction of viral proteins, including NS5A, and cellular proteins.
We compared the subcellular distribution of fluorescent signals
expressed from NS5A-ATeams and SGR-ATeams using emission-
scanning confocal fluorescence microscopy with a Zeiss META
detector. NS5A-AT1.03 and NS5A-AT1.03VEME were diffusely
distributed throughout the cytoplasm (Figure 5A; upper panels).
Venus/CFP ratios of NS5A-ATeam constructs were almost
constant throughout the cytoplasm (Figure 5A; lower). As
expected, Venus/CFP ratios in cells expressing NS5A-
AT1.03¥EME were markedly higher than those of NS5A-AT1.03
(Figure 5A; lower). In contrast, cells replicating SGR-AT1.03 and
SGR-AT1.03YEME showed foci of brightly fluorescent dot-like
structures in the cytoplasm (Figure 5B; upper panels). Interestingly,
some of these fluorescent foci had an apparently higher Venus/
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Figure 4. Development of NS5A-ATeam and SGR-ATeam to enable real-time monitoring of ATP. (A) Schematic representation of the
ATeam and NS5A-ATeam used in this study. ATeam genes were inserted into the 3’ region of a HA-NS5A expression vector to generate NS5A-ATeam.
The underlined sequences indicate NS5A residues. The insertion site was between residues 2394 and 2395, numbered according to the polyprotein of
the HCV JFH-1 isolate. CMV, Cytomegalovirus promoter; CAG, CAG promoter; ATP b.p, ATP binding protein. HA, HA tag. (B) Huh-7 cells were
transfected with ATeam and NS5A-ATeam constructs. Forty-eight hours post-transfection, the Venus/CFP ratios of each cell were calculated from
fluorescent images acquired with a confocal microscope in the same way as described in the legends for Figure 2. Each plot shows the ratio of
individual cells. Horizontal lines represent means. (C) Schematic representation of the SGR and SGR-ATeam plasmids used, with or without the firefly
luciferase gene {Fluc). HCV polyproteins are indicated by the open boxes. ATeam genes were inserted into the same site in the NS5A C-terminal
region. Bold lines indicate the HCV UTR. EMCV IRES is denoted by the gray bars. Pol | P, Pol | promotor; dC, 5’ region of Core gene; Pol I T, Pol |
terminator. (D) Replication levels of SGR/luc-AT1.03 in transfected cells were determined by luciferase assay 1-5 days post-transfection. SGR/luc and
SGR/luc-GND were used as positive and negative controls, respectively. Values given were normalized for transfection efficiency with luciferase
activity determined 24 h post-transfection. All data are presented as means and SD for three independent samples. (E) Huh-7 cells were transfected
with constructs encoding NS5A, NS5A-AT1.03, SGR, SGR-AT1.03, SGR/luc or SGR/luc-AT1.03, followed by immunoblotting with anti-NS5B or anti-beta-
actin antibody. (F) Cells transfected with constructs encoding NS5A, NS5A-AT1.03, SGR or SGR-AT1.03 were analyzed by immunoblotting with anti-
NS5A, anti-NS5B or anti-beta-actin antibodies.

doi:10.1371/journal.ppat.1002561.g004

using the SGR-ATeam system are associated with the replication
of HCV RNA.

CFP ratio than the surrounding cytoplasmic region (Figure 5B;
middle and lower panels). Although the number of high Venus/

CFP ratios was not consistent between the cells, this phenotype
was observed in most of the cells that were replicating SGR-
AT1.03 (Figure S3). Such high focal Venus/CFP ratios were not
detected in cells replicating SGR-AT1.03%* or in SGR-
AT1.03YEMK _replicating cells treated with 2DG and OLA. Thus,
foci with a high Venus/CFP ratio apparently represent the
presence of high ATP levels at distinct sites in cells replicating
HCV RNA. In addition, when a replication-defective polyprotein
that extended from NS3 through to the NS5B protein, including
NS5A-AT1.03, was expressed, no high Venus/CFP ratio was seen
in the cells in spite of the fact that NS5A-AT1.03 was detected in
dot-like structures throughout the cytoplasm (Figure S4). These
results strongly suggest that the high Venus/CFP ratios observed
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To investigate whether the high Venus/CFP ratios of the dot-
like structures detected in cells replicating SGR-ATeam are
located at the HCV RC, FRET images of SGR-AT1.03-
replicating cells were analyzed, followed immunofluorescence
analysis of cells fixed and stained with either anti-NS5A or anti-
NS3 antibodies (Figure 5C). Confocal fluorescence microscopy at
high magnification demonstrated that the high Venus/CFP ratios
that were identified in foci of various sizes were co-localized with
NS5A and NS3 that were possibly membrane-bound within the
cytoplasm of the viral replicating cells. Some of the NS3- or NS5A-
labeled proteins that were identified by immunofluorescence were
not associated with high Venus/CFP ratios. These results are
consistent with previous reports, which demonstrated that only
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Figure 5. Visualization of sites of focal accumulation of ATP in cells expressing NS5A-ATeam or SGR-ATeam. (A) Huh-7 cells were
transfected with NS5A-AT1.03 or NS5A-AT1.03"EMK, Four days after transfection, the cells were analyzed using spectral imaging (405-nm excitation) of
LSM510-META (Carl Zeiss). Images were processed to the CFP channel (Fcrp) and the Venus channel (Fyenys) Using a linear unmixing algorithm using a
reference for each spectrum. The upper panels demonstrate the signal intensity from a spectral channel with maximum intensity and represent the
expression pattern of NS5A-ATeam. The lower panels are constructed from FRET ratio images (Fcgp/Fyenus) With pseudocolors. The pseudocolor scale
is shown below. Scale bars, 20 um. (B) Huh-7 cells were transfected with SGR-AT1.03%X, SGR-AT1.03 or SGR-AT1.03"* and were analyzed in the same
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way as described in (A). SGR-AT1.03"EMK _transfected cells were treated with 10 mM 2DG and 10 pg/ml OliA just before imaging and were used as a
negative control. The upper panels demonstrate the intensity from a spectral channel with maximum intensity and represent the expression pattern
of NS5A-ATeam processed from SGR-ATeam. The lower panels indicate square areas within FRET ratio panels magnified five-fold. Scale bars, 20 um.
(C) Cells were fixed after live-cell FRET imaging, and the same cell was analyzed by indirect immunofluorescence staining. Viral proteins were labeled
with antibodies against NS5A (upper panels), NS3 (middle panels) and dsRNA (lower panels), which were detected with an Alexa Fluor 555-labeled
anti-rabbit or anti-mouse antibody. ATeam panels (green) represent the expression of NS5A-ATeam processed from SGR-ATeam, and NS5A, NS3 or
dsRNA panels (red) represent the immunostained signals. Enlarged views of the areas outlined by squares at a five-fold magnification are also shown.

Scale bars, 20 pm.
doi:10.1371/journal.ppat.1002561.g005

some of the expressed HCV NS proteins contribute to viral RNA
synthesis [27]. To further investigate the relationship between the
cellular sites at which there was a high Venus/CFP ratio and HCV
RNA replication, double-stranded RINA (dsRINA) was visualized
by staining with a specific anti-dsSRNA antibody after FRET
imaging (Figure 5C). This staining indicated that dsRINA-
containing dot-like structures co-localized with structures that
displayed high Venus/CFP ratios. Therefore, it is most likely that
the dot-like structures with high Venus/CFP ratios that were
detected using the SGR-ATeam system reflect the sites of HCV
RNA replication or HCV RCs.

Several studies have shown that mitochondria, which play a
central role in ATP metabolism, localize to areas near the
membranous web, the likely site of HCV RNA replication [28].
We thus compared the subcellular localization of the fluorescence
signals detected in cells expressing SGR-ATeam with that of
mitochondria that were visualized by staining with Mitotracker.
Foci with high Venus/CFP ratios did not colocalize with, but were
localized adjacent to mitochondria in cells that were replicating
SGR-AT1.03 (Figure S5). This finding might reflect the fact that
ATP can be directly supplied from mitochondria to the sites of viral
RNA replication in cells.

