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Figure 3  Antiviral effects of NS5A replication complex inhibitor
combinations with either an NS3 protease inhibitor or an NS5B
inhibitor in mice infected with hepatitis C virus (HCV) genotype 1b.
The four mice were treated with 10 mg/kg of BMS-788329 and either
75 mg/kg twice daily of BMS-605339 (A) or 100 mg/kg of BMS-821095
(B) for 4 weeks (closed circles). Mice without treatment were also
analysed (open circles). Serum samples were obtained at the indicated
times, and HCV RNA titres were measured. The horizontal dotted line
indicates the HCV RNA titre detection limit (3 log copies/ml).

(C) Nested PCR of HCV RNA, human serum albumin and GAPDH in
mouse livers. Livers from mice treated with BMS-788329 and either
BMS-605339 (lane 2) or BMS-821095 (lane 3) were obtained. Mouse
livers with (lane 1) or without (lane 4) HCV infection were also
analysed.

DISCUSSION

DAA-only therapy may offer a promising option to eradicate
HCV without incurring the severe side effects of Peg-alfa.
However, the emergence of drug-resistant variants is expected for
all DAA?! and has already been observed in combination therapies
with two DAA.® 23 2* If the exposure of the drugs can be safely
increased, as we recently reported for a two-drug combination
administered to human hepatocyte chimeric mice,? eradication of
virus is still possible. In this study, we tested the ability of different
two-DAA combination therapies to eradicate HCV, Although DAA
monotherapies resulted in a viral breakthrough due to the develop-
ment of a high prevalence of drug-resistant variants (figure 2A-D),
DAA combination therapies with the NSSA RCI and either the
NS3 PI or NS5B NNI were shown to eradicate virus successfully
from HCV genotype 1b-infected mice with only 4 weeks of treat-
ment (figure 3). These two-DAA combination treatments resulted
in more rapid, robust declines within the first week of treatment

when compared with the suboptimal antiviral responses from each
of their respective monotherapies. Furthermore, regimens contain-
ing NS5A RCI appeared equally effective in treating mice chronic-
ally infected with hepatitis C genotype 1b.

In contrast to the rapid decrease in HCV RNA in mice infected
with HCV genotype 1b, HCV genotype 2a and 2b-infected mice
either did not respond or responded poorly to treatment with the
NS5A RCI combined with either the NS3 PI or NS5B NNI (figure
4A,B). In this study, NS3 PI and NS5B NNI ICsq values against
genotype 1b were markedly more potent than against genotype 2a
in cell culture systems (table 1). These findings are consistent with
previous experimental results that reported reduced activity of
these drug classes against genotype 2.%°7%® In clinical trials, telapre-
vir monotherapy was found to result in a rapid decrease in serum
HCV RNA levels in patients infected with HCV genotype 2;
however, another protease inhibitor, BILN-2061, was less effective
in patients with HCV genotype 2 compared to genotype 1.%°
Sequence analysis revealed a pre-existing A156G variant in the
NS3 region, a L31M variant in the NS5A region and a [482L
variant in the NS5B region in both HCV genotypes 2a and 2b
infecting strains used in this study (data not shown). These
NS3-A156G and NS5A-L.31M variants confer resistance to inhibi-
tors with similar chemical structures to BMS-605339 and
BMS-788329, respectively, in genotype 2a replicon cell culture
assays.>®32 Although BMS-788329 was very potent against the
genotype-2a JFH-1 replicon (ICso 0.014 nM; table 1), its activity
was significantly less against other genotype 2a and 2b viruses,
such as genotype 2a HC-J6CE. The loss in potency observed in
these viruses is not surprising because these viruses have a methio-
nine at NS5A amino acid residue 31. The ICsq of a genotype 2a
hybrid replicon containing HC-J6CF NSSA with L31M substitu-
tion is approximately 10 nM (data not shown). The minimal anti-
viral response in mice infected with genotypes 2a and 2b receiving
treatments containing BMS-788329 with either BMS-605339 or
BMS-821095 can therefore be explained by pre-existing NS3,
NSSA and NS5B resistance variants. Nevertheless, it is possible
that mice infected with wild-type genotype 2 viruses and subse-
quently treated with higher doses of each of these DAA in dual or
even triple combination therapy may have resulted in more robust
reductions in viral load. The human hepatocyte chimeric mouse
model offers a viable approach for identifying effective DAA-only
combinations that not only act against HCV genotype 1 but
against all HCV genotypes.

In summary, we demonstrated that an NS5A RCI can be
effectively combined with different inhibitor classes to cure
human hepatocyte chimeric mice infected with HCV genotype
1b after 4 weeks of treatment. However, these treatment combi-
nations were not effective against HCV genotype 2. Oral combi-
nations incorporating an NS5A RCI might offer Peg-alfa-free
treatment options for genotype 1b chronic hepatitis C patients.
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Figure 4 Antiviral effects of NS5A replication complex inhibitor combinations with either NS3 protease inhibitor or NS5B inhibitor in mice infected
with hepatitis C virus (HCV) genotype 2. Each of the four HCV genotype 2a (A) or 2b (B) infected mice were treated with 10 mg/kg of BMS-788329
combined with either 75 mgrkg twice daily of BMS-605339 (left panel) or 100 mg/kg of BMS-821095 (right panel) for 4 weeks (closed circles). Mice
without treatment were also analysed (open circles). Serum samples were obtained at the indicated times, and HCV RNA titres were measured. The
horizontal dotted line indicates the HCV RNA titre detection limit (3 log copies/ml).
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VIRAL HEPATITIS

Impact of Viral Amino Acid Substitutions and Host
Interleukin-28B Polymorphism on Replication and
Susceptibility to Interferon of Hepatitis C Virus

Nobuhiko Hiraga,* Hiromi Abe,"* Michio Imamura,"* Masataka Tsuge,"* Shoichi Takahashi,"?
C. Nelson Hayes,"? Hidenori Ochi,>* Chise Tateno,2* Katsutoshi Yoshizato,”* Yusuke Nakamura,’
Naoyuki Kamatani,® and Kazuaki Chayama'*>

