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Table 3. T cell response to AFP and AFP-derived peptides by ELISPOT assay before and after TAE with DC infusion

Before treatment

After treatment

Additional Complete AFP Lymph. AFP Lymph.
Patient HLA treatment ablation  (ng/ml) (ul™")  AFP35; AFP,o; AFP,, AFP CMVpp65s,s TT  (ng/ml) (i™®)  AFP35; AFPLo; AFP,, AFP CMVpp653, TT
21 A24 No - 332 1,100 7 1 4 ND 10 ND 819 800 11 0 10 ND 188 ND
22 A24,A26 RF N 341 700 O 26 5 ND 68 ND 237 500 ND 59 ND ND 81 ND
23 A11,A24 No - 41 600 0 2 5 1 2 0 43 400 0 0 0 0 3
24 A2,A24  MCT C 1,260 800 3 8 7 ND 19 ND 614 1,300 26 7 ND 12 ND
25 A24,A33 RF C 11 1,500 0O 1 0 31 15 19 900 1 15 26 4
26 A24,A33 RF C <10 2,000 © 0 0 0 0 0 <10 1,700 0 16 o] 0 0
27 A24,A26 RF C 16 700 0 0 0 1 1 0 16 700 2 1 15 9 1
28 A11,A31 RF N 31 800 ND ND ND 3 ND 0 33 700 ND ND ND 0 ND 0
29 A11,A33 No - <10 1,100 ND ND ND 0O ND 0 <10 700 ND ND ND 0 ND 1
30 A2,A11 RF C 13 1,300 ND ND ND 8 ND 1 14 1,500 ND ND ND 12 ND 7
31 A24,A33 RF C 1,014 800 O 0 0 0 1 0 15 300 0 0 20 0 0 0
32 A11,A24 RF C <10 1,000 3 11 48 97 0 10 1,200 23 20 20 45 91 23
33 A2,A26 RF C 29 1,300 ND ND ND 0 ND 0 27 1,300 ND ND ND 0 ND 0

Abbreviations: Lymph., number of lymphocytes; RF, radiofrequency ablation; PEIT, percutaneous ethanol injection therapy; MCT, microwave coagutation therapy; C, completed; N, not completed;
-, not determined; ND, not done. The bold letters show the positive responses in ELISPOT assays.
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Table 4. Patient characteristics

Enhancement of T-cell responses by TAE with DC

Patients treated

Patients treated by

by TAE (n = 20) TAE with DC (n = 13) p-value®
Age (years)® 66.6 * 7.8 65.7 = 10.0 NS
Sex (M/F) 14/6 11/2 NS
HLA (A23 or 24/others) 16/4 9/4 NS
ALT (U/1) 51.0 = 47.4 86.9 = 62.8 NS
Total bilirubin (g/dl) 1.3+ 0.9 1.5 09 NS
Albumin (g/dl) 3.7 £ 0.7 3.2 £ 0.6 NS
AFP level (ng/ml) 322.7 = 793.0 239.8 + 418.2 NS
Diff. degrees of HCC (well/moderate or poor/ND?) 2/6/12 4/4(5 NS
Tumor size (small/large®) 416 1/12 NS
Tumor multiplicity (multiple/solitary) 18/2 12/1 NS
TNM stage (I, I/, 1V) 19/1 11/2 NS
Histology of nontumar liver (LC/chronic hepatitis) 15/5 10/3 NS
Liver function (Child A/B or €) 14/6 3/10 0.02
Etiology (HCV/HBV/others) 12/2/6 13/0/0 NS

Abbreviations: NS, no statistical significance; ND, not determined. 2Data are expressed as the mean =+ SD. >Small: <2 cm, large: >2 cm.
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Figure 2. Frequency of the patients who showed enhancement of T-cell responses after treatment. The prevalence of antigen-specific T cells
was determined by IFN-y ELISPOT analysis using alpha-fetoprotein (AFP) and AFP-derived peptides (g), CMV pp65-derived peptide (&) or
tetanus toxoid protein (¢) in 20 and 13 patients with HCC who received TAE and TAE with DC infusion, respectively.

in 4 and 6 patients who did and did not show increasing
AFP-specific T-cell responses, respectively.