Quantification of ATP at putative cytoplasmic sites of

HCV RNA replication within cells

Based on the above observations, FRET signals detected within
cells expressing SGR-ATeam or NS5A-ATeam can be classified as
cither signals from distinct dot-like structures, which represent
putative subcellular sites of HCV RNA replication, or as signals that
are diffuse throughout the cytoplasm. The Venus/CFP emission
ratio in individual cells into which NS5A-AT1.03, NS5A-
AT1.03YEMK  SGR-AT1.03, SGR-AT1.03YEME o SGR-
AT1.03%¥ was introduced was determined (Figure 6A). Fluorescent
signals corresponding to cytoplasmic ATP were identified by
subtracting signals at putative sites of viral RNA replication from
signals from the cytoplasmic area as a whole. Cytoplasmic Venus/
CFP ratios within cells replicating SGR-AT1.03 and SGR-
ATI1.03Y™K were lower than those in cells expressing NS5A-
AT1.03 and NS5A-AT1.03Y*™E  respectively. Therefore, cytoplas-
mic ATP levels within HCV RNA-replicating cells were lower than
in non-replicating cells. This result is consistent with the findings
shown in Figure 1A. The average Venus/CFP ratios at potential sites
of viral RNA replication were greater than the corresponding
cytoplasmic levels in cells replicating SGR-AT1.03 or SGR-
AT1.03YEMK A expected, a significant decrease in Venus/CFP
ratios was observed in cells treated with 2DG and OLA.

We next quantified ATP levels within individual cells replicating
HCV RNA based on the Venus/CFP ratios obtained. To generate
standard curves for this calculation, N?ermeabilized cells expressing
NS5A-AT1.03 or NS5A-AT1.03*M¥ were prepared by digitonin
treatment, followed by the addition of defined concentrations of
ATP and subsequent FRET analysis [29,30]. As shown in
Figure 6B, under these experimental conditions, baseline Venus/
CFP ratios of approximately 0.1 were detected in the absence of
exogenous ATP, and Venus/CFP ratios were observed to increase
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linearly with increasing ATP concentration. The standard curves
thus obtained can be used to estimate the ATP concentrations of
unknown samples in which a particular ATeam containing an
ATP probe at the C terminus of HCV NS5A; such as NS5A-
ATeam or SGR-ATeam, have been introduced. Based on the
fluorescent signal obtained in cells replicating SGR-ATeam, as
well as in cells expressing NS5A-ATeam, the ATP concentration
at putative sites of HCV RNA replication was estimated to be
~5 mM in the experiments shown in Figures 5A and 5B (average
value of putative replication sites; 4.8 mM). After subtraction of
the ATP that was localized at the HCV replication sites, the ATP
concentration of HCV-replicating SGR cells (~1 mM) was found
to be approximately half that observed in parental non-replicating
cells (~2 mM)(average values in SGR and parental cells; 0.8 mM
and 2.2 mM, respectively). To our knowledge, this is the first
experiment in which ATP levels were estimated inside living cells
during viral genome replication.

Figures 5 and 6A demonstrate changes in ATP concentrations at
distinct sites in cells undergoing HCV RNA replication. Finally, we
determined the effect of the PSI-6130 inhibitor of HCV replication
on the change in subcellular ATP concentration in cells following
introduction of SGR-AT1.03, SGR-AT1.03%¥ or NS5A-AT1.03
(Figure 6C). In general, nucleoside analogue inhibitors of viral
replication prevent RNA/DNA synthesis by chain termination
immediately after addition to infected cells [23]. Indeed, as shown in
Figure 3, a decrease in ATP consumption was detected even
following a PSI-6130 treatment period as short as 15 min of
permeabilized HCV replicon cells. We therefore analyzed and
estimated ATP levels in cells in the presence of PSI-6130 for 10 min
and 2 h. ATP concentrations at putative sites of viral RINA
replication, as well as cytoplasmic ATP levels, were higher in SGR-
AT1.03-replicating cells in the presence of 0.1-5 pM PSI-6130 for
10 min compared to the same cells without inhibitor treatment or to
NS5A-AT1.03-expressing cells. A dose-dependent PSI-6130-in-
duced increase in ATP levels at the putative replication sites was
observed under the condition used. By treatment with PSI-6130 for
2 h, the ATP levels at putative replication sites were significantly
lower than those without inhibitor treatment in SGR-AT1.03-
replicating cells. The cytoplasmic ATP levels were similar with or
without 2-h treatment (Figure 6C). In HCV SGR-ATeam cells
treated with PSI-6130 for 3 days, HCV RINA replication was
dramatically inhibited by greater than 90% with no observed
cytotoxicity (Figure S6) and, as expected, little or no high Venus/
CFP signal was detected anywhere in the cells (data not shown). We
adapted the ATeam system to monitor ATP in HCV RNA
replicating cells and found increased ATP levels at the putative
subcellular sites of the viral replication. Findings obtained from
experiments using the viral polymerase inhibitor strongly suggest
that changes in ATP concentrations at the distinct sites observed
depend on the viral RNA replication.

Discussion

This paper is the first to demonstrate changes in ATP within
cells during viral genome replication. ATP requirements during
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Figure 6. Estimation of ATP levels at possible sites of HCV RNA replication in living cells. (A) Venus/CFP emission ratios were calculated
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dot-like structures, respectively, in the same cells, as shown in Figures 5A and 5B. Data in bar graphs are indicated as means and SD. Horizontal lines
in the dot graphs denote means from at least three independent cells. Values in the cytoplasm of cells transfected with NS5A-AT1.03""X and SGR-
AT1.03"EMK were statistically significant (p<<0.05) as evaluated using the Student’s t-test. (B) Calibration of NS5A-ATeam in cells under semi-intact
conditions. Cells were transfected with NS5A-AT1.03 and NS5A-AT1.03VEMK respectively. Forty-eight hours later, the cells were permeabilized,
followed by addition of known concentrations of ATP. FRET analyses were performed as described in Figure 5A. Each trace represents mean with SD
of at least six independent cells. Plots were fitted with Hill equations with a fixed Hill coefficient of 2; R = (Rmax— Rmin) X[ATPI/([ATPP+Kd?)+Rmins
where Rpyax and Ry are the maximum and minimum fluorescence ratios, respectively. Kd is the apparent dissociation constant. R values were 0.994
and 0.986 for NS5A-AT1.03 and NS5A-AT1.03EMK, respectively. (C) Cells were transfected with NS5A-AT1.03, SGR-AT1.03% or SGR-AT1.03. The cells
were then treated with PSI-6130 at indicated concentrations (uM) for 10 min or 2 h, and were analyzed as described in (A). Values in the cytoplasm of
cells transfected with SGR-AT1.03 with and without PSI-6130 treatment were statistically significant (p<<0.05 for control versus 0.1 or 1 uM PSI-6130,
p<<0.01 for control versus 0.5 or 5 uM PSI-6130) as evaluated using the Student'’s t-test. Representative cells treated with 5 uM PSI-6130 are shown in
the right panel. The lower panel is a five-fold magnification of the boxed area. Scale bars, 20 um.

doi:10.1371/journal.ppat.1002561.g006
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the virus lifecycle have been studied for years. Several key steps
during the viral life cycle, such as genome synthesis, require high-
energy phosphoryl groups. For instance, it has been shown that
ATP is required for the formation of a preinitiation complex for de
novo RNA synthesis by RdRp of flaviviruses [31]. Transcriptional
initiation and RNA replication by influenza virus RdRp are
functional in an ATP-dependent fashion [32,33]. An ATP
requirement of viral helicase activities has also been reported
[34]. Furthermore, it has been demonstrated that ATP is involved
in the assembly and/or release of viral structural proteins possibly
via interaction with ATP-dependent chaperones [35,36]. Howev-
er, it has been controversial as to whether ATP can be
concentrated in particular subcellular compartment(s) in infected
cells during viral replication. One of the underlying reasons for this
controversy may be that a method by which cellular ATP levels
can be determined, apart from examination of ATP levels in
cellular extracts in the steady-state, has been lacking [37]. Recently
Imamura et al. established FRET-based indicators, known as
ATeams, for ATP quantification, and have shown that the use of
ATeams enables the monitoring of ATP levels in real-time in
different cellular compartments within individual cells [2].