Amino acid (aa) substitutions of core 70 and 91 and in the NS5A (nonstructural protein
5A) interferon sensitivity determining region (ISDR) as well as genetic polymorphisms in
the host interleukin-28B (IL28B) locus affect the outcome of interferon (IFN)-based thera-
pies for patients with chronic hepatitis C. The combination of these factors and the quasi-
species nature of the virus complicate understanding of the underlying mechanism. Using
infectious hepatitis C virus (HCV) genotype 1b clone HCV-KT9, we introduced substitu-
tions at both core aa70 (Arg to Gln) and aa91 (Leu to Met). We also introduced four and
nine ISDR aa substitutions into core mutant HCV-KT9. Using human hepatocyte chimeric
mice with different IL28B genotypes, we examined the infectivity, replication ability, and
susceptibility to IFN of these clones. Although aa substitutions in the ISDR significantly
impaired infectivity and replication ability of the virus, core aa70 and 91 substitutions did
not. The effect of IFN treatment was similar in core wild-type and mutant viruses. Interest-
ingly, virus titer was significantly higher in mice with the favorable IL28B allele
(rs8099917 TT and 1512979860 CC) in the transplanted hepatocytes than in mice with he-
patocytes from rs8099917 TG and 1512979860 TT donors (P < 0.001). However, the effect
of IFN was significantly greater, and intrahepatic expression levels of IFN-stimulated genes
were significantly higher in mice with the favorable IL28B allele. Conclusion: Our data sug-
gest that HCV replication levels and response to IFN are affected by human hepatocyte
IL28B single-nucleotide polymorphism genotype and mutations in the ISDR. The mecha-
nism underlying the clinically observed association of wild-type core protein in eradication-
favorable host cells should be investigated further. (HeraTOLOGY 2011554:764-771)

ronic hepatitis C virus (HCV) infection is with chronic HCV infection, and the most effective
the leading cause of cirrhosis, liver failure, currently available therapy is combination therapy with
and hepatocellular carcinoma.'? Interferon pegylated (PEG)-IFN and ribavirin (RBV).> Among
(IFN) is an essential component of therapy for patients HCV genotypes, genotype 1 is the most resistant to

Abbreviations: aa, amino acid: GAPDH, glyceraldelyde-3-phosphate dehydrogenase; HCV, hepatitis C virus; HSA, human serum albumin; IEN, interferon;
IL28B, interleukin-28B; ISDR, interferon-sensitivity—determining region; ISG, interferon-stimulated gene; MxA, myxovirus resistance protein A; NVR,
nonvirological response; OAS, oligoadenylate synthetase; PBS, phosphate-buffered saline; PEG, pegylated; PKR, RNA-dependent provein kinase; RBY, ribavirin; RT-
PCR, reverse-transcription polymerase chain reaction; SCID, severe combined immunodeficiency; SNE single-nucleotide polymorphism; SVR, sustained virological
response; uPA, urokinase-type plasminogen activator.
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IFN therapy.® The limited success of combination
therapy for genotype 1 HCV infection is because of
the low response rate during therapy and high relapse
rate after therapy.”

Recent studies have identified both viral and host
factors predictive of IFN therapy. Among the viral fac-
tors, amino acid (aa) substitutions in the IFN-sensitiv-
ity—determining region (ISDR) (nucleotides 2209-
2248 or aa positions 237-276 within the NS5A
region) are associated with sustained virological
response (SVR) after IFN treatment in HCV genotype
1b patients.>” Akuta et al. reported that substitution
of aa70 or 91 in the HCV core region are independ-
ent predictors of SVR and nonvirological response
(NVR).'*'? Recently, we'® and another group' also
reported that wild-type HCV core aa70 and two or
more aa substitutions in the ISDR are effective predic-
tors of SVR in patients with HCV genotype 1b.

Among host factors associated with SVR, many
common genetic polymorphisms in the human
genome have been identified, including single-nucleo-
tide polymorphisms (SNPs).">™ More recently, an
association between several linked SNPs in the inter-
leukin-28B (IL28B) locus and the effect of combina-
tion therapy has been reported.”**

We recently reported that the core aa wild type is
significantly more likely to be found in patients with
the eradication-favorable IL28B SNP genotype.*>*
The underlying mechanism of this association as well
as the reason for the differential response to therapy
by viruses with core aa substitutions are unknown.
This is partly because of the presence of HCV quasi-
species in human serum samples and the difficulty of
performing infection experiments in a small animal
model.

The severe combined immunodeficient (SCID) uro-
kinase-type plasminogen activator (uPA) mouse per-
mits repopulation of the liver with human hepatocytes,
resulting in human hepatocyte chimeric mice able to
develop HCV viremia after injection of serum samples
positive for the virus.”® We and other groups have
reported that the human hepatocyte chimeric mouse is
useful for evaluating anti-HCV drugs, such as IFN-
alpha and NS3-4A protease inhibitor.””*® We have
further improved the replacement levels of the human
hepatocytes in this mouse model,” which enabled us
to perform infection experiments more easily because
highly repopulated mice (defined as human serum al-
bumin [HSA] levels well above 1 mg/mL) successfully
develop viremia more often than poorly repopulated
mice.”’ Using this mouse model, we developed a
reverse genetics system for HCV.>"** This system is

HIRAGA ET AL. 765

Table 1. Characteristics of Donors for Transplanted Human

Hepatocytes

Donor A B C D
Sex Female Male Female Male
Age 10 2 5 2
Ethnic group Caucasian Caucasian African American Hispanic
1s8099917 TG T TG T
1s8109886 AA cC AA cc
rs12979860 m cC T cc
1511882871 GG AA GG AA
1$73930703 m cC i cc
158107030 AG AA AG AA
1528416813 GG cc GG cC
158103142 cC T cC T
1511881222 GG AA GG AA
154803217 AA cc AA cC

useful for studying characteristics of HCV strains with
various substitutions of interest, because the effects of
quasispecies can be minimized. Furthermore, as there
is no adaptive immune system in this mouse model,
we are able to examine the replication of HCV and
the effect of therapy while avoiding the influence of
the immunological response. In the present study, we
investigated effects of viral and host factors on HCV
infectivity, replication ability, and IFN susceptibility
using genetically engineered genotype 1b HCV-
infected mice that underwent transplantation with he-
patocytes having eradication-favorable or eradication-

unfavorable IL28B SNP genotypes.

Materials and Methods

Animal Treatment. Generation of the uPA
SCID™™* mice and transplantation of human hepato-
cytes were performed as described previously.®® All ani-
mal protocols described in this study were performed
in accord with the guidelines of the local committee
for animal experiments, and all animals received
humane care. Infection, extraction of serum samples,
and sacrifice were performed under ether anesthesia.
Mouse serum concentrations of HSA, which serve as
useful markers of the extent of repopulation, were
measured as previously described.”” Mice underwent
transplantation with frozen human hepatocytes
obtained from four different human donors (Table 1).
Genotyping of IL28B SNPs of human hepatocytes was
performed using the Invader assay as described previ-
ously.?*** We used 1000 IU/g/day of IFN-alpha (Dai-
nippon Sumitomo Pharma Co., Tokyo, Japan) for 2
weeks. This dosage was selected based on a previous
report showing that this regimen reduced mouse serum

+/+/
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Consensus
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Fig. 1. The aa sequences of infectious genotype 1b HCV clones,
Core-Wild, Core-Mutant (substitutions at aa70 and aa91), and ISDR
variants (with 0, 4, and 9 substitutions).

