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Chronic infections with the hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risks of hepatocellular carcinoma (HCC),
and great efforts have been made towards the understanding of the different mechanisms that link the viral infection of hepatic
lesions to HCC development. In this work, we developed a novel framework to identify distinct patterns of gene coexpression net-
works and inflammation-related modules from genome-scale microarray data upon viral infection, and further classified them into
oncogenic and dysfunctional ones. The core of our framework lies in the comparative study on viral infection modules across differ-
ent disease stages and disease types—the module preservation during disease progression is evaluated according to the change of
network connectivity in different stages, while the similarity and difference in HBV and HCV are evaluated by comparing the overlap
of gene compositions and functional annotations in HBV and HCV modules. In particular, we revealed two types of driving modules
related to infection for carcinogenesis in HBV and HCV, respectively, i.e. pro-apoptosis modules that are oncogenic in HBV, and anti-
apoptosis and inflammation modules that are oncogenic in HCV, which are in concordance with the results of previous differential
expression-based approaches. Moreover, we found that intracellular protein transmembrane transportation and the transmembrane
receptor protein tyrosine kinase signaling pathway act as oncogenic factors in HBV-HCC. Our findings provide novel insights into
viral hepatocarcinogenesis and disease progression, and also demonstrate the advantages of an integrative and comparative
network analysis over the existing differential expression-based approach and virus-host interactome-based approach.

Keywords: gene coexpression network, hepatitis B and C virus, hepatocellular carcinoma, disease progression, systems biology

Introduction infections (lizuka et al., 2002; Honda et al., 2006; Mas et al.,

It has been estimated that chronic infections with the hepatitis
B virus (HBV) and hepatitis C virus (HCV) account for up to 80%
of hepatocellular carcinoma (HCC; Perz et al., 2006). Although
chronic hepatitis caused by HBV and HCV is hardly distinguished
by histological examination or clinical manifestations, the viro-
logical features of HBV and HCV are obviously different. HBV is
a DNA virus that can be transported into the nucleus and inte-
grated into the host DNA, thus directly transforming hepatocytes.
In contrast, HCV is an RNA virus that replicates in the cytoplasm
and is unable to integrate into the host genome (Tsai and
Chung, 2010; Bouchard and Navas-Martin, 2011). Ever since the
discovery of these two viruses, great efforts have been made
towards the understanding of the molecular events and cellular
signal transduction pathways that are altered by HBV and HCV

Received December 1, 2011. Revised February 21, 2012. Accepted March 4, 2012.
© The Author (2012). Published by Oxford University Press on behalf of journal of
Molecular Cell Biology, 1BCB, SIBS, CAS. All rights reserved.

2009; Ura et al, 2009), as well as the mechanisms that link
HBV or HCV infections and hepatic lesions to HCC development
(Wurmbach et al., 2007; Mas et al., 2009). Studies in this area
include comparisons of microarray gene/microRNAs expression
in HBV-HCC and HCV-HCC, identification of significantly differen-
tially expressed genes/microRNAs under the two types of HCC,
and analysis of functional annotations represented by them. It
was reported that inflammation, anti-apoptosis, immune
response, cell cycle and lipid metabolism were predominant in
HCV, but pro-apoptosis, DNA damage and DNA repair response
were predominant in HBV (lizuka et al.,, 2002; Honda et al,
2006; Ura et al, 2009). There is also research (Wurmbach
et al., 2007; Mas et al., 2009) focusing on a stepwise carcinogenic
process from normal liver to HCV cirrhosis to HCV-HCC, or from
preneoplastic lesions (cirrhosis and dysplasia) to HCV-HCC, and
a positive trend was found in MHC class-| receptor activity, DNA
damage checkpoint cell division and ubiquitin cycle genes
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during this process (Mas et al., 2009). Although these efforts have
suggested different oncogenic factors in HBV and HCV, as well as
marker pathways during HCV-HCC progression, an integrative and
comparative study of gene expression profiles in both HBV-HCC
and HCV-HCC progression has yet to be conducted.

Network-based systems biology approaches (Liu et al., 2012) typ-
ically involve identification of groups of genes or network modules
by microarray data analysis, whose expression levels are highly cor-
related across samples (Stuart et al., 2003; Zhang and Horvath,
2005; Oldham et al., 2008; Dewey et al.,, 2011). Such holistic
approaches have several advantages over standard methods such
as differential expression analysis, whose result is usually a list of
genes, each of which is deemed significant in isolation (Chen
et al., 2009, 2012). Actually, quantitative assessment of module
preservation in different phenotypes using both gene expression
and network connectivity as summation (Miller et al,, 2010;
Dewey et al., 2011) provides a new avenue in understanding of
molecular differences that distinguish functional processes in
disease progression (CGldham et al., 2008; Miller et al., 2010).

In this work, we developed a new framework to study the differ-
ences and similarities in HBV-HCC and HCV-HCC at a network
level by an integrative and comparative analysis of weighted
gene coexpression modules or networks in HBV-infected and
HCV-infected liver tissues. We hypothesized that viral infection
is an important stage or factor in carcinogenic progression (Tsai
and Chung, 2010; Bouchard and Navas-Martin, 2011), and thus
focused on the analysis of viral infection modules, e.g. oncogenic
modules and dysfunctional modules. Using this approach, we
identified distinct network modules of coexpressed genes with
clear functional interpretations in HBV and HCV, as well as their
implications of HCC development. We found that pro-apoptosis
modules are oncogenic in HBV, but anti-apoptosis and inflamma-
tion modules are oncogenic in HCV, which is in concordance with
previous differential expression-based approaches. Clearly, these
modules are the driving force of carcinogenesis in HBV and HCV,
respectively, which cannot be revealed by viral target analysis. In
addition, we observed that intracellular protein transmembrane
transportation and the transmembrane receptor protein tyrosine
kinase signaling pathway were top enriched in HBV oncogenic
modules, while a similar process of endosome to lysosome trans-
port was observed in HCV dysfunctional modules. Those results
are consistent with the existing knowledge that HCV enters hepa-
tocytes via endocytosis (Bouchard and Navas-Martin, 2011).
Although the entry mechanism of uncoated HBV into hepatocytes,
and the transport of the viral genome into the nucleus of the host
remain unclear (Seeger et al., 2007), the oncogenic modules iden-
tified by our approach show their important dysfunctions for
HBV-HCC, and this can be a promising topic of future experimen-
tal research. Besides comparing the functional annotations of the
top-ranked modules, we further identified the module overlap in
HBV and HCV and found that the modules of HBV and HCV shared
a significant overlap with each other. It implies that these subsets
of genes are consistently coexpressed upon both HBV and HCV in-
fection, but they result in the different network topologies and
wiring that lead to contrasting functional performances. Last
but not least, curating HBV/HCV protein targets (de Chassey
et al, 2008; Wu et al, 2010) from literature research and
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combining them with our analysis result, we provided different
viral targets as a potential root cause of these distinctions
between HBV-HCC and HCV-HCC. Clearly, these new findings
not only demonstrate the effectiveness of our network-based ap-
proach on analyzing the complex diseases, but also provide bio-
logical insights into viral hepatocarcinogenesis and disease
progression.