In this study, in order to visualize and monitor ATP levels in
living cells during replication of the viral genome, we first
introduced the original ATeam-expressing plasmids into cells and
found that cytoplasmic ATP levels in cells undergoing HCV
genotype 1b and 2a RNA replication were lower than those in
cured or parental cell lines (Figures 2 and S2). These results agree
with the results of CE-TOF MS analysis (Figure 1) and the ATP
consumption assay (Figure 3). It is therefore likely that ATP is
actively consumed in cells during viral RNA replication, resulting
in reduced levels of ATP in the cytoplasm. Furthermore, NS5A-
ATeam fusion constructs, in which the ATeam gene was
_ introduced into the C-terminal end of the NS5A coding region,
and SGR-ATeam constructs containing a HCV JFH-1-derived
subgenomic replicon within the NS5A-ATeam fused sequence as
described above, were engineered (Figure 4). The results obtained
using several ATeam fusion constructs with different affinities for
ATP indicated that NS5A-ATeam fusion constructs can be used as
FRET-based ATP indicators, and that the ATeam-tagged HCV
replicons are capable of transient replication of viral RNA
(Figure 4). It is interesting that our experiment using a SGR-
ATeam construct provides evidence for the formation of ATP-
enriched foci within cells that support HCV RNA replication
(Figures 5 and 6). FRET-signal detection followed by indirect
immunofluorescence allowed us to visualize co-localization of viral
proteins as well as dsRNA at sites of ATP accumulation in cells
(Figure 5), suggesting that these membrane-associated ATP-
enriched foci likely represent sites of HCV RNA replication in
transient replication assays.

Attempting to precisely quantify ATP within individual cells or
particular intracellular compartments is a very challenging
process. The luciferin-luciferase reaction has been utilized to
monitor cellular ATP levels by measuring the released photon
count during catalysis of bioluminescent oxidation by firefly
luciferase. A previous study based on the luciferin-luciferase assay
estimated basal cytoplasmic ATP levels at ~1.3 mM, which
increased to ~5 mM during apoptotic cell death [38]. However,
the results obtained were likely influenced by cellular levels of
luciferase and other assay components, as well as by the pH of the
cells. In this study, we describe quantification of ATP in human
hepatoma Huh-7 cells undergoing HCV RNA replication using
SGR-ATeam technology. Although ATP requirements during the
lifecycles of various viruses have been studied for years, the use of
ATeam technology enabled us, for the first time, to evaluate ATP
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concentrations at sites of viral replication within living cells. We
here demonstrate that ATP concentrations at these putative
subcellular sites of HCV RNA replication approach ~5 mM
(Figure 6). This ATP level is as high as that observed during
apoptotic processes such as caspase activation and DNA
fragmentation, even though the latter ATP level was determined
using a different assay system [38]. Considering that these
apoptotic events were not observed at basal ATP levels [38],
replication of the viral genome likely also requires high
concentrations of cellular ATP. It should be noted that, in contrast
to the fluorescent reporter system traditionally used to calculate
the ATP/ADP ratio [39], the bacterial epsilon subunit used in
ATeam is highly specific for ATP, but not for other nucleotides
such as ADP, CTP, GTP or UTP [2,3]. In evaluating the effect of
the HCV polymerase inhibitor on changes in the subcellular ATP
concentration in cells replicating SGR-ATeam, an increase in
ATP concentration was observed both at putative replication sites
and in the cytoplasm of SGR-AT1.03-replicating cells in the
presence of PSI-6130 for 10 min (Figure 6C). By contrast, 2-h
treatment with the inhibitor resulted in reduction of ATP levels at
putative replication sites in the replicon cells. Although the result
of the experiment with 10-min treatment may be somewhat
unexpected, it might possibly be explained by the following
hypothesis. PSI-6130 began to inhibit viral RINA synthesis, leading
to a decrease in ATP consumption. Since a mechanism for ATP
transport mediated by host cell and/or viral factor(s) is still active
during this time period, the ATP level at the replication sites
should be increased compared to that during active replication.
Higher levels of metabolic intermediates for glyconeogenesis as
well as for glycolysis in HCV-infected cells compared to non-
infected cells as determined via metabolome analysis (data not
shown) may also be implicated in the increased ATP levels at the
initial stage of inhibition of HCV replication. It is likely that active
consumption of ATP caused by HCV replication and ATP
transportation into the replication sites would lead to reduction of
cytoplasmic ATP level. Such a change in ATP balance may result
in induction of ATP generation and increase in certain metabolic
intermediates related to glucose metabolism. These metabolome
responses are supposed to maintain in short-term (10 min)
treatment with PSI-6130. Thus, inhibition of HCV RNA
replication by PSI-6130 under the conditions used may lead to
increase in the cytoplasmic ATP level. It is likely that these
metabolome responses were not observed after the longer-term
(2 h) treatment presumably because the viral replication was
inhibited by the inhibitor for a sufficient period of time. Further
study is required to address the molecular mechanism underlying
change in ATP balance caused by HCV replication and the viral
inhibitors.

The mechanism by which ATP accumulates at potential sites of
HCV RNA replication remains unclear. We have previously
demonstrated that creatine kinase B (CKB), which is an ATP-
generating enzyme and maintains cellular energy stores, accumu-
lates in the HCV RC-rich fraction of viral replicating cells [22].
Our carlier results suggest that CKB can be directed to the HCV
RC via its interaction with the HCV NS4A protein and thereby
functions as a positive regulator for the viral replicase by providing
ATP [22]. One may hypothesize that recruitment of the ATP
generating machinery into the membrane-associated site, through
its interaction with viral proteins comprising the RC, is at least in
part linked with elevated concentrations of ATP at a particular
site. Through our preliminary study, however, subcellular ATP
distribution was not changed significantly in replicon cells where
HCV RNA replication was reduced ~50% by siRNA-mediated
knockdown of the CKB gene (data not shown). Another possibility
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may be implication of communication between mitochondria and
membrane-enclosed structures of HCV RG in ATP transport
through membrane-to-membrane contact. As indicated in Figure
S5, putative sites of the viral RNA replication with high Venus/
CFP ratios were mainly localized proximal to mitochondria.
Studies are ongoing to understand the mechanism(s) underlying
this phenomenon, as well as to determine if changes in ATP levels
at intracellular sites supporting replication might also be observed
for other RNA or DNA viruses.

In summary, we have used a FRET-based ATP indicator called
ATeam to monitor ATP levels in living cells where viral RNA
replicates by designing HCV replicons harboring wild-type or
mutated ATeam probes inserted into the C-terminal domain of
NS5A. We evaluated changes in ATP levels during HCV RNA
replication and demonstrated elevated ATP levels at putative sites
of replication following detection of FRET signals, which
appeared as dot-like foci within the cytoplasm. The ATeam
systemm may become a powerful tool in microbiology research by
enabling determination of subcellular ATP localization in living
cells infected or associated with microbes, as well as investigation
of the regulation of ATP-dependent processes during the lifecycle
of various pathogens.

Materials and Methods

Chemicals

PSI-6130 (B-p-2'-Deoxy-2'fluoro-2'-C-methylcytidine) and re-
combinant human IFN-alpha2b were obtained from Pharmasset
Inc. (Princeton, NJ) [23,24] and Schering-Plough (Kenilworth,
NJ), respectively. OLA and 2DG were purchased from Sigma-
Aldrich (St. Louis, MO). ATP used in this study was complexed
with equimolar concentrations of magnesium chloride before use
in the experiments.