HCV RNA levels by 0.5-2 log copies/mL during
therapy.”'

HCV RNA Transcription and Inoculation into
Mice. We previously established an infectious genotype
1b HCV clone, HCV-KT9, that was obtained from a
Japanese patient with severe acute hepatitis (GenBank
accession no. AB435162).>> Ten micrograms of plas-
mid DNA, linearized by digestion with Xbal (Prom-
ega, Madison, WI), was transcribed in a 100-uL reac-
tion volume with T7 RNA polymerase (Promega) at
37°C for 2 hours and then analyzed by agarose gel
electrophoresis. Each transcription mixture was diluted
with 400 puL of phosphate-buffered saline (PBS) and
injected into the livers of chimeric mice.** The HCV-
KT9 clone has aa substitutions at aa70 and 91 (argi-
nine to glutamine and leucine to methionine, respec-
tively) in the core region (Core-Mutant), compared to
the consensus sequence,'®"* and no aa substitutions in
the ISDR (ISDRO0),? relative to the prototype sequence
(HCV-J).”® Using the original HCV-KT9 clone, we
created two additional HCV clones having wild-type
core aa70 and 91 (Core-Wild) and four (ISDR4) and
nine (ISDRY) aa substitutions in the ISDR, respec-
tively (Fig. 1). To introduce the aa substitutions,
site-directed mutagenesis performed with a
QuikChange site-directed mutagenesis kit (Stratagene,
La Jolla, CA).

Human Serum Samples. Human serum samples
containing a high titer of genotype 1b HCV (2.2 x
10° copies/ml) were obtained from a patient with
chronic hepatitis after obtaining written informed con-
sent. Aliquots of serum were stored in liquid nitrogen
until use. Core 70 and 91 aas were Gln and Leu,
respectively, and only one aa substitution was present
in the ISDR. The study protocol involving human
subjects conformed to the ethical guidelines of the

‘was

HEPATOLOGY, September 2011

1975 Declaration of Helsinki and was approved by the
institutional review committee.

Quantitation of HCV RNA and IFN-stimulated
gene-expression levels. RNA was extracted from mice
serum and liver samples by Sepa Gene RV-R (Sankoju-
nyaku, Tokyo, Japan), dissolved in 8.8 uL of ribonu-
clease-free HyO, and reverse transcribed using random
primer (Takara Bio Inc., Shiga, Japan) and M-MLV
reverse transcriptase (ReverTra Ace, TOYOBO Co.,
Osaka, Japan) in 20 pL of reaction mixture according
to the instructions provided by the manufacturer.
Nested polymerase chain reaction (PCR) and quantita-
tion of HCV by Light Cycler (Roche Diagnostics, To-
kyo, Japan) were performed as previously described.*?
Quantitation of IFN-stimulated genes (ISGs) (myxovi-
rus resistance protein A [MxA], oligoadenylate synthe-
tase [OAS], and RNA-dependent protein kinase
[PKR]) was performed using real-time PCR Master
Mix (Toyobo, Kyoto, Japan) and TagMan Gene
Expression Assay primer and probe sets (PE Applied
Biosystems, Foster City, CA). Thermal cycling condi-
tions were as follows: a precycling period of 1 minute
at 95°C, followed by 40 cycles of denaturation at
95°C for 15 seconds and annealing/extension at 60°C
for 1 minute. ISG messenger RNA expression levels
were expressed relative to the endogenous RNA levels
of the housekeeping reference gene, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH).

Statistical Analysis. The HCV infectious ratio of
chimeric mice was assessed using the chi-square test.
Mice serum HCV RNA titers, HSA concentrations,
and ISG expression levels were compared using the
Mann-Whitney U test. A P value less than 0.05 was
considered statistically significant.

Results

Influence of aa Substitutions in the HCV Core
Region and ISDR on HCV Infectivity and Replica-
tion Ability. We investigated the influence of aa sub-
stitutions in the core region and ISDR on HCV infec-
tivity and replication ability in mice that underwent
transplantation with human hepatocytes obtained from
donor A (Table 1). Each 30 ug of in vitro—transcribed
RNA was inoculated into the livers of mice. Six weeks
after inoculation, serum HCV RNA titers increased
above the detectable limit (1000 copies/mL) in 11 of
12 (92%) mice infected with Core-Wild-ISDRO and
in 14 of 16 (88%) mice with Core-Mutant-ISDRO
(Fig. 2A). HCV RNA titers in Core-Wild-ISDRO-
and Core-Mutant-ISDRO-infected mice increased to
the same levels (Fig. 2B). In contrast, serum HCV
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Fig. 2. Infectivity and replication ability of HCV clones. Mice that underwent transplantation with hepatocytes obtained from donor A were ino-
culated with 30 ug of in vitro-transcribed RNAs of indicated clones. (A) Proportion of HCV-infected mice. Infection was defined as serum HCV
RNA titer above the detection limit (1000 copies/mL) 6 weeks after inoculation. aa sequences of the core (Wild or Mutant) and number of sub-
stitutions in the ISDR are noted below the graph. (B) Time course of serum HCV RNA levels in mice inoculated with either Core-Wild-ISDRO
(closed circles, n = 11) or Core-Mutant-ISDRO (open circles, n = 14) HCV clones. Data are represented as mean * standard deviation. (C)
Time course of serum HCV RNA levels in two Core-Wild-ISDR4-infected mice (closed circles) and a Core-Mutant-ISDR4-infected mouse (open
circles). Serum HCV RNA levels were measured until the mice died. (D) Core-Wild-ISDRO- (closed circles, n = 8) and Core-Mutant-ISDRO (open
circles, n = 4)-infected mice were treated daily with 1000 1U/g/day of IFN-alpha for 2 weeks. Mice serum HCV RNA titers were measured at the

indicated times. *P < 0.05, **P < 0.01; NS, not significant.

RNA titer increased above the detection limit in only
two of five (40%) Core-Wild-ISDR4 mice and in only
1 of 10 (10%) Core-Mutant-ISDR4 mice, and the
titers in these mice were lower than in mice with
ISDRO (Fig. 2C). HCV RNA titers failed to increase
above the detection limit in mice with Core-Wild-
ISDRY and Core-Mutant-ISDR9 (Fig. 2A).