Results
Overview of our framework

Figures 1 and 2 show the overview of our framework.
Coexpression network reconstruction from high-throughput data
are illustrated in Figure 1A. Module identification and functional
analysis are summarized in Figure 1B, and module analysis for
four types of viral infection modules is summarized in Figure 2.
This paper focuses on the analysis of viral infection modules in
disease progression. After we built gene coexpression networks
for HBV and HCV, we identified their coexpresssion modules indi-
vidually. After we validated their reproducibility in the independ-
ent datasets, we filtered out inflammation-related modules upon

A Coexprassion nstwork construction
1. Areay Outa

2. Correfation andlysis

5 @ @ ® w

3. Corretation matsix fgene) 4. Coexprrssion network

8 Data flow of module identification

B b peotein targets | | KOV buguar protein targets |

Figure 1 Overview of the framework. (A) Gene coexpression network
reconstruction. (i) Microarray data filtering and prepossessing (rows
correspond to samples and columns correspond to genes). (ii)
Correlation analysis of individual genes expression across different
samples. (i) Construction of Pearson’s correlation matrix and trans-
formation into a matrix of connection strength. (iv) Coexpression
network is established using hierarchical average linkage clustering
(WGCNA). (B) Framework of module identification and analysis. The
details of descriptions can be found in Materials and methods.
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Figure 2 Viral infection modules and their classification. This figure
shows how to identify four types of viral infection modules (i.e. onco-
genic, dysfunctional, housekeeping, and transit modules). The top
subfigure shows the progression of HCC (i.e. from normal liver to
viral infection and to HCC), and module comparison centered on
viral infection or inflammation stage. The verified coexpression
module of viral infection of HBV and HCV is classified into one type
of ‘oncogenic’, ‘dysfunctional’, ‘housekeeping’, and ‘transit” individu-
ally by backward and forward comparison for module preservation. Y’
or ‘N’ represents its preservation ‘yes’ or ‘no’ in the three stages of
disease progression, respectively. For example, one module (Y’ in
viral infection) is identified to be ‘oncogenic’ when it is preserved
in HCC (Y”), but not in normal status (N°).

viral infections. The comparison of these modules in different
disease stages for module preservation results in four types
inflammation modules. And the comparison of oncogenic and
dysfunctional modules in HBV and HCV provides evidence of
the similarities and differences in the viral infections. We also
tried to investigate their similarities and differences by analyzing
the virus—host interactions of humans. The detailed descriptions
of our framework are given in Materials and methods.
Constructing gene coexpression networks in HBV-
and HCV-infected liver tissues

We set out to investigate the transcriptome upon viral infection
and construct gene coexpression networks by applying weighted
gene coexpression network analysis (WGCNA) (zhang and
Horvath, 2005). Our study was primarily based on Kanazawa data
(Honda et al., 2006; Ivliev et al., 2010), which contains gene expres-
sion from 18 normal liver tissues (in normal stage), 36 HBV and 35
HCV-infected liver tissues (in viral-infected or inflammation stage),
and different samples of 17 HBV-HCC and 17 HCV-HCC (in HCC
stage). The other three datasets were mainly used for validation pur-
poses. Two coexpression networks—one for HBV and the other for
HCV—were constructed by calculating the pairwise Pearson’s correl-
ation coefficients of gene expressions in 36 HBV-infected samples
and 35 HCV-infected samples, respectively. The information about
datasets used in the study is shown in Supplementary Table S1.
Briefly, the Pearson’s correlation matrix for each coexpression
network was transformed into a matrix of connection strengths
using a power function (power = 6). These connection strengths
were then used to calculate the topological overlap (TO), which con-
siders not only the correlation of the two genes, but also the degree
of their shared neighbors across the whole network.
Detecting gene coexpression modules in HBV- and HCV-infected
liver tissues

Hierarchical average linkage clustering based on TO was
used to group genes with highly similar coexpression patterns

He et al.

into modules (Ravasz et al., 2002). For computational reasons,
we conducted the network module identification procedure in
a blockwise manner with the same parameter setting for all
networks. To summarize the scaled gene expression profiles
for the identified modules, we used the first singular vector
(module eigengene, ME), which is equivalent to the first principle
component and explains the largest proportion of the variance of
the module genes. We then used the MEs in a procedure to
reassign genes to the modules which maximizes the module
memberships (see Materials and methods for details). To this
end, we identified 33 modules in HBV-infected liver tissues
and 23 modules in HCV-infected liver tissues individually
(Figure 3A and C), and each of them, containing coordinately
expressed genes potentially participated in common cellular
processes. The full list of module memberships is provided in
Supplementary Table S2.

Identifying viral infection modules that are highly preserved
across independent datasets

Because of the different number of gene expression samples
and the wide range of coordinate gene regulations (ivliev et al,,
2010), we first validated the identified modules internally by a
data-splitting technique in which 70% of the samples were
used as a training set (see Materials and methods). After gener-
ating 100 such training sets, modules with significant
co-clustering statistics (empirical P < 0.05) were retained for
further validation (Figure 4).

Microarrays are inconsistent for differences in gene expression
profiles across datasets and platforms (Wang et al., 2005). To
gauge the consistency of our identified modules in independent
datasets, two hepatitis virus-infected liver datasets, GSE3500
(Chen et al.,, 2002, 2004) and GSE14323 (Mas et al, 2009),
were assembled. GSE3500 contains 10 samples of normal liver,
33 HBV-infected liver samples and 52 HBV-infected HCC.
GSE14323 contains 19 samples of normal liver, 41 HCV-infected
liver samples and 55 HCV-infected HCC. Detailed descriptions
about these datasets are provided in Supplementary Table S1.
We filtered and preprocessed the two datasets, and further iden-
tified gene coexpression modules from virus-infected status using
the same procedure as described previously. Since the datasets
contain different genes, we used the common genes shared by
two datasets to compute the significance of the module overlap
based on the hypergeometric test (Figure 3B and D). For HCV
modules, 21 out of 23 of them have significant overlap (P <
0.05) with at least one module derived from GSE14323 providing
confidence in the reproducibility of HCV gene coexpression
modules. For HBV modules, however, 17 out of 33 of them
have significant overlap with at least one module derived from
GSE3500. Nevertheless, to ensure the reliability of our study,
we identified interested modules that not only pass the internal
validation, but also can be reproduced on independent datasets,
which eventually resulted in 17 HCV modules and 15 HBV
modules. We found that some most important modules—
modules that will be classified as oncogenic and dysfunctional
modules in the later sections—were not affected by such filtering.
These modules represent sets of genes that are presented on and
consistently coexpressed in diverse microarray platforms of viral
infection.
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Figure 3 Identification of gene coexpression modules in 36 HBV- and 35 HCV-infected liver tissues and module reproducibility in independent
datasets. Hierarchical average linkage clustering was applied to gene—gene adjacencies, which were defined on the basis of TO. Dynamic tree
cut algorithm was applied to the dendrogram for module identification, and genes in the same branch can be assigned to different modules. The
analysis identified 33 HBV modules (A) and 23 HCV modules (C) represented by different colors on the horizontal bar. Oncogenic modules (A:
BM2, BM15, and BM23; C: CM18 and CM22) are marked in bold red font and dysfunctional modules (A: BM9 and BM10; C: CM15 and CM23) are
marked in bold black font. In B and D, vertical modules were identified from our working dataset (Kanazawa data, corresponding to A and C,
respectively), while horizontal modules were identified from independent dataset. Significance of pair-wise module-module overlap was based
on Fisher’s exact test P-values, using module assignment of the common genes shared by two datasets. (B) 21 out of 33 HBV modules have at
least one significant (P < 0.001) overlapping modules in independent dataset (GSE3500). (D) 17 out of 23 HCV modules have at least one sig-
nificant (P < 0.001) overlapping modules in independent dataset (GSE14323). Only these reproduced modules were kept for further analysis,

and filtered module numbers are marked in grey.