Plasmids

The construction of the ATeam plasmids pRSET-AT1.03,
pRSET-AT1.03Y*™X and pRSET-AT1,03R122K/RIZK = yhich
express wild-type ATeam (AT1.03), as well as a high-affinity
mutant (AT1.03¥*MX) and a non-binding mutant (AT1.038%), has
been previously described [2]. pHH/SGR-Luc (also termed SGR/
luc) contains cDNA of a subgenomic replicon of HCV JFH-1
isolate (genotype 2a; [14]) with firefly luciferase flanked by the Pol
I promoter and the Pol I terminator, yielding efficient RNA
replication upon DNA transfection [26]. pHH/SGR-Luc/GND
(also termed SGR/luc-GND), in which a point mutation of the
GDD motif of the NS5B was introduced in order to abolish RINA-
dependent RNA polymerase activity, was used as a negative
control. pHH/SGR (also termed SGR) was created by deleting the
luciferase gene in pHH/SGR-Luc. To generate a series of SGR-
ATeam plasmids, wild-type or mutant ATeam genes were inserted
into pHH/SGR-Luc or pHH/SGR at the Xho I site of NS5A
(between amino acids 418 and 419) [25]. The ATeam genes were
also inserted into the same site of pPCAGNS5A, which contains the
NS5A gene of JFH-1 downstream of the CAG promoter and
hemagglutinin (HA) tag [26], yiclding NS5A-ATeam plasmids. To
generate a plasmid expressing NS3-NS5B-AT1.03 under the
control of the CAG promoter, a DNA fragment containing the
coding region of NS3/NS4A/NS4B/NS5A-AT1.03/NS5B of
SGR/Iuc-ATeam was inserted into the pCAGGS vector [40].
Exact cloning strategies are available upon request.

Cell culture and plasmid transfection

Human hepatoma Huh-7 cells were propagated in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal

@ PLoS Pathogens | www.plospathogens.org

10

Visualization of ATP in HCV-Replicating Cells

calf serum (FCS) as well as minimal essential medium non-essential
amino acid (MEM NEAA)(Invitrogen, Carlsbad, CA) in the
presence of 100 units/ml of penicillin and 100 ug/ml of
streptomycin. The Huh-7-derived cell lines JFH-1/4-1 and JFH-
1/4-5, which support replication of SGR RNA of HCV JFH-1
(genotype 2a) and NK5.1/0-9, which carries the SGR RNA of
Conl NK5.1 (genotype 1b), were cultured and maintained under
previously described conditions [15]. DNA transfection was
performed using a TransIT-LT1 transfection reagent (Takara,
Shiga, Japan) in accordance with the manufacturer’s instructions.

CE-TOF MS analysis

Huh-7 cells were mock-infected or infected with HCVcce derived
from a wild-type JFH-1 isolate at a multiplicity of infection of 1.
When most cells had become virus positive, as confirmed by
immunofluorescence, with no observable cell damage at 9 days
post-infection, equal amounts of cells with and without HCV
infection were scraped with MeOH including 10 uM of an
internal standard after washing twice with 5% mannitol solution.
Replicon cells (JFH-1/4-5) that were cultured in the absence of
G418 for 2 days were harvested and prepared as above. The
extracts were mixed with chloroform and water, followed by
centrifugation at 2,300x g for 5 min at 4°C, The upper aqueous
layer was centrifugally filtered through a 5-kDa cutoff filter to
remove proteins. The filtrate was lyophilized and dissolved in
water, then subjected to CE-TOF MS analysis. CE-TOF MS
experiments were performed using an Agient CE-TOF MS
system (Agilent Technologies, Waldbronn, Germany) as described
previously [41].

ATP consumption assay

The ATP consumption assay using permeabilized replicon cells
was carried out as previously described [13,22] with slight
modifications, so that it was unnecessary to add either exogenous
phosphocreatine or creatine phosphokinase to minimize ATP
reproduction in cells. Cells (2x10%) cultured in the presence or
absence of PSI-6130 for 72 h were treated with 5 pg Actinomycin
D/ml, followed by trypsinization and 3 washes with cold buffer B
(20 mM HEPES-KOH [pH 7.7], 110 mM potassium acetate,
2 mM magnesium acetate, | mM EGTA, and 2 mM dithiothre-
itol). The cells were permeabilized by incubation with buffer B
containing 50 pg/ml digitonin for 5 min on ice and the reaction
was stopped by washing 3 times with cold buffer B. The
permeabilized cells (1 x10%) were resuspended with 100 pl buffer
B containing 5 uM ATP, GTP, CTP, and UTP, 20 uM MgCl,,
and 5 pg/ml Actinomycin D. After incubation at 27°C for
15 min, samples were centrifuged, and 20 pl of the supernatant
was then mixed with 5 ul of 5x passive lysis buffer (Promega,
Madison, WI). The ATP level was determined using a CellTiter-
Glo Luminescent cell viability assay system (Promega). All assays
were performed at least in triplicate.

Live cell microscopy

Plasmids carrying the ATP indicators were transfected at 48 h
(ATeam and NS5A-ATeam) or 4 days (SGR-ATeam) before
imaging of the cells. One day before imaging, the cells were seeded
onto 30-mm glass-bottomed dishes (AGC Techno Glass, Chiba,
Japan) at about 60% confluency. For imaging, the cells were
maintained in phenol red-free DMEM containing 20 mM
HEPES-KOH [pH 7.7], 10% FCS and MEM NEAA.

Two kinds of confocal microscopies were used to perform the
FRET analysis in this study as follows. Since the ways of acquisition
of each spectrum were quite different between the two microscopies,
differences in the values of the Venus/CFP ratios in different
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experiments were observed. In Figures 2, 4B and S2, cells were
imaged using a confocal inverted microscope FV1000 (Olympus,
Tokyo, Japan) equipped with an oil-immersion 60x Olympus
UPlanSApo objective (NA =1.35). Cells were maintained on the
microscope at 37°C with a stage-top incubation system (Tokai Hit,
Shizuoka, Japan). Cells were excited by a 405-nm laser diode, and
CFP and Venus were detected at 480-500 nm and 515-615 nm
wavelength ranges, respectively. In the analysis shown in Figures 5,
6, S3, S4 and S5, FRET images were obtained using a Zeiss
LSM510 Meta confocal microscope with an oil-immersion 63 x
Zeiss Plan-APOCHROMAT objective (NA = 1.4)(Carl Zeiss, Jena,
Germany). Cells were maintained on the microscope at 37°C with a
continuous supply of a 95% air and 5% COg mixture using a XL-3
incubator (Carl Zeiss). Cells were excited by a 405-nm blue diode
laser, and emission spectra of 433-604 nm wavelength range were
obtained using an equipped scanning module (META detector)
[42,43]. Images were computationally processed by a linear
unmixing algorithm using the reference spectrum of CFP and
Venus, which were obtained from individual fluorescence-express-
ing cells. All image analyses were performed using MetaMorph
(Molecular Devices, Sunnyvale, CA). Fluorescence intensities of
cytoplasmic areas in NS5A-ATeam transfected cells were calculated
by subtraction of the signal intensities of the nucleus from the signal
intensities of the whole cell, which was standardized by the area of
the corresponding cytoplasmic region. Fluorescence intensities of
cytoplasmic areas and at dot-like structures corresponding to the
putative viral replicating sites in SGR-ATeam-transfected cells were
measured and calculated as follows. All pixels above CFP intensity
levels of 100-200 were selected. The positions of dot-like structures
were then determined by examining areas greater than 0.5x107'2
square meters and the intensity of each dot was measured. The
fluorescence intensity of the cytoplasmic area, excluding that of the
putative viral replicating sites in each cell, was calculated by
subtraction of the signal intensities of the nucleus and the dot-like
structures, as determined above, from the signal intensity of the
whole cell, which was standardized by the area of the corresponding
cytoplasmic region. Each Venus/CFP emission ratio was calculated
by dividing pixel-by-pixel a Venus image with a CFP image.