Influence of Core aa Substitutions on the Effect of
IFN. To investigate the influence of aa substitutions in
the core region on the effect of IFN, Core-Wild-
ISDRO- and Core-Mutant-ISDRO-infected mice were
treated with 1000 IU/g of human IFN-alpha daily for
2 weeks. The treatment resulted in a 0.84 = 0.3 log
IU/mL reduction of HCV RNA titer in Core-Wild-
ISDRO-infected mice and a 0.79 = 0.34 log IU/mL
reduction in Core-Mutant-ISDRO-infected mice
(Fig. 2D).

We also investigated the influence of aa substitutions
in the core region on the effect of IFN plus RBV com-
bination therapy. Core-Wild-ISDRO— and Core-Mu-
tant-ISDRO—infected mice were treated with 1000 IU/

g of human IFN-alpha and 20 mg/kg of RBV daily
for 2 weeks. The treatment resulted in similar HCV
RNA reductions in all treated mice. However, as with
IFN monotherapy, there were no significant differences
in HCV reductions among mice with different aa sub-
stitutions in the core region (data not shown). The
dose of ribavirin used was relatively small, however,
because of the drug’s toxicity in mice.

HCV Infectivity, Replication Levels, and IFN Sus-
ceptibility by Core aa Substitutions and Genetic
Variation in the IL28B Locus. We investigated the
influence of IL28B genotypes on HCV infectivity, rep-
lication ability, and IEN susceptibility. /n vitro—tran-
scribed RNA (30 pg) was inoculated into the livers of
mice with hepatocytes from donor A (158099917 TG
and 1512979860 TT) or donor B (rs8099917 TT and
1512979860 CC). Eight weeks after inoculation, serum
HCV RNA titers increased above the detection limit
in 22 of 25 (88%) mice with hepatocytes from donor
A and in 20 of 23 (87%) mice with hepatocytes from
donor B (Fig. 3A). Serum HCV RNA levels were
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Fig. 3. HCV infectivity, replication ability, and IFN susceptibility in HCV-KT9-injected mice. Mice that underwent transplantation with hepato-
cytes from donor A (rs8099917 TG and rs12979860 TT) (closed circles, n = 25) or B (rs8099917 TT and rs12979860 CC) (open circles, n =
23) were intrahepatically inoculated with RNA transcribed from either Core-Wild-ISDRO or Core-Mutant-ISDRO clones. (A) Eight weeks after infec-
tion, serum HCV RNA titers (upper panel) and HSA concentrations (lower panel) were measured. The horizontal dotted line indicates the HCV
RNA titer detection limit (1000 copies/mL). In these box-and-whisker plots, lines within the boxes represent median values; the upper and lower
lines of the boxes represent the 75th and 25th percentiles, respectively; the upper and lower bars outside the boxes represent the 90th and
10th percentiles, respectively. (B) HCV-infected mice with hepatocytes from donor A (closed circles, n = 12) or B (open circles, n = 8) were
treated daily with 1000 1U/g/day of IFN-alpha for 2 weeks. Changes in mice serum HCV RNA titers measured after 1 and 2 weeks are shown.
Data are represented as mean = standard deviation. *P < 0.05, **P < 0.01; NS, not significant.

significantly higher in mice with hepatocytes from do-
nor B than from donor A (P < 0.001). HCV-infected
mice were treated with 1000 IU/g of human IFN-
alpha daily for 2 weeks. The treatment resulted in
0.65 * 0.38 and 1.84 * 0.23 log IU/mL reductions
in HCV RNA titer in mice with hepatocytes from
donors A and B, respectively (P < 0.01) (Fig. 3B).
Interestingly, despite the higher serum HCV RNA lev-
els, reduction levels of HCV were higher in mice that
underwent transplantation with hepatocytes obtained
from donor B than in mice that underwent transplan-
tation with hepatocytes obtained from donor A.

To confirm an association between IL28B SNP ge-
notype and HCV RNA tter, we compared HCV
RNA titers using mice with hepatocytes from an addi-
tional pair of donors with the favorable (donor C) and
unfavorable (donor D) SNP genotypes. To determine
whether results obtained by clonal infection would be
comparable to results obtained using the more natural
serum injection, which should have contained more
complex viral species, mice were injected with geno-
type 1b HCV obtained from a human patient with
core and ISDR substitutions, as described above. Mice
with hepatocytes from donor C (158099917 TG and
rs12979860 TT) or donor D (18099917 TT and
1512979860 CC) were inoculated intravenously with

10° copies of HCV. Eight weeks after inoculation, se-
rum HCV RNA titer increased above the detection
limit in 13 of 14 (93%) mice with hepatocytes from
donor C (rs8099917 TG and 1512979860 TT) and in
12 of 12 (100%) mice with hepatocytes from donor D
(rs8099917 TT and rs12979860 CC) (Fig. 4A). With
results similar to those found for the mice inoculated
with transcribed HCV RNA, serum HCV RNA levels
were significantly higher in mice with hepatocytes
from donor D than from donor C (P < 0.001), and
the effect of IFN was also greater in donor D mice
than in donor C mice (Fig. 4B); however, statistical
significance using these donors was only achieved at
week 1, probably resulting from fluctuation of HCV
RNA titers and the small number of animals analyzed.

Expression Levels of ISGs in Mouse Livers. ISG
expression levels in mice livers were measured after 2
weeks of IFN treatment (Fig. 4B). MxA, OAS, and
PKR levels were significantly higher in mice with
human hepatocytes from donor D than from donor C

(Fig. 4C).

Discussion

In this study, we investigated the effect of substitu-
tions at core protein aa70 and 91 and within the
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Fig. 4. HCV infectivity, replication ability,
and IFN susceptibility in HCV-infected mice.
Mice that underwent transplantation with he- g
patocytes from donor C (rs8099917 TG and
rs12979860 TT) (closes circles, n = 14) or D
(rs8099917 TT and rs12979860 CC) (open
circles, n = 12) were intravenously injected
with HCV-infected patient serum samples. (A)
Eight weeks after infection, serum HCV RNA
titers (upper panel) and HSA concentrations
(lower panel) were measured. The horizontal 4t
dotted line indicates the HCV RNA titer detec-
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donor C

ISDR, which have been reported to be associated with
the outcome of IFN plus ribavirin combination ther-
apy.5'* Clones with core aa70 and 91 substitutions
showed comparable infection and replication abilities,
whereas clones with substitutions in the ISDR showed
reduced infectivity and replication rates. It has been
reported that patients infected with HCV strains with
multiple substitutions in the ISDR have lower viral
titers than those with wild-type ISDR, and that these
patients respond well to IFN therapy.®>’ We showed,
in this study, that infectivity and replication ability of
HCV are apparently impaired in ISDR mutants (Fig.
2A,C). This may explain, at least partially, the better
effect of IFN therapy in patients with multiple ISDR
mutations. However, why aa substitutions in this par-
ticular region are associated with the effect of IFN still
remains to be elucidated. In contrast, aa substitutions
in the core, which more profoundly affect the outcome
of combination therapy,'®"? did not influence the
infectivity and replication ability of the virus (Fig.
2A,B). This suggests that aa substitutions in this
region affect response to therapy in a way that is inde-
pendent of the replication level of the virus. A recent
report by Eng et al.*® showed that a mutation in core
aa91 results in the production of minicore protein,

which might alter the effect of IFN. The presence of

donor D donorC  donorD donorC  donor D

minicore protein and its effect on IFN therapy should
be further investigated using the chimeric mouse
model.