We have validated the reproducibility of our identified gene
coexpression modules in independent datasets, and further
investigated whether these modules can be used to distinguish
different stages of disease progression, reasoning that viral infec-
tion is an important transforming stage from normal to HCC (Tsai
and Chung, 2010). MEs, i.e. the first singular vector of expres-
sions in the module, were treated as the ‘activity’ and used to
build classifiers for predicting the disease status given a test
expression profile. For this purpose, MEs were used as feature
values in a classifier based on svmRadial (Alexandros and
David, 2006), and the technique of 5-fold cross validation was
applied to select the optimal model that maximizes the area
under the curve (AUC) of the receiver-operating characteristic.
Once the optimal classifier was determined from one dataset, it
was used to predict disease status for an independent dataset.
Only the 15 HBV modules and 17 HCV modules that passed
both internal and external validation were used for classification.

Briefly, we trained classifiers on the working Kanazawa dataset
and tested them on the validation one, and vice versa. To
compute MEs on an independent dataset, we mapped gene
compositions of each module to the independent dataset and
calculated the first singular vector from the new gene expression
profiles.

Our working Kanazawa dataset consists of various disease
states in HCC progression: 18 normal, 36 HBV-infected, 35
HCV-infected, 17 HBV-HCC and 17 HCV-HCC (Supplementary
Table S1). To examine the relationship among five categories
of groups, i.e. normal, HBV-liver, HCV-liver, HBV-HCC, HCV-
HCC, we built up five binary classifiers: normal and HBV-liver,
HBV-liver and HBV-HCC, normal and HCV-liver, HCV-liver and
HCV-HCC, HBV-HCC, and HCV-HCC. The final classification
performance was defined as the AUC on one dataset using
the classifier optimized from the other dataset (Figure 5 and
Supplementary Figure S2). It was shown from Figure 5A and B
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Figure 4 Internal validation of HBV (A) and HCV (B) modules. Each colored bar corresponds to a module. Red dash line indicates cutoff for
statistical significance (empirical P < 0.05 or probability value > 0.95). Modules passing the cutoff line represent genes coexpressed in a
wide range of samples while modules below the cutoff line represent genes coexpressed in only a subset of samples.

that gene coexpression modules identified from virus-
infected status clearly distinguish expression profiles of
normal and HCC. The results demonstrate the distinct module-
gene expression profiles in different disease stages. However,
the modules did not perform so well in classifying the two
types of HCC, namely, HBV-HCC and HCV-HCC on the independ-
ent dataset GSE19665 (Deng et al., 2010; Supplementary
Figure S2). One possibility is that the two types of HCC differ
in the case of hepatocarcinogenesis, but they are rather
similar at least in terms of the expression profile when cancer
has already occurred. The other possibility is that the gene
expression profile changes dramatically from viral infection to
HCC, rendering it unsuitable to classify HCC types with these
modules derived from the stage of viral infection.
Selecting oncogenic and dysfunctional modules related
to inflammation

We have identified gene coexpression modules from HBV/
HCV-infected liver tissues, i.e. in the viral infection or inflam-
mation stage, validated their reproducibility in independent
datasets, and we also discovered the distinct module expression
profiles in the three stages of disease progression, i.e. normal,
viral infection, and HCC, which could be used for phenotype clas-
sification in HBV and HCV, respectively. To focus on small subsets
of modules which are most relevant to HCC, we investigated the
dynamics of modules during disease progression and selected
two types of modules, i.e. oncogenic and dysfunctional
modules that are most likely to be related to HCC. As shown in
Figure 2, we defined oncogenic and dysfunctional as follows.
(i) ‘Oncogenic’: modules that are formed upon viral infection
(i.e. they are disrupted in normal liver tissues) but are preserved
in HCC, which represent inflammation-related oncogenic biologic-
al processes that are activated only upon viral infection.

(i) ‘Dysfunctional’: modules that are preserved in normal liver
tissues but are disrupted in HCC, which represent tumor suppres-
sive processes that remain effective upon viral infection. There
are two more types of modules identified from viral-infected
status. (jii) ‘Housekeeping’: those modules are preserved in
both normal tissue and HCC. (iv) ‘Transit’: those modules are pre-
served in neither normal nor HCC. The housekeeping modules
remain static during disease progression and are more likely to
perform essential housekeeping functions, while the transit
modules are more likely to be identified only in viral infection.
They may be specifically responsive to the viral infection in this
critical process and may indicate no disease progression charac-
teristics of HCC. A graphical illustration of the four types of
modules is shown in Figure 2. In order to determine which
modules and their corresponding dysfunctional processes were
activated upon viral infection, we defined two types of changes,
i.e. the change in network topology which measures the gene-
gene coexpression relationship and in the enrichment of differen-
tial expressed (DE) genes which measures the alternation of indi-
vidual gene expression across phenotypes. We noticed that direct
comparison of gene—gene correlation coexpression within
modules between disease stages is unsuitable because the
sample size in each stage varies. Therefore, we adopted a previ-
ously developed measure of the preservation density in intramod-
ular connections between two networks (Dewey et al., 2011), and
random permutation was run to assess their significance of pres-
ervation density (see Materials and methods). We defined
modules with preservation density higher than 95% random
permutations as significantly conserved and those with preserva-
tion density lower than 95% random permutations (empirical
P < 0.05) as significantly disrupted (Figure 5C and D, and
Table 1). To identify modules with significant differential
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Figure 5 Phenotype classification results of the identified gene coexpression modules and preservation of viral infection modules in different
disease stages. The coexpression modules identified from virus-infected inflammation status could distinguish status of normal and HCC (A and
B), indicating the distinct expression profiles in three stages of disease progression, e.g. normal, virus-induced inflammation, and HCC. MEs of
the reproduced modules were used as feature values, and svmRadial-based classifiers were trained in one dataset and evaluated in the other
dataset, respectively. Preservation of viral infection modules in normal status and HCC (C and D) was evaluated in terms of differential expres-
sion (DEN: differential expression in normal vs HBV/HCV, DEB: differential expression in HBV vs HBV-HCC, DEC: differential expression in HCV vs
HCV-HCC) and connectivity (connectN: correlation in normal vs HBV/HCV, connectB: correlation in HBV vs HBV-HCC, connectC: correlation in
HCV vs HCV-HCC). The permutation-based score corresponds to the proportion of one thousand permutations in which random gene modules
were more preserved (under-representation of differentially expressed genes or enrichment of conserved gene-gene coexpression relation-
ship) than the derived modules. Therefore, red color (score > 0.95) corresponds to highly disrupted modules while green color (score <
0.05) corresponds to highly conserved modules.