Kinetics of AFP-specific T-cell responses before

and after TAE

Next, we examined the kinetics of AFP-specific T cells in 8
patients who showed increasing frequency of IFN-y-produc-
ing T cells against AFP or AFP-derived peptides after TAE.
The frequency was examined by ELISPOT assay before and
2-4 weeks and 3 months after TAE. Thirteen kinds of AFP-
specific T cells showed increasing frequency 2-4 weeks after
TAE (Fig. 4); however, the increase was transient and most
cell types decreased 3 months after TAE. Three patients
showed more than 10 specific spots for AFP or AFP-derived
peptides 3 months after TAE (Patients 6, 11 and 30). In anal-
ysis of the correlation between the maintenance of AFP-spe-
cific T-cell responses and HCC recurrence, 1 patient (Patient

6) had HCC recurrence after 6 months and 1 patient (Patient
30) did not show recurrence. Another patient (Patient 11)
did not receive curative ablation and was not analyzed. There
was no difference in the kinetics of AFP-specific T cells
between patients who received TAE with and without DC
infusion.

Discussion

In a previous study, we made a preliminary report that
immune responses specific for tumor antigens were enhanced
after HCC treatments.”’® Similarly, as in our previous or
other group’s results,® we observed enhancement of AFP-spe-
cific immune responses in 6 of 20 patients with TAE alone
in this study. The enhancement of tumor antigen-specific
immune responses was also observed in the cases using
MRP3- or hTERT-derived peptides.

Int. J. Cancer: 126, 21642174 (2010) © 2009 UICC
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Figure 3. Comparison of direct ex vivo analysis (IFN-y ELISPOT assay) before and after treatment of HCC. The assay was performed using
PBMCs of patients who received TAE for AFP-derived peptides (a), AFP (b), CMV pp65-derived peptide (¢) or tetanus toxoid protein (d). The
same assay was performed using PBMCs of patients who received TAE with DC infusion for AFP-derived peptides (), AFP (f), CMV pp65-
derived peptide (g) or tetanus toxoid protein (h). AFP and CMV ppé65-derived peptides were tested in only HLA-A24 or A23 positive

patients. Data are expressed as the mean + SD of specific spots.

Table 5. Characteristics of the patients with HLA-A24 or A23

Patients treated

Patients treated

by TAE (n = 16) by TAE with DC (n = 9) p-value®
Age (years)? 65.7 = 7.8 67.8 = 10.8 NS
Sex (M/P 10/6 7/2 NS
ALT (U/1 55.9 £ 51.9 75.4 = 53.0 NS
Total bilirubin (g/dD 1.4 = 0.8 1.4 =11 NS
Albumin (g/dl) 3.6 0.7 3.1 = 0.6 NS
AFP level (ng/ml) 392.1 = 877.8 337.2 £ 477.1 NS
Diff. degree of HCC (well/moderate or poor/ND) 2/5/9 3/3/3 NS
Tumor size (small/large® 3/13 0/9 NS
Tumor multiplicity (multiple/solitary) 15/1 8/1 NS
TNM stage (I, H/HL, IV) 15/1 7/2 NS
Histology of nontumor liver {LC/chronic hepatitis) 13/3 8/1 NS
Liver function (Child A/B or Q) 10/6 0/9 0.003
Etiology (HCV/HBV/others) 11/1/4 9/0/0 NS

IAbbreviations: NS, no statistical significance; ND, not determined. ?Data are expressed as the mean * SD. 3Small: <2 cm, large: >2 cm.