In contrast to these viral substitutions, host IL28B
genotype significantly affected viral replication levels
(Figs. 3A and 4A). Curiously, replication levels of the
virus are higher in mice with human hepatocytes from
donors with 18099917 TT and rs12979860 CC geno-
types, even though these genotypes are associated with
successful response to the therapy.®** This result is
consistent with clinical observation of higher viral
loads in patients with the 512979860 CC genotype.*
The favorable IL28B genotype is associated not only
with successful response to IFN treatment, but also to
spontaneous clearance of the virus.?”*® However, the
incidence of HCV infection was similar in mice with
hepatocytes from donors with rs8099917 TT and
158099917 TG (Figs. 3A and 4A), suggesting that
spontaneous clearance was rare. The fact that our ani-
mal model was immunodeficient suggests that sponta-
neous clearance of HCV might require the involve-
ment of the adaptive immune system. The wild-type
core protein, aa70, is reported to be found more often
in patients with the 158099917 TT genotype,”>** even
though patients with this genotype are more likely to
be able to eradicate the virus without therapy during
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the natural course of infection.’”*® These data suggest
that core aa70 wild-type virus can be eradicated more
easily in the natural course of infection, especially in
patients with rs8099917 TT or 1512979860 CC geno-
types; but once the infection is established, core aa70
wild type replicates more effectively than core aa70
mutant strains.

The effect of IFN on reduction of the virus did not
differ between core 2a70 wild-type and mutant strains,
which showed similar replication levels (Fig. 2D). This
is in contrast to clinical observations that the effect of
therapy on viral reduction is more prominent in
patients with wild-type core protein.'>*> One of the
differences between the mouse model and human
patients is term of infection. Long-term HCV infec-
tion results in alteration of lipid metabolism and accu-
mulation of lipids in hepatocytes.> Patients with fatty
change of the liver often fail to respond to therapy.*
We observed no severe fatty change in mouse livers,
suggesting that such long-term change might be absent
in this mouse model (data not shown).

On the other hand, the effect of IFN was signifi-
cantly greater in mice with hepatocytes with the eradi-
cation-favorable IL28B genotype (rs8099917 TT and
1512979860 CC) (Figs. 3B and 4B), despite the higher
replication rate of the virus. This suggests that the
IL28B genotype affects the outcome of therapy based
on a different mechanism than viral replication.
Because of strong linkage disequilibrium, genotypes of
the SNPs around the two IL28B landmark SNPs
(rs8099917 and rs12979860) were identical between
donors A and C as well as between B and D (data not
shown). Further study using human hepatocytes with
various [L28B SNP genotypes will identify a primary
SNP that directly affects the outcome of therapy.
Response to IFN was associated with higher expression
levels of ISGs, including MxA, OAS, and PKR (Fig.
4C). This is in agreement with previous studies show-
ing that SVR is associated with stronger induction of
ISG expression.*! However, we observed no statistically
significant differences in ISG expression levels from
the IL28B SNP genotype before therapy (data not
shown). This may result from lower ISG expression
levels before therapy and the relatively small number
of mice examined. Because there is no adaptive
immune system in this mouse model, such differences
primarily involve individual hepatocytes, although
whether the presence of immune cells enhances this
difference should be investigated further.

In summary, we demonstrated that viral infectivity
and replication ability are associated with hepatocyte
IL28B genotype and are not associated with viral sub-

HEPATOLOGY, September 2011

stitutions in the core protein or ISDR. Understanding
the mechanism underlying the higher, more prolonged
expression of antiviral genes in response-favorable he-
patocytes will help us to develop improved therapeutic
regimens to eradicate HCV more effectively.

Acknowledgment:  We thank Rie Akiyama, Kiyomi
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Rapid Emergence of Telaprevir Resistant Hepatitis C
Virus Strain from Wildtype Clone InVivo
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Telaprevir is a potent inhibitor of hepatitis C virus (HCV) NS3-4A protease. However, the
emergence of drug-resistant strains during therapy is a serious problem, and the susceptibility
of resistant strains to interferon (IFN), as well as the details of the emergence of mutant
strains 7z vivo, is not known. We previously established an infectious model of HCV using
human hepatocyte chimeric mice. Using this system we investigated the biological properties
and mode of emergence of mutants by ultra-deep sequencing technology. Chimeric mice were
injected with serum samples obtained from a patient who had developed viral breakthrough
during telaprevir monotherapy with strong selection for resistance mutations (A156F
[92.6%]). Mice infected with the resistant strain (A156F [99.9%]) developed only low-level
viremia and the virus was successfully eliminated with interferon therapy. As observed in
patients, telaprevir monotherapy in viremic mice resulted in breakthrough, with selection for
mutations that confer resistance to telaprevir (e.g., a high frequency of V36A [52.2%]). Mice
were injected intrahepatically with HCV genotype 1b clone KT-9 with or without an intro-
duced resistance mutation, A156S, in the NS3 region, and treated with telaprevir. Mice
infected with the A156S strain developed lower-level viremia compared to the wildtype strain
but showed strong resistance to telaprevir treatment. Although mice injected with wildtype
HCYV showed a rapid decline in viremia at the beginning of therapy; a high frequency (11%)
of telaprevir-resistant NS3 V36A variants emerged 2 weeks after the start of treatment.
Conclusion: Using deep sequencing technology and a genetically engineered HCV infection
system, we showed that the rapid emergence of telaprevir-resistant HCV was induced by
mutation from the wildtype strain of HCV iz vive. (HerATOLOGY 2011;54:781-788)