expression across phenotypes, we identified differentially = modules as dysfunctional modules (bold black in Table 1).
expressed genes (adjusted P < 0.05), and measured the enrich-  Comparison of selected HBV and HCV modules

ment in the module using a permutation-based approach (see Natural questions following module identification are (i) what
Materials and methods). The reported empirical P-value was are the similarities and differences between HBV and HCV
equivalent to the proportion of random permutations in which  modules? (i) What are the dysfunctional implications for such
random gene modules of the same size had a greater significance  similarities and differences for HCC? In this section, we analyzed
of DE than the module tested (Figure 5C and D, and Table 1). To  the overlap between modules and enrichment of functional
this end, out of 15 HBV modules and 17 HCV modules, we iden-  annotations to answer these questions.

tified 3 HBV modules and 2 HCV modules as oncogenic  Comparison of module overlap. First, comparisons of gene
modules (italic type in Table 1), and 2 HBV modules and 2 HCV ~ compositions of HBV and HCV modules based on the Fisher’s

-222 -



146

Table 1 Inflammation-related oncogenic (italic-type font) and dysfunctional (black font) modules, their top functional annotations and viral targets.

Virus targets

Top functional annotations

gory
Oncogenic

Virus_HCC Cate

DE_virus_HCC  Normal_virus
0.324

DE_normal_virus

Cluster_index Cluster_name

Virus

Journal of Molecular Cell Biology

AIP,BHMT2,CHEK1,FETUB,HIF1A,MAPK9,MMP2,PTEN,

Positive regulation of

o*

Blue

BM2

HBV

PTGS2,RXRA,SDC4,SKP2,XBP1

PSMA7

apoptosis
Cell motion, positive

0.954 Dysfunctional

0.436

0.314

darkred

BM9

regulation of apoptosis

DNAJB1
JAG1

0.96 Dysfunctional -~
Oncogenic

0.488

0.304
0.494
0.014*
0.992

0.04*

darkturquoise
lightgreen
Red

BM10

0.028*
0.914

0.004

BM15

Intracellular transport

Oncogenic

0.974

0.99

BM23

H19,LZTS2,5RPX2

Endosome to lysosome

0.192 Dysfunctional

0.216

0.004*

Midnight blue

CM15

HCV

transport
Regulation of cell death

ANKRD12,FBN1,FXYD6,ITGB4,]AG2,JAK2,

Oncogenic

o*

0.012*

Red

cM18

POU3F2,RUSC2,SSR4,TP53BP2,TP53BP2
C160rf7,C7,CANX,CANX,CTSB,FES,GRN,GSK3A,ITGAL,KRT18,

Positive regulation of

Oncogenic

o*

0.43

Turquoise

W22

LAMB2,NID2,NPM1,PFN1,PMVK,RAI14,5DC2,SERPINC1,

transcription, negative

SERPINF2,5FRP4,SLC31A2,SPOCK3,TAF1,VAPB,VAPB,VPS62,ZNF410
ACP1,CENPC1,FKBP7,GPS2,HBXAP,LCK,LTBR,NCL,PIK3R1,SDCCAGS,

regulation of apoptosis
Positive regulation of cell

Yellow o* 0.994 0* 0.93 Dysfunctional

cm23

SLC22A7,SRC,TAF11,UBE1C

proliferation, immune

system development

Oncogenic modules are formed upon viral infection and preserved in HCC, dysfunctional modules are preserved in normal status but disrupted in HCC. Bold font corresponds to significant disruption (score > 0.95), and asterisk

corresponds to significant preservation (score < 0.05). If a module has both significant disruption and preservation in the same stage of progression, only disruption is considered.
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Table 2 Top enriched functional annotation clustering of HBV and
HCV human protein targets
Virus__ Cluster

Functional annotation P-value FDR

HBV  Cluster hsa05200:Pathways in cancer 4.33E—27 4.98E—25
1 hsa04115:p53 signaling pathway 6.91E—12 7.94E-10
hsa04110:Cell cycle 5.09E—-08 5.86E—06
Cluster hsa04920:Adipocytokine signaling 1.12E-05 1.29E-03
2 pathway
PO0036:Interleukin signaling 1.29E—-05 7.35E~04
pathway
Cluster P0O0006:Apoptosis signaling 6.19E—18 3.53E~16
3 pathway
hsa04210:Apoptosis 2.01E-12 231E-10
HCV  Cluster hsa04510:Focal adhesion 2.32E—-08 2.74E-06
1 REACT_13552:integrin cell surface 2.86E—07 1.52E—-05
interactions
Cluster hsa04520:Adherens junction 1.64E—-05 1.93E—-03
2
Cluster hsa05200:Pathways in cancer 2.71E—-08 3.19E-06
3 P04398:p53 pathway feedback 3.99E—-04 3.14E-02

loops

exact test revealed several pairs of oncogenic and dysfunctional
modules with a significant overlap (P < 0.05; Figure 6).
Especially, we noticed that 3 HBV oncogenic modules (BM2,
BM15, BM23) and 2 HCV oncogenic modules (CM18, CM22)
have significant overlap with each other, e.g. BM2 with CM18
(Figure 7A and B), BM15 with CM18, and BM23 with CM22
(Figure 7C and D), representing the subsets of genes consistently
coexpressed upon viral infection in both HCV- and HBV-infected
status. We reasoned that it is these common subsets of genes
that lead to carcinogenesis, and such genes can only be extracted
by comparing the overlap between HBV and HCV modules. The
documented HCC genes curated from literature (Wu et al.,
2010) are marked as red in Figure 7. Although shared by overlap-
ping modules, they occupy different network positions (intra-
modular connectivity, corresponding to the node size) and have
different interacting partners (corresponding to their strongest
first neighbors).

Comparison of functional enrichment. Secondly, common path-
ways of biological process were found in both HBV and HCV
modules, which were associated with a wide range of functions
that can be grouped into several categories: regulation of apop-
tosis, immune response, inflammation, cell cycle, cell migration,
intracellular transport, signal transduction, and nitrogen com-
pound catabolic process (Table 2). They represent general
dysfunctional processes that are related to carcinogenesis,
regardless of viral types. Distinct functional annotation clusters
were also identified, which suggests the differences between
HBV and HCV. A detailed functional enrichment of GO annotations
in these modules is provided in the Supplementary Tables S3
(HBV modules) and S4 (HCV modules), and all GO terms
mentioned in this section are highlighted in yellow background
to facilitate search.