The precise mechanism of this phenomenon is still
unknown; however, in recent studies, several treatments to
destroy tumor cells by necrosis and/or apoptosis have
induced antitumor immune responses in animal models™**
and even in humans.®° In the study of in situ tumor abla-
tion, it is reported that tumor ablation creates a tumor anti-
gen source for the induction of antitumor immunity.>** In
another study regarding photodynamic therapy (PDT),* it is

Int. J. Cancer: 126, 2164~2174 {(2010) © 2009 UICC

reported that acute inflammation, expression of heat-shock
proteins and providing tumor antigens to DCs caused by
PDT induce tumor-specific immune responses.

Based on these results, we hypothesize that DC infusion
with TAE can induce antitumor immune responses more
effectively than TAE alone. According to DC research in
recent years, successful enhancement of the antitumor
immune response has been reported by intratumoral
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Table 6. Enhancement of AFP-specific T cell response and
treatment outcome

Enhancement of

AFP-specific Recurrence, Recurrence,
T cell response 3 meonths 6 months
Patient 1 - N u
Patient 2 - N M
Patient 4 + M ND
Patient 5 - N M
Patient 6 + N u
Patient 9 - N M
Patient 10 - N N
Patient 13 . N N
Patient 14 - N N
Patient 16 - N M
Patient 19 - N u
Patient 24 + U ND
Patient 25 + M ND
Patient 26 -+ N N
Patient 30 + N N
Patient 31 + N N
Patient 33 - N N

Abbreviations: N, no recurrence; U, uninodular recurrence;
M, multinodular recurrence; ND, not determined.

administration of DC in combination with tumor abla-
tion.*®*” Furthermore, immunotherapies using DC have been
performed in patients with HCC and their antitumor effects
are reported.*®->° These results support our hypothesis and
therefore, in the next step, we examined the immunological
effects of DC infusion with TAE.

The comparison of frequency in patients who showed
enhancement of AFP-specific immune responses revealed
more frequency in patients with DC infusion than in those
with TAE alone. On the other hand, there were no differen-
ces in the 2 groups in the comparison of frequency for
patients who showed enhancement of CMV or TT-specific
immune responses. These results suggest that DC infusion
with TAE affects tumor-specific immune responses and that
the effects are limited to the tumor area.

Some patients with TAE alone showed disappearance of
AFP- or control antigen-specific T cells. Although the mecha-
nism of this phenomenon is unknown, anticancer drugs used
in TAE might suppress the immune responses, because most
of the patients showed decreasing the number of lymphocytes
after TAE. These results suggest that TAE alone might give a
chance to enhance tumor-specific T-cell responses in only
some patients. Further analysis using many more patients
with TAE is necessary to make clear the differences in the
patients with and without enhancement of T-cell responses.
In contrast, disappearance of AFP- or control antigen-specific

Enhancement of T-cell responses by TAE with DC
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Figure 4. Kinetics of AFP-specific T-cell responses determined by
IFN-y ELISPOT assay before and after TAE. PBMCs were obtained
before and 2-4 weeks and 3 months after TAE. Each graph
indicates the kinetics of T cells specific for each antigen in each
patient. Some patients received additional treatments as indicated
in Tables 1 and 3 for a curative treatment after the measurement
of T-cell responses at 2—-4 weeks after TAE.

T cells was not observed in the patients with DC infusion,
suggesting strong immunostimulating effect of this treatment.

In analysis of the association between the enhancement of
AFP-specific T cells and clinical responses, no correlation
could be shown, suggesting that enhancement of T-cell
response associated with TAE or TAE with DC infusion may
not have protective effect against HCC recurrence. To clarify
the mechanism in more detail, we examined the kinetics of
AFP-specific T-cell response. Increased frequency of AFP-
specific T cells was transient and fell in 4 of 8 patients 3
months after treatment (Fig. 4). Similar to our results, Ayaru
et al. also reported that the frequency of AFP-specific CD4™
T cells fell in all patients by 1-3 months after TAE.? In addi-
tion, our results suggest that DC infusion with TAE is not
effective to maintain the increased frequency of AFP-specific
T cells.