hronic hepatitis C virus (HCV) infection is a  ribavirin (RBV).>> However, this treatment results in
leading cause of cirrhosis, liver failure, and he-  sustained viral response (SVR), defined as negative for
patocellular carcinoma.”” The current standard HCV RNA 24 weeks after cessation of the therapy, in
treatment for patients chronically infected with HCV  only about 50% of patients with genotype 1 HCV
is the combination of peg-interferon (PEG-IFN) and infection with high viral loads.>” Given the low
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effectiveness of the current therapy, many molecules
have been screened for antiviral activity against HCV
for use in development of novel anti-HCV therapies.
A number of new selective inhibitors of HCV pro-
teins, the so-called STAT-C (specifically targeted antivi-
ral therapy for HCV) inhibitors, are currently under
development. Telaprevir is a reversible, selective, spe-
cific inhibitor of the HCV NS3-4A protease that has
shown potent antiviral activity in HCV replicon
assays.® Although the antiviral effect of telaprevir is
quite potent, monotherapy using these drugs results in
rapid emergence of drug-resistant strains.”® Accord-
ingly, these drugs are used in combination with pegy-
lated-IFN and ribavirin for chronic hepatitis C
patients. Because the HCV virus replicates rapidly and
RNA polymerase lacks a proofreading system, HCV
viral quasispecies can emerge de novo, and some of
these variants may confer resistance. Although a resist-
ant variant is initially present at low frequency, it may
quickly emerge as the dominant species during antivi-
ral treatment.”!® Resistant clones against HCV NS3-
4A protease inhibitors have reportedly been induced in
replicon systems.

The immunodeficient urokinase-type plasminogen
activator (uPA) mouse permits repopulation of the liver
with human hepatocytes, resulting in human hepatocyte
chimeric mice that are able to develop HCV viremia af-
ter injection of serum samples positive for the virus.'!
We and other groups have reported that the human he-
patocyte chimeric mouse is useful for evaluating the
effect of NS3-4A protease inhibitor.'*'> Using this
mouse model, we developed a reverse genetics systems
for HCV.'*" This system is useful to study characteris-
tics of HCV strains with various substitutions of interest
because the confounding effects of quasispecies can be
minimized. Using ultra-deep sequencing technology, we
demonstrate the rapid emergence of telaprevir resistance
in HCV as a result of mutation from wildtype strain
using genetically engineered HCV-infected human he-
patocyte chimeric mice.

Materials and Methods

Animal Treatment. Generation of the uPA
SCID™* mice and transplantation of human hepato-
cytes were performed as described recently by our
group.'® All mice were transplanted with frozen
human hepatocytes obtained from the same donor.
Mice received humane care and all animal protocols
were performed in accordance with the guidelines of
the local committee for animal experiments. Infection,
extraction of serum samples, and sacrifice were per-

+/+/
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formed under ether anesthesia. Mice were injected ei-
ther intravenously with HCV-positive human serum
samples or intrahepatically with in vitro-transcribed ge-
notype 1b HCV RNA. HCV-infected mice were
administered either perorally with 200-300 mg/kg of
telaprevir  (VX950; MP424; Mitsubishi Tanabe
Pharma, Osaka, Japan) twice a day or intramuscularly
with 1,500 IU/g of IFN-alpha (Dainippon Sumitomo
Pharma, Tokyo). The telaprevir dose was determined
in a previous study in which this dosage range was
found to yield serum concentrations equivalent to
treated human patients.'?

Human Serum Samples. After obtaining written
informed consent, human serum samples containing
genotype 1b HCV were obtained from two patients
with chronic hepatitis. The individual serum samples
were divided into aliquots and stored separately in lig-
uid nitrogen until use. The study protocol conforms
to the ethical guidelines of the 1975 Declaration of
Helsinki and was approved « priori by the Institutional
Review Committee.

HCV RNA Transcription and Inoculation into
Chimeric Mice. We have previously established an in-
fectious genotype 1b HCV clone HCV-KT9 derived
from a Japanese patient with severe acute hepatitis
(GenBank access. no. AB435162)."> We cloned this
HCV complementary DNA (cDNA) into plasmid
pBR322 under a T7 RNA promoter to create the plas-
mid pHCV-KT9. Ten ug of plasmid DNA, linearized
by Xbal (Promega, Madison, WI) digestion, were tran-
scribed in a 100 pL reaction volume with T7 RNA
polymerase (Promega) at 37°C for 2 hours and ana-
lyzed by agarose gel electrophoresis. Each transcription
mixture was diluted with 400 uL of phosphate-buf-
fered saline (PBS) and injected into the livers of chi-
meric mice."” The QuikChange site-directed mutagen-
esis kit (Stratagene, Foster City, CA) was used to
introduce a substitution at amino acid 156 of the NS3
region (A156S).

RNA  Extraction and Amplification. RNA was
extracted from serum samples by Sepa Gene RV-R
(Sankojunyaku, Tokyo), dissolved in 8.8 uL RNase-
free H,O, and reverse transcribed using a random
primer (Takara Bio, Shiga, Japan) and M-MLYV reverse
transcriptase (ReverTra Ace, Toyobo, Osaka, Japan) in
a 20-pL reaction mixture according to the instructions
provided by the manufacturer. Nested polymerase
chain reaction (PCR) and quantitation of HCV by
Light Cycler (Roche Diagnostic, Japan, Tokyo) were
performed as reported.’’

Ultra-Deep Sequencing. We adapted multiplex
sequencing-by-synthesis to simultaneously sequence
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detectable limit (1.2 log copy/mL).

multiple genomes using the Illumina Genome Ana-
lyzer. Briefly, cDNA was fragmented using sonication
and the resultant fragment distribution was assessed
using the Agilent BioAnalyzer 2100 platform. A library
was prepared using the Multiplexing Sample Prepara-
tion Kit (Illumina, CA). Imaging analysis and base
calling were performed using Illumina Pipeline soft-
ware with default settings."”>> The N-terminal 543
nucleotides of NS3 protease were analyzed. This tech-
nique revealed an average coverage depth of over
1,000 sequence reads per basepair in the unique
regions of the genome. Read mapping to a reference
sequence was performed using Bowtie.”* Because of
the short 36 nucleotide read length, mapping hyper-
variable regions with multiple closely spaced variants
against a reference sequence yields poor coverage.
Therefore, common variants were identified by relax-
ing the mismatch settings as well as using de novo as-
sembly using ABySS.”> Multiple alternative reference
sequences were included to improve coverage in vari-
able regions. Codon counts were merged and analyzed
using R v. 2.12.