We are most interested in inflammation-related oncogenic
modules, because they indicate the oncogenic processes that
are directly activated by virus (these modules are recapitulated
in HCC but not in normal liver tissues). The most contrasting dis-
tinction is that positive regulation of apoptosis (BM2, HBV, blue,
3.89E—6), programmed cell death (BM2, HBV, blue, 4.62E~5)
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Figure 6 Overlap in gene compositions between HBV and HCV modules. Significance of pairwise module-module overlap was based on
Fisher's exact test P-values. Atl HBV oncogenic modules (BM2, BM15, BM23) and HCV oncogenic modules (CM18, CM22) have significant
overlap with each other, e.g. BM2 with CM18, BM15 with CM18, BM23 with CM22, representing smaller subsets of genes within modules
that are consistently coexpressed in both HBV- and HCV-liver tissues. However, it is the different network properties and combinations of
these subsets of genes that lead to the distinct functional annotations enriched in the corresponding HBV and HCV modules.

and cell death (BM2, HBV, blue, 5.05E—6) were top enriched in
HBV infection-related modules whereas negative regulation of
apoptosis (CM22, HCV, turquoise, 4.0E—6), programmed cell
death (CM22, HCV, turquoise, 5.73E—6) and cell death (CM22,
HCV, turquoise, 6.12E—6) were top enriched in HCV infection-
related modules. The HCV oncogenic module was also top
enriched in positive regulation of transcription (CM22, HCV, tur-
guoise, 1.69E—6). This is in concordance with previous research
findings that anti-apoptosis is predominant in HCV while
pro-apoptosis is predominant in HBV, and that transcription regu-
lation is activated in HCV (Honda et al., 2006). As is summarized
previously (Bouchard and Navas-Martin, 2011), one of the
mechanisms for HBV-induced HCC is the endless cycle of destruc-
tion of HBV-infected hepatocytes by immune cells and concomi-
tant liver regeneration, during which a mutagenic environment is
generated. In HCV-induced HCC, however, chronic inflammation
that changes the microenvironment but does not lead to immediate
death of infected hepatocytes plays the leading role. In fact, HCV
core protein targets several tumor suppressor proteins (such as
P53, P73, and pRb; Zhang and Horvath, 2005), and HCV non-
structural NS5A protein can block the cell death activity while pro-
moting cell survival pathways by interacting with various cellular

regulators (Lan et al., 2002; Chung et al., 2003).

We observed that intracellular transport (BM23, HBV, red,
5.37E—4), intracellular protein transmembrane transport (BM23,
HBV, red, 9.02E —3), and transmembrane receptor protein tyrosine
kinase signaling pathway (BM23, HBV, red, 1.20E—2) were top
enriched in a HBV oncogenic module. Since cell surface receptor
and intracellular signaling factors define the host range of HBV
(Seeger et al., 2007), these processes can be related to the entry
of uncoated HBV into hepatocytes. Interestingly, nucleocytoplas-
mic transport (BM23, HBV, red, 0.044) and nuclear transport
(BM23, HBV, red, 0.047) are uniquely, although marginally,
enriched in the HBV oncogenic module, which is consistent with
the fact that HBV is able to transport its DNA genome into the
nucleus (Rabe et al., 2009). For HCV, endosome to lysosome trans-
port (CM15, midnightblue, 3.46E—3) and endosome transport
(CM15, midnightblue, 5.95E—3) were top enriched in a dysfunc-
tional module. Since endosome and lysosome are compartments
of the endocytic membrane transport pathway, this is consistent
with our existing knowledge that the whole body of HCV enters
hepatocytes via endocytosis (Ashfag et al., 2011). Compared
with HCV, intracellular transport can play more important roles in
carcinogenesis in HBV.
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Figure 7 Topology of two pairs of overlapping HBV and HCV modules. For clarity, only the edges corresponding to top 5% correlations are
shown. The node size corresponds to within-module connectivity, and the edge width corresponds to absolute value of correlation.
Candidate HCC genes curated from literature are marked as red. For the BM2-CM18 pair, corresponds to the overlapping part in BM2 (A)
and CM18 (B). For the BM23-CM22 pair, corresponds to the overlapping part in BM23 (C) and CM22 (D).

Another of our discoveries is that in both of the oncogenic HCV
modules (namely, CM18, red, and CM22, turquoise), immune re-
sponse (CM18, HCV, red, 9.55E—4) and inflammatory response
(CM22, HCV, turquoise, 1.61E —5) were top enriched. Previous re-
search reported that immune response and inflammatory pheno-
types are predominant in HCV compared with HBV (lizuka et al.,
2002; Honda et al., 2006), and our result further suggested that
compared with HBV-HCC, these two processes are more likely
to be oncogenic for HCV-HCC. The HCV oncogenic module was
uniquely enriched in lipid storage (CM22, HCV, turquoise,
0.0026) and previous findings also reported that lipid metabolism
(Ura et al., 2009) is activated in HCV but not in HBV.

We also investigated the inflammation-related dysfunctional
modules, because they represent tumor-suppressive processes
that are disrupted upon cancer transformation. We observed that
DNA damage response and signal transduction were uniquely
enriched in the HBV dysfunctional module (BM9, HBV, darkred,
6.68E—3), and this is in concordance with previous research

findings that DNA damage and signal transduction pathways are
activated in HBV but not in HCV (Honda et al.,, 2006; Ura et al.,
2009). In HCV dysfunctional modules, epithelial cell proliferation
(CM23, HCv, yellow, 5.19E—5) was top enriched, which may be
related to response to chronic inflammation upon HCV infection.
Different cellular processes and pathways represented by human
protein targets of HBY and HCV

Beyond investigating the similarities and differences in these
inflammation-related HBV and HCV modules in terms of gene
compositions and functional annotations as well as dysfunctional
implications, we attempted to provide a root cause analysis by
exploring the human protein targets of HBV and HCV. Given
that infection with HBV or HCV is one of the major risk factors con-
tributing to HCC (Tsai and Chung, 2010), we considered whether
it is the similarities and differences in viral targets of human pro-
teins that explain the observed results. We constructed two
interactome networks for human proteins interacting with HBV
or HCV proteins (Supplementary Figure S1). The HCV interactome,
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consisting of 11 HCV proteins and 481 human proteins, was gen-
erated from both Y2H assay and literature text-mining (de
Chassey et al., 2008), and the HBV interactome, consisting of 5
HBV proteins and 250 human proteins, was generated from text-
mining (Wu et al., 2010). We analyzed the pathway enrichment for
each interactome to check whether HBV and HCV human protein
targets correspond to distinct cellular pathways. A full list of
enriched pathways and their gene compositions for HBV and
HCV human protein targets is provided in Supplementary Tables
S5 and Sé, respectively. To analyze common and distinct cellular
pathways represented by the two interactomes in a clear manner,
we grouped annotations into clusters according to their semantic
similarity (Kappa similarity threshold = 0.4) and ranked these
functional annotation clusters (see Materials and methods for
details). HBV human protein targets were found to be enriched
in cancer pathways (rank 1, score=5.08), inflammatory/
immune pathways (rank 2, score = 3.1), and apoptosis signaling
pathways (rank 3, score = 2.85). The HCV human protein targets
were found to be enriched in cell surface interactions (rank 1,
score = 5.03), and cancer pathways (rank 3, score =1.51;
Table 2). A detailed characterization of the functional annotation
clusters is also provided in Supplementary Tables S5 and Sé.
Thus, we found that the cancer pathway is shared by two interac-
tomes, but the HBV interactome is most enriched in apoptosis
and the inflammatory/immune pathway while the HCV interac-
tome is most enriched in cell surface interactions and the cell cycle.