Recent genome profiling studies of HCC show that HCC
is a very heterogenous tumor.”® Furthermore, HCC has mul-
ticentric carcinogenesis and develops at different time
points. These characters of HCC may also be another reason
for no correlation between the enhancement of AFP-specific
T cells and clinical responses. The identification of many
more tumor antigens and their T-cell epitopes is necessary
for more precise analysis of the relationship between anti-
tumor immune response and clinical response, and for
immunotherapy.

In the recent study, it is reported that CD8" T-cell
response to AFP is multispecific and AFP-specific IFN-y-pro-
ducing CD8" T cells are directed against different epitopes
spreading over the entire AFP sequence with no single

Int. J. Cancer: 126, 2164-2174 (2010) © 2009 UICC
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immuno-dominant CD8" T-cell epitope.”” Therefore, there is
a limitation to our study, because the number of immuno-
genic AFP-derived peptides applicable in this study is small.

However, the results of the present study suggest that TAE

with DC infusion enhances the tumor-specific immune
responses. Although these modified immune responses may
not be sufficient to prevent HCC recurrence because the
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Abstract

Background We previously reported a limb-salvage
technique by treating tumor-bearing bone with ligquid
nitrogen. We also reported systemic antitumor immunity
was enhanced by cryotreatment in 2 murine ostcosarcoma
(LM8) model. We therefore combined the cryotreatment of
tumor with dendritic cells to promote tumor-specific
immunc responses.

Questions/purposes We determined whether our tech-
nique could enhance systemic immune response and inhibit
metastatic tumor growth in a murine osteosarcoma model.
Materials and Methods To evaluate activation of the
immune response, we prepared six groups of C3H mice (80
mice total): (1) excision only, (2Z) dendritic cells without
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reimplantation of the cryotreated primary tumor, (3)
reimplantation of the cryotrcated primary tumor alone, (4)
dendritic cells combined with reimplantation of the cryo-
treated primary tumor, (5) dendritic cells exposed to
cryotreated tumor lysates without rcimplantation of the
cryotreated primary tumor, and (6) dendritic cells exposed
to cryotreated tumor lysates with reimplantation of the
cryotreated primary wumor, We then compared and verified
the activation state of each group’s antitumor immunity.
Results  Mice that received dendritic cells exposed to
cryotreated tumor lysates with reimplantation of the cryo-
treated primary tumor group had high serum interferon v,
reduced pulmonary metastases, and increased numbers of
CD8(+) T lymphocytes in the metastatic arcas.
Conclusions Combining tumor cryotreatment with den-
dritic cclls cphanced systemic immune responses and
inhibited metastatic tumor growih.

Clinical Relevance We suggest immunothcrapy could
be developed further to improve the treatmemt of
osteosarcoma.

Introduction

The standard treatment of osteosarcoma consists of pre-
operative chemotherapy, surgical tumor excision, and
postoperative chemotherapy. Limb-saving surgery is fca-
sible in most cases. Advances in ostcosarcoma treatment
have now achicved a S-year survival rate of 60% to 90%
for patients, and limb function after reconstruction con-
tinues to improve with time 3, 16, 30, 46, 47, 49].
Tsuchiya et al. developed a new approach using frozen
autografts [48] to improve reconstruction afier osteosar-
coma resection. The tumor is resected with an adequate
margin, and the resected specimen is immersed in liquid
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nitrogen for 20 minutes to kill all tumor cells. After
thawing, the specimen is returncd to the original place with
appropsiate internal fixation to reconstruct the defect.
Compared with heat-treated bones [8, 14], bonc genetic
protcins and native biomechanical structures are preserved
after cryotreatment {53]. In one report limb function using
the technigue of Tsuchiya et al. was rated as excellent in
71.4% of patients, and good in 10.7%, as assesscd by the
functional ¢valuation system of Enneking [i1]. Two stud-
ies suggest the approach enhanced bone formation when
compared histologically with pasteurized bone and irradi-
ated bone [43, 48]. Another advantage in reimplanting
cryotreated tumor tissue is its cffect on the immune system
[50}): tumor tissuc after cryoablation in situ provokes an
immune reaction in patienis with breast and prostate cancer
[6, 8. 39]. Brewer et al. reported mctastatic tumors some-
times disappear or shrink after in situ cryoablation of the
primary tumor with liquid nitrogen [4]. The structure of
tumor antigens is retained in frozen tumor, and leukocytes
probably can recognize these antigens. Similar antitumor
effects can be expected from our reconstructive procedurc
of reimplanting tumor-bearing bone afier cryetreatment
with liquid nitrogen.