Results

Emergence of a Telaprevir-Resistant Variant in a
Hepatitis C Patient Treated with Telaprevir and
Analysis of the AI56F Mutation. A 55-year-old
woman infected with genotype 1b HCV was treated
with 750 mg of telaprevir every 8 hours for 12 weeks
(Fig. 1). After 1 weeks of treatment, serum HCV

RNA titer decreased below the detectable limit (1.2
log copy/mL). However, HCV RNA titer became posi-
tive by week 4. By week 12, HCV RNA titer had
increased to 4.8 log copy/mL and telaprevir treatment
was discontinued. Because direct sequence analysis
showed an A156F mutation in the NS3 region in the
serum samples at 12 weeks, we performed ultra-deep
sequence analysis and confirmed the high frequency
(92.5%) of A156F mutation. Four weeks after cessa-
tion of treatment (at 16 weeks), sequence analysis
revealed that the major strain had reverted to wildtype
(99%). To analyze the replication ability and the sus-
ceptibility of the A156F mutation to telaprevir, 100
UL serum samples containing 10* copies of HCV
obtained at week 12 were injected into human hepato-
cyte chimeric mice. Two wildtype HCV-inoculated
mice became positive for HCV RNA 2 weeks after
inoculation and serum HCV RNA titer increased to
high levels (7.6 and 7.8 log copy/mL, respectively) at
6 weeks after inoculation (Fig. 2). In contrast to wild-
type HCV-infected mice, a mouse inoculated with se-
rum containing the A156F mutant developed measura-
ble viremia at 4 weeks postinoculation, although
serum HCV RNA titer remained low at 6 weeks (5.2
log copy/mL). Eight weeks after inoculation ultra-deep
sequence analysis showed a high frequency (99.9%) of
A156F mutation. From this point the mouse was
administrated 200 mg/kg of telaprevir perorally twice
a day for 4 weeks. However, this treatment resulted in
no reduction in serum HCV RNA level. During the
observation period the A156F mutation remained at
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Fig. 2. Changes in serum virus
titers in HCV-infected mice. Mice
were injected with either wildtype
(closed circles) or A156F-mutated
HCV serum samples (obtained from
an HCV-infected patient who
received telaprevir monotherapy for
12 weeks; see Fig. 1) (open
4 . 4 . circles). Six weeks after injection

1
12 141516 18 20

2 % 5 B the A156F mutant mouse was
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1,500 IU/g/day of interferon-alpha
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frequencies at aal56 in the HCV
NS3 region by ultra-deep sequenc-
ing at the indicated times are
shown.

2460 clones

W A156S 0.041%
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high frequency (>99%). To analyze the susceptibility
of the AI56F mutation to IFN, wildtype or A156F-
mutated HCV-infected mice were treated with 1,500
IU/g/day of IFN-alpha for 4 weeks. Treatment resulted
in only a two log reduction in HCV RNA level in
wildtype HCV-infected mice. In contrast, serum HCV
RNA titer decreased below the detectable limit 1 week
after treatment in an Al156F-infected mouse. Ten
weeks after cessation of IFN-treatment (at week 28),
HCV RNA in the mouse serum remained undetect-
able, suggesting that HCV RNA was eliminated. These
results demonstrate that the A156F variant is associ-
ated with telaprevir-resistance, but the mutant has low
replication ability and a high susceptibility to IFN.
Effect of Telaprevir on HCV-Infected Mice and
Sequence Analysis of NS3 Region. Next we investi-
gated the effect of telaprevir on wildtype HCV-
infected mice. Two chimeric mice were inoculated
intravenously with serum samples containing 10° cop-
ies of HCV obtained from an HCV-positive patient
(Fig. 3). Six weeks after inoculation both mice were
administered 200 mg/kg of telaprevir perorally twice a
day for 4 weeks. Serum HCV RNA titer in both mice
rapidly decreased; however, in one of the mice HCV
RNA titer increased again 3 weeks after the start of
treatment. Ultra-deep sequence analysis of the NS3
region showed that following the start of telaprevir
administration the frequency of the V36A mutation
increased from 18% at 2 weeks to 52% at 4 weeks, at
which point it was accompanied by an increase in the
HCV RNA titer. Two weeks after cessation of telapre-

vir treatment (at week 12), ultra-deep sequence analy-
sis revealed that the frequency of the V36A mutant
had decreased to 13% and the frequency of the wild-
type HCV had increased to 84%, although the HCV
RNA titer increased only slightly.

Intrahepatic Injection of HCV-KT9-Wild RNA
and KT9-NS3-A156S RNA into Human Hepatocyte
Chimeric Mice. We previously established an infec-
tious genotype 1b HCV clone, HCV-KT9 (HCV-
KT9-wild)."> We created a telaprevir-resistant HCV
clone by introducing an A156S amino acid substitu-
tion in the NS3 region of HCV-KT9 (KT9-NS3-
A156S) (Fig. 4A). Using wildtype and telaprevir-resist-
ant clones we investigated the replication ability iz
vivo. Mice were injected intrahepatically with 30 ug of
in vitro-transcribed HCV-KT9-wild RNA or KT9-
NS3-A156S RNA. Mice injected with HCV-KT9-wild
developed measurable viremia at 2 weeks postinocula-
tion and by 4 weeks postinoculation HCV RNA had
reached 10”7 copy/mL (Fig. 4B). On the other hand,
mice injected with KT9-NS3-A156S developed meas-
urable viremia at 4 weeks postinoculation but main-
tained only low levels of viremia. These results suggest
that the telaprevir-resistant HCV clone has a lowered
replication ability compared to the wildtype HCV
clone in vivo.

Treatment with Telaprevir and Analysis of Muta-
genesis in Mice. Two mice infected with HCV-KT9-
wild and one mouse infected with KT9-NS3-A156S
were treated with 200 mg/kg of telaprevir twice a day
for 2 weeks (Fig. 5A), resulting in 1.4 and 2.7 log
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Fig. 3. Treatment with telaprevir in wildtype HCV-infected mice. Two mice were injected intravenously with 50 ulL of HCV-positive human serum
samples. Six weeks after HCV injection mice were treated with 200 mg/kg of telaprevir orally twice a day for 4 weeks. Serum HCV RNA (upper
panel) and amino acid (aa) frequencies at aa36 in the HCV NS3 region by ultra-deep sequencing at the indicated times are shown.

reductions in HCV RNA level in the two wildtype
HCV-infected mice. In contrast, only a 0.6 log reduc-
tion was observed in the KT9-NS3-A156S-infected
mouse. These results demonstrate that our human he-
patocyte chimeric mouse model infected with 7z vitro-
transcribed HCV RNA provides an effective system
for analysis of the susceptibility of HCV mutants to
antiviral drugs. Interestingly, ultra-deep sequence anal-
ysis showed a rapid emergence of a V36A variant in
the NS3 region in mouse serum 2 weeks after treat-
ment (Fig. 5B). Four weeks after cessation of treat-
ment (at week 6) the frequency of the V36A variant
had decreased. Mice were then treated with 300 mg/kg
of telaprevir twice a day for 4 weeks, which resulted in
an elevated frequency of V36A variants at 1 (at week
7, 5.4%) and 4 weeks (at 10 week, 41.8%) after treat-
ment and no reduction in serum HCV RNA level.
These results suggest that telaprevir-resistant mutations
emerged de novo from the wildtype strain of HCV,
presumably through error-prone replication and potent
selection for telaprevir escape mutants. During the
telaprevir treatment period no increases of HCV RNA
titers in these mice were observed, probably due to the
low frequency of the resistant strain.