To investigate the relationship between Venus/CFP ratios and
ATP concentrations in cells, calibration procedures were performed

according to previous reports [29,30]. Huh-7 cells were transfected

with NS5A-AT1.03 or NS5A-AT1.03Y*MK, Forty-eight hours later,
the cells were permeabilized by incubation with buffer B containing
50 pg/ml digitonin for 5 min at room temperature. The reaction
was stopped by washing 3 times with buffer B, followed by the
addition of known concentrations of ATP in warmed medium for
imaging. FRET analysis, with calibration of the signal intensity in
the cytoplasm of each cell, was performed as described above. Plots
were fitted with Hill equations with a fixed Hill coefficient of 2;
R = Ronax—Runin) X [ATP]?/([ATPP+KZ)+R min, where Ripay and
Riin are the maximum and minimum fluorescence ratios,
respectively and K4 is the apparent dissociation constant.

To analyze the cffect of an inhibitor against HCV NS5B
polymerase, the medium for the cells replicating SGR-ATeam was
changed to medium containing various concentrations of PSI-6130.
After 10-min incubation at 37°C under a continuous supply of 95%
air and 5% COy, fluorescence intensities of cytoplasmic areas and at
dot-like structures were determined as described above. Medium
containing 0.01% DMSO was used as a negative control.

To visualize mitochondria, MitoTracker Red CMXRos (Mo-
lecular Probes, Eugene, OR) was added to the culture medium to
a final concentration of 100 nM, incubated for 15 min at 37°C
and the cells were then washed twice with phosphate buffered
saline (PBS) before FRET analysis of living cells. Images were
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computationally processed as described above. The reference
spectrum of MitoTracker Red CMXRos was obtained from
stained parental, non-transfected, Huh-7 cells.

Indirect immunofluorescence

Gells expressing SGR-ATeam were cultured in 30-mm glass-
bottomed dishes with an address grid on the coverslip (AGG
Techno Glass). After FRET analysis of living cells as described
above, the cells were fixed with 4% paraformaldehyde at room
temperature for 30 min. After washing with PBS, the cells were
permeabilized with PBS containing 0.3% Triton X-100 and
individually stained with a rabbit polyclonal antibody against NS3
[44], an anti-NSS5A antibody [45], or a mouse monoclonal
antibody against dsRNA antibody (Biocenter Ltd., Szirak,
Hungary) [46]. The fluorescent secondary antibody used was
Alexa Fluor 555-conjugated anti-rabbit- or anti-mouse IgG
(Invitrogen). The cells were imaged using a Zeiss LSM510 Meta
confocal microscope with an oil-immersion 63x Zeiss Plan-
APOCHROMAT objective (NA=1.4). For dual-color imaging,
the ATeam signal was excited with the 488-nm laser line of an
argon laser and Alexa Fluor 555 was excited with a 543-nm HeNe
laser under MultiTrack mode. Emission filters with a 505- to 530-
nm band-pass and 560-nm-long pass filter were used.

Luciferase assay

Huh-7 cells transfected with SGR/luc or SGR/luc-ATeam
were harvested at different time points after transfection
(Figure 4D) or at 3 days after treatment with PSI-6130 (Figure
S6) and lysed in passive lysis buffer (Promega). To monitor HCV
RNA replication, the luciferase activity in cells was determined
using a Luciferase Assay system (Promega). All assays were
performed at least in triplicate.

MTT assay

Cell viability was assessed using the Cell Proliferation Kit II
(Roche, Indianapolis, IN) according to the manufacturer’s instruc-
tions. The kit measures mitochondrial dehydrogenase activity,
which is used as a marker of viable cells, using a colorimetric
sodium3’-[1(-phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-
6-nitro)benzene sulfonic acid hydrate (MTT) assay.

Quantification of HCV RNA

HCV RNA copies in the replicon cells with or without PSI-6130
treatment were determined using the real-time detection reverse
transcription polymerase chain reaction (RTD-PCR) described
previously [47] with the ABI Prisom 7700 sequence detector
system (Applied Biosystems Japan, Tokyo, Japan).

Western blotting

The proteins were transferred onto a polyvinylidene difluoride
membrane (Immobilon; Millipore, Bedford, MA) after separation
by SDS-PAGE. After blocking, the membranes were probed with
a rabbit polyclonal anti-NS5A antibody [44], a rabbit polyclonal
anti-NS5B antibody (Chemicon, Temecula, CA), or a mouse
polyclonal anti-beta-actin antibody (Sigma-Aldrich), followed by
incubation with a peroxidase-conjugated secondary antibody and
visualization with an ECL Plus Western blotting detection system
(GE Healthcare, Buckinghamshire, UK).

Supporting Information

Figure S1 ATP Levels in HCV replicon cells and
parental Huh-7 cells determined by CE-TOF MS. ATP
metabolites in Huh-7 cells and JFH-1/4-5 cells were measured by
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CE-TOFMS. The values of each measurement are shown at left.
The right graph shows means with SD of the data at left. Open
bar; Huh-7 cells, gray bar; JFH-1/4-5 cells.

(TIF)

Figure 82 Cytoplasmic ATP levels in HCV replicon cells
and IFN-treated cells. (Left) The HCV replicon cells JFH-1/4-
1, JFH-1/4-5 (genotype 2a) and NK5.1/0-9 (genotype 1b), and
parental Huh-7 cells were cultured for 72 h in the absence or
presence of 1,000 IU/ml IFN-alpha. Forty-cight hours after
transfection with AT1.03, the Venus/CFP emission ratio of each
cell was calculated from fluorescent images acquired with the
confocal microscope FV1000. All data are presented as means and
SD for at least 10 independent cells. (Right) HGV RNA titers in
cells corresponding to the left panel were determined using real-
time quantitative RT-PCR. Data are presented as means and SD
for three independent samples. NTD indicates not detected.
(TIF)

Figure 83 Increase in ATP-enriched dot-like structures
in cells replicating SGR-ATeam. Huh-7 cells were transfected
with SGR-AT1.03, and analyzed in the same way as described in
the legends for Figures 5A and 5B. The lower four panels are five-
fold magnifications of the boxed areas in independent cells. Scale
bars, 40 pm.

(TIF)

Figure S4 Visualization of the ATP level in cells
expressing replication-defective HCV polyprotein. (A) A
schematic representation of the NS3-NS5B-AT1.03 plasmid is
shown. The HCV polyprotein is indicated by the open boxes. The
ATeam gene was inserted into the same site as that for NS5A-
ATeam and SGR-ATeam insertion as indicated in the legend for
Figure 4A. CAG, CAG promoter. (B) Cells transfected with
constructs encoding NS5A; NS5A-AT1.03, NS3-NS5B-AT1.03,
SGR or SGR-AT1.03 were analyzed by immunoblotting with
anti-NS5A, anti-NS5B or anti-beta-actin antibodies. (C) Huh-7
cells were transfected with NS3-NS5B-AT1.03, and analyzed in
the same way as described in the legends for Figures 5A and 5B.
The upper panel (Fluorescence) demonstrates signal intensity from
a spectral channel with maximum intensity and represents the
expression pattern of NS5A-ATeam processed from NS3-NS5B-
AT1.03. The lower panels (Venus/CFP ratio) indicate the FRET
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ratio and a five-fold magnification of the boxed area. Scale bar,
20 um.

(TIE)

Figure $5 Relationship between ATP-enriched dot-like
structures and mitochondria. Huh-7 cells replicating SGR-
AT1.03 (right panels) and parental cells (left panel) were analyzed.
Active mitochondria were labeled with MitoTracker Red
CMXRos in living cells, and were analyzed in the same way as
described in the legends for Figures 5A and 5B, using a reference
for the MitoTracker spectrum. The lowest panels of SGR-ATeam
cells indicate five-fold magnifications of the boxed areas. Scale
bars, 20 pm.

(T1F)

Figure 86 Inhibitory effect of PSI-6130 on HCV RNA
replication. (A) Replication levels of SGR/luc-AT1.03 RNA in
transfected cells were determined by luciferase assay 3 days after
treatment with PSI-6130 at the indicated concentrations (uM).
The values shown were normalized for transfection efficiency with
luciferase activity determined 24 h post-transfection. All data are
presented as means and SD for three independent samples. (B)
Cell viability was assessed using the MTT assay.