Nishida et al. observed an inadequate antitumor effect
after rcimplantation of frozen tumor tissue alone [35].
However, the antitumor cffect was enhanced by promoting
noaspecific immune activation by intraperitoneal injection
of OK-432, a substance extracted from alpha-Streptocac-
cus pyogenes, This approach promotes inflammation and
activation of dendritic cells (DCs) that initiate the specific
antitumor effect [19]. This type of immunotherapy
reportedly is cffective for breast and prostate cancers (6, 8,
39]. Many groups have reported successful immunotherapy
for osteosarcoma {5, 15, 18, 20, 22, 24, 25, 33, 34, 36, 42,
51, 52]. However, the ability to control metastatic lesions
and local recurrence docs not appear to be superior to other
adjuvant treatments (2, 7, 13, 23, 29].

We therefore wondered whether combining cryotreat-
ment and immunotherapy might enhance tumor response,
We specifically determined whether: (1) antitumor immu-
nity could be enhanced through activation and transfer of
DCs combined with reimplantation of the cryotreated pri-
mary tumor, and (2) metastatic lesions could be prevented
owing to the involvement of T lymphocytes in a murine
osteosarcoma model (LM8).

Materials and Methods

Using a reported method to induce osteosarcoma [1, 35],
we hypodermically implanted 1 x 10° LM8 cells (2 mur-
inc osteosarcoma cell line) into the subcutaneous gluteal
region of 80 female C3H mice, 6 to 8 weeks old. Tumors
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developed in all animals. Two weeks after inoculation, we
surgically cxcised the tumors and cryotreated them with
liguid nitrogen. We cstablished the following six groups
(Fig. 1) (1) the tumor was cxcised with wide margins
14 days after inoculation (n = 15); (2) the tumor was
excised with wide margins 14 days after inoculation and
bone marrow-derived DCs then were injected into the
contralateral subcutancous gluteal region without reim-
plantation of the cryotreated primary tumor twice a weck
(n = 15) (3) the tumor was excised with wide margins
14 days after inoculation and reimplanted after cryotreat-
ment with liquid nitrogen into the contralateral gluteal
region to evaluate for local recurrence from frozen tumor
tissue {n = 15); (4) the tumor was excised 14 days after
inoculation and reimplanted after cryotreatment into the
contralateral glutcal region to evaluate for focal recurrence,
and DCs then were injected twice a week into this sec-
ondary site (n = 15); (5) the tumor was excised with wide
margins 14 days afier inoculation and DCs exposed to
cryotreated tumor lysates were injected twice a week into
the contralateral gluteal region without reimplantation of
the cryotreated primary tumor (n = 15}); and (6) the tumor
was excised with wide margins 14 days after inoculation
and reimplanted afier the treatmens with Jiquid nitrogen
into the contralateral gluteal region to evaluate for local
recurrence (samc as Group 3) with the addition of DCs
exposed to cryotreated tumor lysates injected twice a week
(n = 15). Wec harvested tumor from 30 mice, and then
the tumor was treated with liquid nitrogen to create the
lysates. We presumed a systemic immune response would
be induced by injecting DCs around the frozen tumor tis-
sue, We microscopically determined the presence of
metastases in the lungs 2 weeks after the tumor inocula-
tion. We had previously confirmed thc presence of
pulmonary metastases in an additional 20 mice in a pre-
liminary cxperiment in advance. We also confirmed that
there were no viable cells after cryotreatment using liquid
nitrogen, in agreement with a previous study [35] We
observed no recurrence of the tumor at the primary site of
inoculation after excision, All experiments were performed
under the guidelines for animal experiments as stipulated
by the Kanazawa University Graduate School of Medical
Science [37].