The difference in annotated clusters between HBV and HCV
interactome was confirmed by the distinct life cycles of HBV
and HCV. HBV is non-cytopathic, and only its encapsulated DNA
genome can be transported into the cell (Seeger et al., 2007).
The virus-induced liver injury is associated with the influx of
immune cells into the liver and the destruction of HBV-infected
hepatocytes (Guidotti et al., 1999). Integration of viral DNA into
the host genome can induce DNA recombination and damage
(Bonilla Guerrero and Roberts, 2005). In contrast, HCV interacts
with the host cell surface, and the whole virus is transported
into the cell via receptor-mediated endocytosis (Blanchard
et al, 2006). HCV is unable to reverse transcribe its RNA
genome and thus unable to integrate into the host genome
(Ashfag et al., 2011). Our module-based approach not only
re-addressed these aspects, but also identified pro-apoptosis
and anti-apoptosis as the driving force of carcinogenesis in HBY
and HCV, respectively, which cannot be revealed by viral target
analysis.

Relating viral targets to the coexpression network, we are inter-
ested in protein targets, which belong to oncogenic modules.
Although HBV and HCV viral targets have overlap, we found
that none of the overlapping proteins belong to both HBV and
HCV oncogenic modules (Table 1). In other words, HBV and
HCV oncogenic modules each contain a disjoint set of target pro-
teins. Supplementary Table S7 provides detailed information
about human proteins targeted by HBV and HCV, their differential
expression during disease progression and module memberships.

The KEGG database contains a pathway for Hepatitis C. Of the
134 genes contained in the Hepatitis C pathway, only 24 of them
are direct targets of HCV. Functional annotation clusters showed
that Hepatitis C is most enriched in the inflammatory/immune
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pathway (Table 2), which is different from HCV. One reason is
that the upstream direct virus targets and their downstream
response elements have different cellular functions. Another is
that the Hepatitis C pathway is incomplete, and functions have
not yet been attributed to all proteins. Besides comparing func-
tional annotations of virus targets which represent initial pertur-
bations, another powerful way to understand the different effects
of HBV and HCV infections is to identify the response elements
upon viral perturbations by analyzing gene expression profiles
in our framework.

Discussion

We have conducted, to the best of our knowledge, the first
comprehensive and comparative study of gene coexpression
analysis at a network level to reveal the similarities and differ-
ences in HBV-HCC and HCV-HCC, in particular focusing on the
inflammation-related analyses of viral infection. Our results dem-
onstrate the advantages of a network-based systems biology ap-
proach over the previous differential expression approach and
viral protein target-based approach. After validation by independ-
ent datasets, we identified 3 HBV and 2 HCV oncogenic modules,
as well as 2 HBV and 2 HCV dysfunctional modules according to
module preservation in normal livers and HCC. Those modules
act as driving forces of carcinogenesis in HBV and HCV, respect-
ively. The top enriched functional annotations of these modules
are also in concordance with previous research and consistent
with our existing knowledge of the distinct lifecycles of HBV
and HCV in hepatocytes. In addition, the top enriched transmem-
brane transport and transmembrane receptor signaling pathway
in one HBV oncogenic module suggested their potentially import-
ant roles in HBV-HCC.

Notably, our discoveries in distinct functional annotations
represented by HBV and HCV modules could not have been
revealed by existing standard methods such as differential ex-
pression and viral targets. First, we found no gene significantly
differential expressed between HBV-infected and HCV-infected
liver samples (Supplementary Table S8), rendering direct com-
parison of gene expression profiles in this status impossible.
Second, we could not have selected those interesting
inflammation-related modules and further classified them into
four types without the use of module preservation in normal
and HCC livers, which is also the advantage of our approach
over other coexpression-based analysis of gene expression only
in disease status, or disease vs control status (viiev et al.,
2010). It should also be noted that if starting from modules in
normal status, the viral infection oncogenic modules would be
missed; and if starting from modules in HCC, the viral infection
dysfunctional modules would be missed as well. Qur theme is
to identify these modules upon viral infection which we regarded
as a process critical to HCC. Moreover, we narrowed down our
analyses of these oncogenic and dysfunctional modules by con-
sidering all the combinatorial cases of module preservation in
the three stages. The transit modules might particularly indicate
the dysfunctional responses of virus infection, while we mainly
focused on these repetitive modules in multiple disease progres-
sion stages. Third, we fully utilized the inherent variability in gene
expression that exists in the same phenotype samples, and

-226 -



150 | Journal of Molecular Cell Biology

further incorporated both the change of gene expression levels
and the change of gene—gene coexpression relationships (i.e.
connectivity) on the module level. By using a permutation-based
approach, we eliminated the effect of different sample size
between groups in the identification and comparison.

Materials and methods
Microarray data and workflow

Figure 1 shows the overview of our framework. A toy example
of constructing gene coexpression network is illustrated in
Figure 1A, our computational procedure is summarized in
Figure 1B, and the module identification and classification of
four types of modules are summarized in Figure 2. We analyzed
four microarray datasets from independent studies, and a
summary of the four datasets is described in Supplementary
Table S1. The primary results were based on Kanazawa data
(Honda et al., 2006; liev et al., 2010). The other three datasets
were mainly used for validation purposes. Both GSE14323 (Mas
et al., 2009) and GSE19665 (Deng et al., 2010) were analyzed
using the Affymetrix HG-U133A platform, and therefore, a probe
set summary for each dataset was obtained using the RMA
method in the affy package in R (Gautier et al., 2004). GSE3500
(Chen et al., 2002, 2004) was retrieved from the Stanford
Microarray Database,. using regression correlation. For
GSE3500, samples and probe sets with >20% missing values
were filtered, and the remaining missing values were imputed
using impute package in R (Troyanskaya et al., 2001). When mul-
tiple probe sets were mapped to the same gene Entrez ID, the
average expression vector was computed and used. Gene coex-
pression modules were identified from HBV- and HCV-infected
liver samples, and validated on respective independent datasets.
Only verified modules were used to analyze the dynamic change
of modules during three stages of disease progression in HBV and
HCV, respectively.

Weighted gene coexpression network construction and module
identification

We built the weighted gene coexpression networks (Zhang and
Horvath, 2005) for HBV and HCV by computing the gene correl-
ation coexpression and inferring the coexpression networks in
36 HBV-infected samples and 35 HCV-infected samples, respect-
ively. In a weighted gene coexpression network, the nodes repre-
sent genes and the edges represent the connection strength
(adjacency), g = [cor(x;,xj)|’3, between the two gene expression
profiles x; and x;. A major advantage of weighted networks is that
the results are highly robust with regard to the choice of param-
eter B. Zhang and Horvath (2005) proposed a scale-free topology
criterion for choosing B, and here we chose it to be six so that this
yields approximately the same number of modules for HBV- and
HCV-infected liver samples. The final adjacency was further trans-
formed into a TO (Yip and Horvath, 2007). Then the modules were
detected using the Dynamic Tree Cut algorithm (Langfelder et al.,
2007; deep split = 2, cut height = 0.995, other parameters are
defaulted).