(TTE)
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VIRAL HEPATITIS

Association of Gene Expression Involving Innate
Immunity and Genetic Variation in Interleukin 28B With
Antiviral Response

Yasuhiro Asahina,' Kaoru Tsuchiya," Masaru Muraoka,"* Keisuke Tanaka,"* Yuichiro Suzuki,'?
Nobuharu Tamaki,' Yoshihide Hoshioka,' Yutaka Yasui,' Tomoji Katoh,' Takanori Hosokawa,"
Ken Ueda," Hiroyuki Nakanishi,' Jun Itakura,' Yuka Takahashi,' Masayuki Kurosaki,'
Nobuyuki Enomoto,” Sayuri Nitta,? Naoya Sakamoto,> and Namiki Izumi'

Innate immunity plays an important role in host antiviral response to hepatitis C viral
(HCV) infection. Recently, single nucleotide polymorphisms (SNPs) of IL28B and host
response to peginterferon « (PEG-IFNa) and ribavirin (RBV) were shown to be strongly
associated. We aimed to determine the gene expression involving innate immunity in
IL28B genotypes and elucidate its relation to response to antiviral treatment. We geno-
typed IL28B SNPs (rs8099917 and rs12979860) in 88 chronic hepatitis C patients treated
with PEG-IFNa-2b/RBV and quantified expressions of viral sensors (RIG-I, MDAS, and
LGP2), adaptor molecule (IPS-1), related ubiquitin E3-ligase (RNF125), modulators
(ISG15 and USP18), and IL28 (IFNJ). Both IL28B SNPs were 100% identical; 54 patients
possessed 1s8099917 TT/rs12979860 CC (IL28B major patients) and 34 possessed
rs8099917 TG/rs12979860 CT (IL28B minor patients). Hepatic expressions of viral sen-
sors and modulators in JL28B minor patients were significantly up-regulated compared
with that in IL28B major patients (=23.3-fold, P < 0.001). However, expression of IPS-1
was significantly lower in JL28B minor patients (1.2-fold, P = 0.028). Expressions of viral
sensors and modulators were significantly higher in nonvirological responders (NVR) than
that in others despite stratification by IL28B genotype (~2.6-fold, P < 0.001). Multivari-
ate and ROC analyses indicated that higher RIG-I and ISG15 expressions and RIG-I/IPS-
1 expression ratio were independent factors for NVR. IPS-1 down-regulation in IL28B
minor patients was confirmed by western blotting, and the extent of IPS-1 protein cleavage
was associated with the variable treatment response. Conclusion: Gene expression involving
innate immunity is strongly associated with JL28B genotype and response to PEG-IFNo/
RBV. Both IL28B minor allele and higher RIG-I and ISGI5 expressions and RIG-I/IPS-1
ratio are independent factors for NVR. (HeratoLoGy 2012;55:20-29)

nfection with hepatitis C virus (HCV) is a com-
Imon cause of chronic hepatitis, which progresses
to liver cirrhosis and hepatocellular carcinoma in
many patients.l Pegylated interferon o (PEG-IFN«)
and ribavirin (RBV) combination therapy has been

used to treat chronic hepatitis C (CH-C) to alter the

natural course of this disease. However, 20% patients
are nonvirological responders (NVR) whose HCV-
RNA does not become negative during the 48 weeks
of PEG-IFNo/RBV combination therapy.” In a recent
genome-wide association study, single nucleotide poly-
morphisms (SNPs) located near interleukin 28B

Abbreviaions: CH-C, chronic heparivis C; y-GTR y-glutamyl transpeptidase; GAPDH, glyceraldehyde-3-phosphate debydrogenase; HCY, hepatitis C virus;
HMBS, hydroxymethylbilane synthase; IL28, interleukin 28; IPS-1, IFNP promoter stimulator 1; ISGIS, interferon-stimulated gene 15; MDAS, melanoma
differentiation associated gene 5; NVR; nonvirological responders; PEG-IFNu, pegylated interferono; SNE single nucleotide polymorphismy; RIG-L, retinoic acid-
inducible gene I, RBV, ribavirin; RNFI25, ring-finger protein 125; ROC, receiver operator characteristic; SVR, sustained viral responder; TVR, transient
virological responder; USPI8, ubiquitin-specific protease 18; VR, virological responder. '
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(IL28B) that encodes for type III IFNA3 were shown
to be strongly associated with a virological response to
PEG-IFNa/RBV combination therapy.”” In particular,
the 8099917 TG and GG genotypes were shown to
be strongly associated with a null virological response
to PEG-IFNa/RBV.> However, mechanisms involving
resistance to PEG-IFNo/RBV have not been com-
pletely elucidated.

The innate immune system has an essential role in
host antiviral defense against HCV infection.® The ret-
inoic acid-inducible gene I (RIG-I), a cytoplasmic
RNA helicase, and related melanoma differentiation
associated gene 5 (MDAS) play essential roles in ini-
tiating the host antiviral response by detecting intracel-
lular viral RNA.”® The IFNJ promoter stimulator 1
(IPS-1)—also called the caspase-recruiting domain
adaptor inducing IFNf, mitochondrial antiviral signal-
ing protein, or virus-induced signaling adaptor—is an
adaptor molecule. IPS-1 connects RIG-I sensing to
downstream signaling, resulting in /FNJ gene activa-
tion.”'? RIG-I sensing of incoming viral RNA has
been shown to be modified by LGP2,513 2 helicase
related to RIG-I and MDAS5 lacking caspase-recruiting
domain. The ubiquitin ligase ring-finger protein 125
(RNF125) has been shown to conjugate ubiquitin to
RIG-I, MDAS, and IPS-1 and this suppresses the
functions of these proteins.14 Further, these molecules
are ISGylated by the IFN-stimulated gene 15 (ISG15),
a ubiquitin-like protein,15 and ISG15 is specifically
removed from ISGylated protein by ubiquitin-specific
protease 18 (USP18) to regulate the RIG-I/IPS-1 sys-
tem.'®!” Moreover, the NS3/4A protease of HCV spe-
cifically cleaves IPS-1 as part of its immune-evasion
strategy.g’18 Therefore, the RIG-I/IPS-1 system and its
regulatory systems have essential roles in the innate
antiviral response.

Recently, we demonstrated that baseline intrahepatic
gene expression levels of the RIG-I/IPS-1 system were
prognostic biomarkers of the final virological outcome
in CH-C patients who were treated with PEG-IFNo/
RBV combination therapy.'® We found that up-regula-
tion of RIG-I and ISG15 and a higher expression ratio
of RIG-I/IPS-1 could predict NVR for subsequent
treatment with PEG-IFNo/RBV  combination ther-

1 - . .
apy.'” However, association of gene expression involv-
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ing innate immunity and genetic variation of /L28B
has not yet been elucidated. Hence, the aim of this
study was to determine gene expression involving the
innate immune system in different genetic variations
of IL28B and elucidate the relation of gene expression
to final virological outcome of PEG-IFNa/RBV com-
bination therapy in CH-C patients.

Patients and Methods

Patients. Among  histologically proven CH-C
patients admitted at the Musashino Red Cross Hospi-
tal, 88 patients with HCV genotype 1b and a high vi-
ral load (>5 log IU/mL by TagMan HCV assay;
Roche Molecular Diagnostics, Tokyo, Japan) were
included in the present study (Table 1). Patients with
decompensated liver cirrhosis, autoimmune hepatitis,
or alcoholic liver injury were excluded. No patient had
tested positive for hepatitis B surface antigen or anti-
human immunodeficiency virus antibody or had
received immunomodulatory therapy before enroll-
ment. Forty-two patients had been enrolled in a previ-
ous study that determined hepatic gene expression
involving innate immunity.'? Written informed con-
sent was obtained from all patients and the study was
approved by the Ethical Committee of Musashino Red
Cross Hospital in accordance with the Declaration of
Helsinki.

Treatment Protocol. The patients were adminis-
tered subcutaneous injections of PEG-IFNa-2b (Pegln-
tron, MSD, Whitehouse Station, NJ) at a dose of 1.5
Ug kg_1 week™! for 48 weeks. RBV (Rebetol, MSD)
was administered concomitantly over this treatment
period, administered orally twice daily at 600 mg/day
for patients who weighed less than 60 kg and 800 mg/
day for patients who weighed between 60-80 kg. The
dose of PEG-IFNu-2b was reduced to 0.75 pg kg™
week™" when either neutrophil count was less than
750/mm> or platelet count was less than 80 x 10°/
mm?. The dose of RBV was reduced to 600 mg/day
when the hemoglobin concentration decreased to 10
g/dL. More than 80% adherence was achieved in all
patients.