LM8 cells, derived from Dunn ostcosarcoma, were
provided by the Riken BioResource Center (Saitama,
Japan). The cells were maintained in complete medium
consisting of RPMI 1640 supplemented with 10% heat-
inactivated fetal bovine serum, 1060 pg streptomycin per
mL, and 100 units penicillin per mL and were cultured at
37°C in 5% CO,;. To establish local implantation of the
tumor and subsequent lung metastasis, the LM8 cells
(I x 10% were suspended in 0.2 mL phosphate-buffesed
saline (PBS) and subcutaneously inoculated into the right
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Fig. 1 A diagram of the experimental protocol and treatment
schedule is shown. Two weeks afier tumor inoculation, tumors were
ircated by one of the following methods: (1) excision only (n = 15);
(2) DCs without reimplantation of the cryotreated primary tumor
(n = 15); (3) rcimplantation of the cryotrented primary tumor
(n = 15); (4) DCs pulsed with cryotreated tomor lysates and

gluteal region of the mice. All animals had macroscopi-
cally and microscopically confirmed lung metastases
within 4 weeks [1].

C3H mice were purchased from Sankyo Labo Inc
{Toyama, lapan) and housed in a specific pathogen-free
animal facility in our laboratory. We were not able to
sccurately determine the survival time of cach- group
because the guidelines for animal experiments concerning
pain required euthanasia in distressed animals.

Liquid nitrogen (—196°C) was uvsed for cryotreatment.
Tumoor tissue was collected on gauze and soaked in liquid
nitrogen for 20 minutes for en bloc tumor tissue freezing.
The twmor was prethawed at room temperature (20°C)
for 15 minutes and then thawed in distilled water (20°C)
for 15 minutes. The liquid nitrogen-treated tumor tissue

reimplantation of the cryotrcated primary tumor (n = 15); (5) DCs
pulsed with cryotreated tumor lysales without reimplantation of the
cryotreated primary twmor (n = 15); or (6) DCs pulsed with
cryotrcated tumor and reimplantation of the cryotreated primary
tmor (EN) (n = 15). The mice were cuthonized nnd evaluated
6 weeks after tumor inoculation. sc = subcutancous.

was transplanted subcutaneously in the left gluteal region
of the same mouse.

Because the mice were genetically identical, the struc-
ture of the major histocompatibility complex (MHC) Class
1 molecules was such that the T cclls would be able 10
recognize the MHC Class I with antigens on the antigen-
presenting cells (APCs) [17, 27]. Bone marrow-derived
DCs were generated as described by Lutz and Rossner (28]
with minor modifications. Briefly, erythrocyte-depleted
mouse bone marrow cells obtained from flushed marmrow
cavities (1 x 10° cellymL) were cultured in complete
medium with 20 ng/mL recombinant mouse GMCSF
(PeproTech EC Ltd, London, UK) in 10-cm tissue culture
dishes at 37°C in an atmosphere containing 50 mL CO; per
L. Or Days 3 and 6, half of the medium was added to the
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same volume of fresh completc medium and used to
replenish the original plates. The freeze-thawed tumor
lysate was added to the DC cultures on Day 6 at a ratio of
five DC equivalents to one tumor cell (ie, 5:1) and incu-
bated at 37°C in an atmosphere containing 50 mL CO, per
L. After 24 hours of incubation, nonadherent cells includ-
ing DCs were harvested by gentle pipetting,