As previously proposed, the module membership, kye, for each
gene is defined as the Pearson’s correlation between the expres-
sion level of the gene and the ME to which the gene belongs
(Dong and Horvath, 2007). The kye for each gene was measured

He et al.

and the gene was assigned to the module which maximizes
its kme. To avoid capturing weak associations, genes with
kme < 0.3 for all of the MEs were assigned to none of them.
Functional annotation of gene sets and viral infection modules

Functional annotations of the gene sets and modules were
performed on the basis of their gene composition using DAVID
(http://david.abce.nciferf.gov/). In DAVID, the reported P-values
were derived from the EASE score probability, and a modified
Fisher’s exact test that is more conservative than the standard
Fisher's exact test. ‘BBID’, ‘BIOCARTA’, °‘KEGG_PATHWAY’,
‘PANTHER_PATHWAY’, and ‘REACTOME_PATHWAY’ were selected
for pathway enrichment analysis of viral protein targets. For char-
acterization of modules, ‘GO_BP_FAT’ was selected. Due to the re-
dundancy of annotations, similar or relevant annotations often
appear repeatedly. We also adopted the functional annotation
clustering provided in DAVID to help focus on biology in our
study. We set the classification stringency to Medium, and clus-
ters were ranked according to their P-values, which have
exactly the same meaning as P-values for individual terms, and
a false discovery rate (FDR) accompanying with each term was
also reported.
Module internal validation and external validation

The purpose of internal validation is to rule out the possibility
that some modules are based on gene coexpression across the
full set of samples whereas others are the result of coordinate
gene regulation in a subset of samples. Co-clustering statistics
(Langfelder et al,, 2011) is a cross-tabulation-based statistics
for determining whether modules in the reference dataset are
preserved in a test dataset. Reference modules are labeled
g=1,2,...,Q"1 test modules are labeled gr =1, 2, ..., QItest],
and the number of genes in module g or g is denoted by n@ or
n@ . For HBV and HCV, respectively, we randomly chose 70%
samples and identified modules, using the same procedure as
described above, and iterated the random sampling and module
identification process 100 times and generated 100 sets of test
modules, {g/;,i =1, ..., 100}. For each set of modules, we com-
puted its co-clustering statistics with reference modules, g
(modules identified from full set of samples). The proportion of
pairs of genes in both module g and module ¢’ is given by
propCoClustering(q, q7) = (n;"’) / (n(:)), where ngq is defined
as the number of genes that are both in the reference module
g and in the test module g/, the co-clustering statistics for
module g is defined as the sum of the above proportions

over all clusters g/ in the test clustering, coClustering(q) =
Q[tes(}
> propCoClustering(q, g/). Then, a permutation test for 100

gr=1

times was conducted for each test set of modules to determine
whether the observed co-clustering statistics are significantly
different from those expected by chance. Finally, we selected the
reference modules with significant co-clustering statistics in 95%
of the test sets.

To validate the reproducibility of modules in independent
datasets, we identified coexpression modules in independent
datasets (GSE14323 for HCV and GSE3500 for HBV individual-
ly) using the same procedures as described above and
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extracting the common genes shared by two datasets, then we
computed the significance of module overlap based on the
Fisher’'s exact test using the common genes and their
module memberships.

Module preservation in different disease stages

To capture both the dynamics of individual gene expression
and the dynamics of gene-gene correlation coexpression rela-
tionship (Miller et al., 2010) between disease stages as shown
in Figure 5, for each module we analyzed the enrichment of differ-
entially expressed genes and the preservation of coexpression
network topology using the permutation-based approach.

First, DE genes, {g;} (adjusted P-value < 0.05), were identified
using the ImFit function provided in the R limma package (Smyth,
2004), and a t-score was assigned to each gene that quantified
the significance of DE between phenotypes. A full list recording
the significance of differential expression for each gene, normal
vs viral infection and viral infection vs HCC, is provided in
Supplementary Table S8. For each module, an average t-score
was computed by dividing the sum of individual t-score by
module size, t-score(/Vl,-):( ZM |t—score(g,~)})/size(M,~). The

GiEM;
significance of DE enrichment is given by the proportion of
1000 permutations in which random modules of the same size
associated with a larger t-score than the reference module.

To evaluate the preservation of modules between two gene
coexpression networks, N; and Np,, constructed from samples of
different size, we adopted a previous measure of intramodular
connectivity preservation (Dewey et al., 2011). We first computed
the intramodular connectivity (Dong and Horvath, 2007) vectors

ijeEM
k' and k™, where k = {k;: k=Y a,-;l, k; is the intramodular con-
j#i
nectivity of node J, a; is the adjacency, and nodes i and j belong
to the same module M. Then for each module M;, M; € M, we
computed its intramodular  connectivity  preservation

Pres;;" = cor(Kjcy,, Kity,)- Under the null hypothesis that the

derived module, M;, is preserved between N; and Ny no better
than modules derived from random clustering, we randomly per-
muted gene labels so that modules of the same size but random
gene composition were generated. 1000 such permutations were
performed, and the proportion of permutations in which

Presj" > Pres;" was used to evaluate the significance of test.

Such a test was used to evaluate the preservation of modules in
normal and HCC, for HBV- and HCV-liver samples, respectively.
Since samples in viral-infected liver tissue consist of four stages
of fibrosis, we also computed the enrichment of genes significantly
correlated with fibrosis for each module using similar statistics

as described above, where cor(M;) = ( Z;M 1cor(g,-)[) /size(M;).
giEM;

Supplementary material
Supplementary material is available at Jjournal of Molecular Cell
Biology online.

Acknowledgements
We thank Dr Katsuhisa Horimoto of National Institute of
Advanced Industrial Science and Technology, Japan for his

Journal of Molecular Cell Biology | 151

kindly help.

Funding

This work was supported by the NSFC (Nos. 31100949,
91029301, 61134013 and 61072149), the Chief Scientist
Program of Shanghai Institutes for Biological Sciences (SIBS),
Chinese Academy of Sciences (CAS) (No. 2009CSP002),
Shanghai NSF (No. 11ZR1443100) and the Knowledge
Innovation Program of SIBS of CAS (No. 2011KIP203) and the
SA-SIBS Scholarship Program. This research was also partially
supported by the National Center for Mathematics and
Interdisciplinary Sciences of CAS, Shanghai Pujiang Program,
and the FIRST program from JSPS initiated by CSTP.

Conflict of interest: none declared.

References

Alexandros, K., and David, M. (2006). Support vector machines in R. J Stat.
Softw. 15, 9.

Ashfaq, U.A., Javed, T., Rehman, S., et al. (2011). An overview of HCV molecular
biology, replication and immune responses. Virol. ] 8, 161.

Blanchard, E., Belouzard, S., Goueslain, L., et al. (2006). Hepatitis C virus entry
depends on clathrin-mediated endocytosis. Virol. |. 80, 6964-6972.