Measurement of Hepatic Gene Expression. Liver
biopsy was performed immediately before initiating
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Table 1. Patient Characteristics and IL28B Genotype

IL28B Major* IL28B Minort P-valuet

Patients, n 54 34
Age (SD), year 58.8 (10.0)  59.1 (10.3) 0.918§
Sex, n (%) 0.051!!

Male 13 (24.1) 15 (44.1)

Female 41 (75.9) 19 (55.9)
BMI (SD), kg/m? 22.7(35)  23.5(3.6) 0.193§
ALT (SD), IU/L 61.3 (50.7)  62.4 (44.7) 0.962§
v-GTP (SD), IU/L 36.7 (25.9)  57.3 (52.4) 0.010§
LDL-cholesterol (SD), mg/dL 103.3 (29.8)  91.8 (26.9) 0.067§
Hemoglobin (SD), g/dL 14.1 (1.4) 14.4 (1.3) 0.186§
Platelet count (SD), x10°3/pL 161 (6.4) 163 (4.4) 0.489§
Fibrosis stage, n (%) 05321

F1, 2 38 (70.4) 26 (76.5)

F3, 4 16 (29.6) 8 (23.5)
Viral load (SD), x10%% |u/mL 1.7 (1.4) 1.9 (2.0 0.788§
9%HCV core 70 & 91 a.a. 8.9 435 0.001!1

double mutationy
%ISDR wild** 435 51.7 0.486!!
Viral response, n (%) <0.0011!

SVR 17 (31.5) 13 (38.2)

VR ‘ 26 (48.1) 3 (8.8)

NVR 11 (20.4) 18 (52.9)

Unless otherwise indicated, data are given as mean (SD).

*138099917 TT and rs12979860 CC.

1rs8099917 TG and rs12979860 CT.

BMI, body mass index; ALT, alanine aminotransferase; y-GTR y-glutamyl
transpeptidase; LDL-C, low-density lipoprotein cholesterol; HCV, hepatitis C vi-
rus; ISDR, interferon sensitivity determining region; SVR, sustained virological
response; TVR, transient virological response; NVR, nonvirological response.

tComparison between /L28B major and minor genotypes.

§Mann-Whitney U test.

lChi-square test.

9HCV core mutation was determined in 68 patients.

**|SDR was determined in 75 patients.

the therapy. After extraction of total RNA from liver
biopsy specimens, the messenger RNA (mRNA)
expression of the positive and negative cytoplasmic vi-
ral sensor (RIG-I, MDAS5, and LGP2), the adaptor
molecule (/PS-I), the related ubiquitin E3-ligase
(RNF125), the modulators of these molecules (/SGI5
and USPI8), and IFNA (IL28A/B) was quantified by
real-time quantitative polymerase chain reaction (PCR)
using target gene-specific primers. In brief, total RNA
was extracted by the acid-guanidinium-phenol-chloro-
form method using Isogen reagent (Nippon Gene,
Toyama, Japan) from the liver biopsy specimen, which
was 0.2-0.4 cm in length and 13G in diameter. Com-
plementary DNA (cDNA) was transcribed from 2 pug
of total RNA template in a 140-uL reaction mixture
using the SYBR RT-PCR Kit (Takara Bio, Otsu,
Japan) with random hexamer. Real-time quantitative
PCR was performed using Smart Cycler version II
(Takara Bio) with the SYBR RT-PCR Kit (Takara Bio)
according to the manufacturer’s instructions. Assays
were performed in duplicate and the expression levels
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of target genes were normalized to the expressions of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
gene and hydroxymethylbilane synthase (HMBS), an
enzyme that is stable in the liver, as quantified using
real-time quantitative PCR as internal controls. For
accurate normalization, a set of two housekeeping
genes was used in the present study. Sequences of the
primer sets were as follows: RIG-I, 5'-AAAGCATGCA
TGGTGTTCCAGA-3', 5-TCATTCGTGCATGCTC
ACTGATAA-3'; MDA5, 5'-ACATAACAGCAACATG
GGCAGTG-3, 5-TTTGGTAAGGCCTGAGCTGG
AG-3; LGP2, 5'-ACAGCCTTGCAAACAGTACAAC
CTC-3, 5'-GTCCCAAATTTCCGGCTCAAC-3; IPS-1,
5'-GGTGCCATCCAAAGTGCCTACTA-3, 5'-CAGC
ACGCCAGGCTTACTCA-3"; RNF125, 5'-AGGGCA
CATATTCGGACTTGTCA-3, 5-CGGGTATTAAAC
GGCAAAGTGG-3'; ISGI15, 5'-AGCGAACTCATCT
TTGCCAGTACA-3/, 5'-CAGCTCTGACACCGACA
TGGA-3; USP18, 5'-TGGTTCTGCTTCAATGACT
CCAATA-3, 5-TTTGGGCATTTCCATTAGCACT
C-3'; IFNi: 5'-CAGCTGCAGGTGAGGGA-3, 5-G
GTGGCCTCCAGAACCTT-3'; GAPDH, 5'-GCACC
GTCAAGGCTGAGAAC-3', 5-ATGGTGGTGAAGA
CGCCAGT-3; HMBS, 5'-AAGCGGAGCCATGTCT
GGTAAC-3, 5'-GTACCCACGCGAATCACTCTCA-3'.

Genotyping  for 1L28B  (vs8099917  and
rs12979860) Polymorphism. Genetic polymorphism
in a tagged SNP located near the /L28B gene
(rs8099917 and rs12979860) was determined by direct
sequencing of PCR-amplified DNA. In brief, after
extraction from whole blood samples, genomic DNA
was amplified by PCR. Sequences of the primer sets
were: 1s8099917, 5-ATCCTCCTCTCATCCCTCA
TC-3, 5'-GGTATCAACCCCACCTCAAAT-3'; 15129
79860, 5'-GGACGAGAGGGCGTTAGAG-3, 5'-AG
GGACCGCTACGTAAGTCAC-3'.

Both strands of the PCR products were sequenced
by the dye terminator method using BigDye Termina-
tor v3.1 Cycle Sequencing Kit (Applied Biosystems,
Chiba, Japan); nucleotide sequences were determined
by a capillary DNA sequencer ABI3730xl (Applied
Biosystems). Homozygosity (158099917 GG and
1512979860 TT) or heterozygosity (158099917 TG
and 1512979860 CT) of the minor sequence was
defined as having the /L28B minor allele, whereas
homozygosity for the major sequence (rs8099917 TT
and rs12979860 CC) was defined as having the /L28B
major allele.

Western Blotting. Western blotting was performed
using samples from 14 patients (six from /L28B major
patients and eight from /L28B minor patients) as
described.’ In brief, liver biopsy specimens of
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approximately 10 mg were homogenized in 100 uL of
Complete Lysis-M (Roche Applied Science, Penzberg,
Germany). Next, 30 pg of protein was separated by
NuPAGE 4%-12% Bis-Tris gels (Invitrogen, Carlsbad,
CA) and blotted on polyvinylidene difluoride mem-
branes. The membranes were immunoblotted with
anti-RIG-I (Cell Signaling Technology, Danvers, MA)
or anti-IPS-1 (Enzo Life Science, Farmingdale, NY),
followed by anti-f-actin (Sigma Aldrich, St. Louis,
MO). After immunoblotting with horseradish peroxi-
dase-conjugated secondary antibody, signals were
detected by chemiluminescence (BM Chemilumines-
cence Blotting Substrate, Roche Applied Science,
Mannheim, Germany). Optical densitometry was per-
formed using Image] software (NIH, Bethesda, MD).
Naive Huh7 cells were used for a positive control for
full-length IPS-1, and cells transfected with HCV-1b
subgenomic replicon® were used for a positive control
for cleaved IPS-1.