For fluorescence activated cell sorting (FACS) analysis,
DCs were counted with a FACSCalibur™ Flow Cytometer
(Becton-Dickinson, San Jose, CA) and stained with fluor-
ochrome-conjugated antibodies (BD Pharmingen, Tokyo,
Japan) for the following markers: cluster of differentiation
(CD)11c, CD80, CD86, I-Ad, and CD40, CD1lc was used
as a marker for all DCs regardless of the degree of matu-
ration, whereas CD80, CD86, 1-Ad, and CD40 are markers
for DCs. Data analysis was performed with CELLQuest™
software (Becton-Dickinson). The corresponding labeled
isotype antibodies served as controls. DCs used for vacci-
nation were washed twice, enumerated, and resuspended in
PBS at 1 x 10%/mL.

We inoculated LM8 cells (5 x 10%) in a mouse to make
the tumor lysate. After 4 weeks, we resected the tumor
mass and soaked the entire tumor in liguid nitrogen to kill
the tumor cells. We mixed cryonccrotic tissue with DCs at
Culture Day 6, after the tumor was defrosted, and the
homogenate was prepared using PBS. The homogenate was
passed through a 0.2-pm filter to remove bacteria and tis-
sues and mixed with the DCs for 24 hours.

Afler intraperitoneal injection of 5 mL sodium pento-
barbital (Somnopentyl™; Kyontsu Sciyaku, Tokyo, Japan),
mice were euthanized by cervical dislocation and their
blood was collected. Murine interfecron (IFN)-y and inter-
leukin (IL)-4 rclease werc measured by ELISA using
Quantikine™ (R & D Systems, Minneapolis, MN) accord-
ing to the manufacturer’s protocol using an Easy Reader
EAR340 microtest plate reader (SLT-Labinstruments,
Salzburg, Austria).

We cstimated the arca of the pulmonary metastatic
lesion on 50 serial histologic sections of each lung by
manually drawing orthogonal lincs delimiting the edges of
the pulmonary metastatic lesion and selected the widest
part of the specimen. The arca was determined by multi-
plying the maximum orthogonal dimensions using imagel
software (NIH, Bethesda, MD; http://rsb.info.nih.gov/ijf).
We compared the mean areas between the six groups,

For immunohistochemistry, lung specimens were fixed
in 20% formalin and embedded in paraffin, For each case,
we examined all the blocks of lung tissues of formalin-
fixed, paraffin-embedded tumor tissue. All specimens
were decalcified, although we found the decalcification
step did not influence the immunohistochemistry for any
of the stains. Five scctions for cach mouse were cut 4-pm
thick. Each section was cut at the maximum diameter.

_@_ Springer

CD8(+) T lymphocytes and natural killer (NK) cells in
the pulmonary metastatic lesion were quantified by mea-
suring the immunohistochemistry-positive cells per unit
arca in each group. Rchydrated tissue seclions were
incubated with rat monoclonal antiboedy raiscd against
CD8(+) T lymphocytes of mouse origin (Santa Cruz
Biotechnology, Santa Cruz, CA) and rat monoclonal
antibody raised against NK cells of mousc origin (Abcam
Plc, Cambridge, UK). The two antibodies were diluted
1:50 with PBS. Color reactions were performed at room
temperature for 15 minutes and cover slips were mounted
with glycerol and gelatin.

We determined differences in serum IFN-y, serum IL-4,
pulmonary metastatic area, and number of CD8(+) lym-
phocytes and NK cells in the metastatic arca among the six
groups using a nonrepeated-meusures ANOVA and the
Scheffe test. All analyses were conducted with SPSS™ 1.0
software (SPSS Japan Inc, Tokyo, Japan).