Bonilla Guerrero, R., and Roberts, L.R. (2005). The role of hepatitis B virus inte-
grations in the pathogenesis of human hepatocellular carcinoma. J. Hepatol.
42, 760-777.

Bouchard, M.)., and Navas-Martin, S. (2011). Hepatitis B and C virus hepato-
carcinogenesis: lessons learned and future challenges. Cancer Lett. 305,
123-143.

Chen, X., Cheung, S.T., So, S., et al. (2002). Gene expression patterns in human
liver cancers. Mol. Biol. Cell 13, 1929-1939.

Chen, X., Higgins, )., Cheung, S.T., et al. (2004). Novel endothelial cell markers
in hepatocellular carcinoma. Mod. Pathol. 17, 1198-1210.

Chen, L., Wang, R.S., and Zhang, X.S. (2009). Biomolecular Networks: Methods
and Applications in Systems Biology. New Jersey: John Wiley & Sons, Inc.
Chen, L., Liu, R., Liu, Z.P., et al. (2012). Detecting early-warning signals for
sudden deterioration of complex diseases by dynamical network biomar-

kers. Sci. Rep. 2, 342.

Chung, Y.L., Sheu, M.L., and Yen, S.H. (2003). Hepatitis C virus NS5A as a po-
tential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in
hepatocellular carcinoma. Int. ). Cancer 107, 65-73.

de Chassey, B., Navratil, V., Tafforeau, L., et al. (2008). Hepatitis C virus infec-
tion protein network. Mol. Syst. Biol. 4, 230.

Deng, Y.B., Nagae, G., Midorikawa, Y., et al. (2010). Identification of genes
preferentially methylated in hepatitis C virus-related hepatocellular carcin-
oma. Cancer Sci. 101, 1501-1510.

Dewey, F.E., Perez, M.V., Wheeler, M.T., et al. (2011). Gene coexpression
network topology of cardiac development, hypertrophy, and failure. Circ.
Cardiovasc. Genet. 4, 26-35.

Dong, J., and Horvath, S. (2007). Understanding network concepts in modules.
BMC Syst. Biol. 1, 24.

Gautier, L., Cope, L., Bolstad, B.M., et al. (2004). affy—analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics 20, 307-315.

Guidotti, L.G., Rochford, R., Chung, ., et al. (1999). Viral clearance without de-
struction of infected cells during acute HBV infection. Science 284, 825-829.

Honda, M., Yamashita, T., Ueda, T., et al. (2006). Different signaling pathways
in the livers of patients with chronic hepatitis B or chronic hepatitis C.
Hepatology 44, 1122-1138.

lizuka, N., Oka, M., Mori, N., et al. (2002). Comparison of gene expression pro-
files between hepatitis B virus- and hepatitis C virus-infected hepatocellular
carcinoma by oligonucleotide microarray data on the basis of a supervised
learning method. Cancer Res. 62, 3939-3944.

Ivliev, A.E., ’t Hoen, P.A., and Sergeeva, M.G. (2010). Coexpression network
analysis identifies transcriptional modules related to proastrocytic

-228 -



152 | Journal of Molecular Cell Biology

differentiation and sprouty signaling in glioma. Cancer Res. 70,
10060~-10070.

Lan, K.H., Sheu, M.L., Hwang, S.J., et al. (2002). HCV NS6A interacts with p53
and inhibits p53-mediated apoptosis. Oncogene 21, 4801-4811.

Langfelder, P., Zhang, B., and Horvath, S. (2007). Defining clusters from a hierarch-
ical cluster tree: the Dynamic Tree Cut library for R. Bioinformatics 24, 719-720.

Langfelder, P., Luo, R., Oldham, M.C., et al. (2011). Is my network module pre-
served and reproducible? PLoS Comput. Biol. 7, €1001057.

Liu, Z.P.,, Wang, Y., Zhang, X.S., et al. (2012). Network-based analysis of
complex diseases. IET Syst. Biol. 6, 22-33.

Mas, V.R., Maluf, D.G., Archer, K.J., et al. (2009). Genes involved in viral car-
cinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular
carcinoma. Mol. Med. 15, 85-94.

Miller, J.A., Horvath, S., and Geschwind, D.H. (2010). Divergence of human and
mouse brain transcriptome highlights Alzheimer disease pathways. Proc.
Natl Acad. Sci. USA 107, 12698-12703.

Oldham, M.C., Konopka, G., lwamoto, K., et al. (2008). Functional organization
of the transcriptome in human brain. Nat. Neurosci. 11, 1271-1282.

Perz, J.F., Armstrong, G.L., Farrington, L.A,, et al. (2006). The contributions of
hepatitis B virus and hepatitis C virus infections to cirrhosis and primary
liver cancer worldwide. ). Hepatol. 45, 529-538.

Rabe, B., Delaleau, M., Bischof, A,, et al. (2009). Nuclear entry of hepatitis B
virus capsids involves disintegration to protein dimers followed by nuclear
reassociation to capsids. PLoS Pathog. 5, €1000563.

Ravasz, E., Somera, A.L., Mongru, D.A., et al. (2002). Hierarchical organization
of modularity in metabolic networks. Science 297, 1551-1555.

Seeger, C., Zoulim, F., and Mason, W.S. (2007). Fields Virology. Philadelphia:

He et al.

Lippincott Williams & Wilkins.

Smyth, G.K. (2004). Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol.
Biol. 3, Article 3.

Stuart, J.M., Segal, E., Koller, D., et al. (2003). A gene-coexpression network
for global discovery of conserved genetic modules. Science 202,
249-255.

Troyanskaya, 0., Cantor, M., Sherlock, G., et al. (2001). Missing value estima-
tion methods for DNA microarrays. Bioinformatics 17, 520-525.

Tsai, W.L., and Chung, R.T. (2010). Viral hepatocarcinogenesis. Oncogene 29,
2309~2324. .

Ura, S., Honda, M., Yamashita, T., et al. (2009). Differential microRNA expres-
sion between hepatitis B and hepatitis C leading disease progression to
hepatocellular carcinoma. Hepatology 49, 1098-1112.

Wang, H., He, X., Band, M., et al. 2005). A study of inter-lab and inter-platform
agreement of DNA microarray data. BMC Genomics 6, 71.

Wu, ZJ., Zhu, Y., Huang, D.R., et al. (2010). Constructing the HBV-human
protein interaction network to understand the relationship between HBV
and hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 29, 146.

Wurmbach, E., Chen, Y.B., Khitrov, G., et al. (2007). Genome-wide molecular
profiles of HCV-induced dysplasia and hepatocellular carcinoma.
Hepatology 45, 938-947.

Yip, A., and Horvath, S. (2007). Gene network interconnectedness and the gen-
eralized topological overlap measure. BMC Bioinf. 8, 22.

Zhang, B., and Horvath, S. (2005). A general framework for weighted
gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4,
Article 17.

-229 -

/.11t WOII DIDBOTUMOCT

€17 ‘61 AIBNIQ3.J UO AUSIDATUN BMBZEURY 18 /810" S1euinooiko  asutl,