Definitions of Response to Therapy. A patient neg-
ative for serum HCV-RNA during the first 6 months
after completing PEG-IFNa-2b/RBV  combination
therapy was defined as a sustained viral responder
(SVR), and a patient for whom HCV-RNA became
negative at the end of therapy and reappeared after
completion of therapy was defined as a transient viro-
logical responder (TVR). A patient for whom HCV-
RNA became negative at the end of therapy (SVR +
TVR) was defined as a virological responder (VR). A
patient whose HCV-RNA did not become negative
during the course of therapy was defined as an NVR.
HCV-RNA was determined by TagMan HCV assay
(Roche Molecular Diagnostics).

Statistical Analysis. Categorical data were com-
pared using the chi-square test and Fisher’s exact test.
Distributions of continuous variables were analyzed by
the Mann-Whitney U test for two groups. All tests of
significance were two-tailed and P < 0.05 was consid-
ered statistically significant.

Results

Patient Characteristics and 1L28B Genotype. Table 1
shows patient characteristics according to /L28B geno-
type. SNPs at rs8099917 and rs12979860 were 100%
identical; 54 patients were identified as having the
major alleles (rs8099917 TT/1s12979860 CC; IL28B
major patients) and the remaining 34 had the minor
alleles (rs8099917 TG/1s12979860 CT; IL28B minor
patients). Patients having a minor homozygote
(rs8099917 GG or 1512979860 TT) were not found

in this study, which is consistent with a recent report
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of the rarity of a minor homozygote in Japanese
patients.” /L28B minor patients were significantly asso-
ciated with a higher y-glutamyl transpeptidase (y-
GTP) level and higher frequency of mutations at
amino acid positions 70 and 91 of the HCV core
region (glutamine or histidine mutation at amino acid
position 70; methionine mutation at amino acid posi-
tion 91). NVR rate was significantly higher in /L28B
minor patients than in /Z28B major patients.

Gene Expression Involving Innate Immunity and
IFNA in the Liver. Hepatic expression levels of cyto-
plasmic viral sensors (RIG-I, MDAS, and LGP2) were
significantly higher in /L28B minor patients than in
IL28B major patients (Fig. 1). Similarly, expressions of
ISG15 and USPI8 were significantly higher in /L28B
minor patients than in /Z28B major patients (Fig. 1).
In contrast, the hepatic expression of the adaptor mol-
ecule (/PS-1) was significantly lower in /L28B minor
patients than that in /L28B major patients (Fig. 1).
Hepatic expression of RNFI25 was similar among
IL28B genotypes (Fig. 1). IFNA (IL28A/B) expression
was higher in /L28B minor patients, but not statisti-
cally significant (Fig. 1). Because expression of RIG-I
and /PS-1 were negatively correlated, the expression ra-
tio of RIG-I/IPS-1 in IL28B minor patients was signif-
icantly higher than in /ZL28B major patients (Fig. 1).

Next, to assess the relationship between baseline
hepatic gene expression and treatment efficacy, we
compared levels of gene expression involving innate
immunity and /FNA based on the final virological
response (Fig. 2). Overall, hepatic expressions of
cytoplasmic viral sensors and the ISG15/USP18
system in NVR patients were significantly higher than
those in VR patients. In a similar but opposite man-
ner, hepatic expressions of /PS-I and RNFI25 in
NVR patients were significantly lower than that in
VR patients, and the expression of /FNO was higher
in NVR patients, but the differences were not statisti-
cally significant. Expression ratio of RIG-I/IPS-1 was
significantly higher in NVR patients than that in VR
patients.

Because hepatic expressions of the RIG-I/IPS-1 and
ISG15/USP18 systems were significantly related both
to /L28B minor and NVR patients, R/G-/ and ISG15
expression levels and the RIG-I/IPS-1 ratio between
VR and NVR patients were further stratified by /288
genotype (Fig. 3). Even in the subgroup of /L28B
minor patients, the expressions of R/G-/ and ISGI5
were significantly higher in NVR patients than those
in VR patients. Similar tendencies were observed in a
subgroup of /L28B major patients, in whom the R/G-
I/IPS-1 expression ratio was significantly higher in
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Fig. 1. Comparison of hepatic
gene expression levels between
IL28B major (rs8099917 Ti/
r$12979860 CC, n = 54) and
IL28B minor patients (rs8099917
TG/rs12979860 CT, n = 34).
Expression levels of cytoplasmic vi-
ral sensors (RIG, MDAS5, and
LGP2), modulators (ISGI15 and
USP18), an adaptor (IPS-1), nega-
tive regulators (RNF125) and IFNA,
and expression ratio of the RIG-I/
IPS-1 are shown. Error bars indi-
cate standard error. The P-values
were determined by the Mann-Whit-
ney U test.

(ROC)

Characteristic

NVR patients than in VR patients. However, in
patients of the same virological response subgroup,
RIG-I and ISG15 expression levels and R/G-I/IPS-1 ra-
tio were higher in /L28B minor patients, and the dif-
ference in ISGI5 expression in subgroup of VR and
NVR patients and that in R/G-I/IPS-1 ratio in sub-
group of VR patients was statistically significant
between /L28B genotypes (Fig. 3).
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Operator
Analysis. To determine the usefulness of these gene
quantifications and /L28B genotyping as predictors of
NVR, an ROC analysis was conducted (Fig. 4A). The
area under the ROC curve for RIG-I and ISGI5
expressions and RIG-I/IPS-1 expression ratio was
0.712, 0.782, and 0.732, respectively, suggesting that
quantification of these gene transcripts is useful for
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Fig. 2. Comparison of hepatic
RIG-1/IPS-1 gene expression levels between
| virological responders (VR, n =
p < 0.001 60) and nonvirological responders
(NVR, n = 28). Expression levels
2104 of cytoplasmic viral sensors (RIG-,
& MDA5, and LGP2), modulators
5 5. (ISG15 and USP18), an adaptor
@ (IPS-1), negative  regulators
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& 81 1 expression ratio are shown. Error
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4 values were determined by the
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Fig. 3. Comparison of hepatic gene expression levels between virological responders (VR) and nonvirological responders (NVR) in subgroups
of the IL28B genotype (IL28B Major, 1s8099917 TT/rs12979860 CC; IL28B Minor, rs8099917 TG/rs12979860 CT). Expressions of RIG-I and
ISG15 as well as the RIG-I/IPS-1 expression ratio are shown. Error bars indicate standard error. The numbers of patients in each subgroup are

shown in the bottom of the figure.

prediction of NVR (Table 2). The area under the
ROC curve for J/L28B genotype was 0.662, which was
lower compared with that for RIG-I and ISG15 expres-
sions and RIG-I/IPS-1 ratio.

When we stratified the patients by the cutoff value
for RIG-I and ISG15 expressions and RIGI/IPS-1 ratio,

no statistically significant difference was found in

NVR rates among /L28B genotypes within the same
subgroup (Fig. 4B).

Factors Associated with NVR. In univariate analysis,
age, platelet counts, double mutation at amino acid posi-
tions 70 and 91 of the HCV core region, /L28B minor al-
lele, and hepatic expressions of RIG-I, MDA5, LGP2,
ISG15, and USPI8, and RIG-I/IPS-1 ratio were significantly
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Fig. 4. (A) Receiver operator characteristics (ROC) curve for prediction of nonvirological response. ROC curves were generated to compare RIG-
I (black line), ISG15 (dotted line), and RIG-I/IPS-1 ratio (gray line) (all in the left panel), and /L28B genotype (in the right panel). (B) Nonvirolog-
ical response rate in IL28B major (rs8099917 TT/rs12979860 CC) and minor patients (rs8099917 TG/rs12979860 CT) in subgroups divided
by the cutoff value of RIG-I and /SG15 expression and the RIG-I/ISG15 ratio determined by ROC analysis. Cutoff values of RIG- and ISG15
expression are expressed as expression copy number normalized to the expression of an internal control. The numbers of patients in each sub-

group are shown in the bottom of the figure.
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