Discussion

Telaprevir is a peptidomimetic inhibitor of the
NS3-4A serine protease that is currently undergoing
clinical evaluation. Despite its effectiveness against

HCV, some patients have shown a rapid viral break-

through during the first 14 days of treatment.”® Popu-
lation sequencing of the viral NS3 region identified a
number of mutations near the NS3 protease catalytic
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Fig. 4. Intrahepatic injection of in vitro transcribed HCV-KT9 RNA
and KT9-NS3-A156S RNA into human hepatocyte chimeric mice. (A)
The schematic of infectious genotype 1b HCV clones, HCV-KT9 and
KT9-NS3-A156S. Boxes indicate codons at amino acid 156 in HCV
NS3 region. Ala, alanine; Ser, serine. (B) Changes in serum levels of
HCV RNA in mice intrahepatically injected with either HCV-KT9 RNA
(closed circles) or KT9-NS3-A156S RNA (open circles). Data are repre-
sented as the mean = SD of three mice.
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Fig. 5. The effect of telaprevir on mice infected with in vitro-tran-
scribed HCV. Mice were injected with in vitro-transcribed HCV-KT9 RNA
(closed circles and closed triangles) or KT9-NS3-A156S RNA (open
circles). Six weeks after HCV RNA injection, mice were treated perorally
with 200 mg/kg of telaprevir twice a day for 2 weeks. Four weeks after
cessation of treatment mice were treated with 300 mg/kg of telaprevir
twice a day for 4 weeks. (A) Mice serum HCV RNA titers at the indi-
cated times are shown. Serum samples obtained from one of two
HCV-KT9-infected mice (closed triangles) were used for ultra-deep
sequencing. (B) Amino acid (aa) frequencies at aa36 in the HCV NS3
region based on ultra-deep sequencing are shown.
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domain.*® In particular, variants at NS3 residues 36,
54, 155, and 156 were shown to confer reduced sensi-
tivity to telaprevir.”’

In this study we analyzed the association between the
antiviral efficacy of telaprevir and sequence variants
within the NS3 region using chimeric mice infected with
serum samples obtained from an HCV genotype 1b-
infected patient. One of two HCV-infected mice had a vi-
ral breakthrough during the dosing period (Fig. 3). Ultra-
deep sequence analysis of the NS3 region showed an
increase of the V36A mutant, which has been reported to
confer telaprevir resistance.”® Consequently, our results
show evidence of emergence of a telaprevir-resistant vari-
ant previously detected in human clinical trials.

We detected an A156F mutant in the HCV NS3
region in a chronic hepatitis patient who had experi-
enced viral breakthrough during telaprevir monotherapy
(Fig. 1). Likewise, HCV RNA titer in mice infected
with the A156F variant showed no reduction following
2 weeks of telaprevir treatment (Fig. 2). However, 2
weeks of treatment with IFN-alpha rapidly suppressed
serum HCV RNA titer below the detectable limit.
These results demonstrate that A156F is telaprevir-re-
sistant but has a high susceptibility to IFN.

Interestingly, ultra-deep sequencing revealed that the
wildtype strain was present at low frequency (0.3%) in
the serum inoculum (Fig. 2). However, the frequency
of the wildtype failed to increase over time (Fig. 3),
suggesting that the very small number of wildtype viral
RNA (about 30 copies) may be incomplete or defec-
tive, as a large proportion of viral genomes are thought
to be defective due to the virus’s high replication and
mutation rates.” Further analysis is necessary in order
to interpret the significance of the presence of very low
frequency variants detected by ultra-deep sequencing.

The short read lengths used in next generation
sequencing also complicates the detection of rare var-
iants, especially when variants are clustered within a
region smaller than an individual read length (e.g., 36
basepairs). Relaxing the matching criteria allows map-
ping of more diverse reads but increases the error rate,
whereas default settings may be geared toward more
genetically homogenous haploid or diploid genomes.
In this study we used de novo assembly to identify
more diverse variants that failed to map to the refer-
ence sequence. Examining the variation in codon fre-
quencies among samples, we created alternative refer-
ence sequences containing a sufficient range of variants
to provide more uniform coverage of variable regions.

Using our previously established infectious HCV-
KT9 genotype 1b HCV clone, we investigated the
antiviral efficacy of telaprevir and the effect of
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resistance mutations on viral replication. HCV RNA
titer in mice infected with the telaprevir-resistant strain
KT9-NS3-A156S was lower than in mice infected
with the wildtype strain HCV-KT9-wild (Fig. 4B).
HCV NS proteins include proteases for sequential
processing of the polyprotein and are thought to be
important in viral replication.”® Our results suggest
that differences in viral fitness underlie the differences
in viral replication capacity. We analyzed the antiviral
efficacy of telaprevir and the sequence of the NS3
region using HCV-infected mice treated with telapre-
vir. Although telaprevir treatment suppressed serum
HCV RNA titer in mice infected with HCV-KT9, the
decline of HCV RNA titer was only 0.6 log copy/mL
in a mouse infected with KT9-NS3-A156S under the
same treatment (Fig. 5A). These results suggest that
our genetically engineered HCV-infected mouse model
is useful for analyzing HCV escape mutants associated
with antiviral drugs. Interestingly, treatment with
telaprevir resulted in selection for V36A variants in the
NS3 region in an HCV-KT9-infected mouse (Fig.
5B). There are a few controversial reports proposing
that resistant variants may already be present at low
frequency (<1%) within the quasispecies population
in treatment-naive patients,” consistent with their
rapid emergence only days after treatment initia-
tion.”>%® This might well occur, due to the large num-
ber of mutated HCV clones. However, our results pro-
vide evidence in support of de movo emergence of
telaprevir resistance induced by viral mutation followed
by selection. HCV has both a high replication rate
(10"* particles per day) and a high mutation rate
(1072 to 107421 suggesting that the viral quasispe-
cies population is likely to represent a large and geneti-
cally diverse substrate for immune selection.

In summary, we established an infection model of a
genotype 1b HCV clone using the human hepatocyte
chimeric mouse model. Using this model we demon-
strate rapid emergence of de novo telaprevir-resistant

HCV quasispecies from wildtype HCV.
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