Resnlts

We activated antitumor immunity by combining DCs
cxposed to lysates of cryotreated tumor and reimplantation
of the cryotreated primary tumor. On Culture Day 7, the
ratio of mature DCs to immature DCs was increased
compared with the ratio at Culturc Day 6 (Fig. 2; immature
DCs, upper left; mature DCs, upper right). Morcover, this
increase was more apparent in groups incubated with tumor
lysate. Serum IFN-y levels were greater (p < 0.0001) in the
mice that received DCs combined with reimplantation of
the cryotreated primary tumor (119.0 & 7.61 pg/mL) than
in the cryotreated primary tumor alonc group (37.33 %
2.58 pg/mL). Moreover, the group that received tumor
lysate-exposed DCs combined with rcimplantation of the
cryotreated primary wmor (157.33 &+ 14 pg/mL) had a
greater {(p < 0.0001) IFN-y lcvel than the group that
received only tumor lysate-exposed DCs without reim-
plantation of the cryotreated primary tumor (12027
11.29 pg/mL) (Fig. 3). Serum I1L-4 was lower (p < 0.0001)
in the mice that received DCs exposed to the lysates of
cryotreated tumor and reimplantation of the cryotreated
primary tumor group (13.33 £ 9.75 pg/mL) than in the
excision-only group (45.06 £ 5.71 pg/mL) (Fig. 4).

The enhanced immune response by T lymphocytes
reduced metastatic lesions. Reduction of the metastatic
area was greater (p < 0.0001) in the group that received
DCs without reimplantation of the cryotreated primary
tumor (15.99 = 3.93 mm® than in the excision-only
group (24.12 & 3.60 mm?). The reduction of the meta-
static area was greater (p < 0.0081) in the DCs combined
with reimplantation of the cryotreated primary tumor
group (5.39 & 1.49 mm?) than in the reimplantation of
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the cryotreated primary tumor alonc group (13.22 &+
2.59 mm?) (Fig. 5). CD8(+) T lymphocytes gathered in
the pulmonary metastatic area in DC-treated groups,
however, NK cells were not recruited to the metastatic
area in the DC-treated groups compared with the nonDC-
treated groups (Fig. 6). The number of CD8(+) T lym-
phocytes per unit area was greater (p < 0.0001) in the
DCs combined with reimplantation of the cryotreated
primary tumor group (8.33 % 2.57 cells/mm®) than in the
reimplantation of the cryotreated primary tumor alone
group (244 & 0.53 cells/mm?). Mice that received DCs
exposed to the lysates of cryotreated tumor and reim-
plantation of the cryotreated primary tumor (12.79 £ 2.14

&) Springer

b} END p EXelNeDC EXeDCe Lysatasof EKeLNeDColy
{B<}) of the eryotraated ¢ryotraatod tumer
primary tumer vl

{w)

cellsymm?) showed higher (p < 0.0001) levels than the
group that received DCs exposed to the lysates of cryo-
treated tumor without rcimplantation of the cryotreated
primary tumor (8.71 + 239 cellssmm?) (Fig. 7). The
number of NK cells per unit arca was greater (p <
0.0001) in the group that received DCs exposed to the
lysates of cryotreated tumor without reimplantation of the
cryotreated primary tumor (3.0 % 2.17 celiymm?) than
in the excision-only group (1.20 £ 030 ccliymm?)
(Fig. 8). The CD8(+)T lymphocyte, CD4(+) T lympho-
cyte, and DC infiltrations in reimplanted tumors were
similar to those seen with pulmonary metastases {data not
shown).
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Discussion

Vartows  immunotherapies for ostcosarcoma have been
ricd. As stendard teatments for osteosarcoma are inefl-
fectual for nany patients, new treatments need o be
developed, In the 1970s immunotherapy for osteosarcoing
wits reported by Southam et al. [4210 Neff and Loncking
FA4]L and Campbell et al. {5 In the 1980s, new methods
such as the use of interferons and Bacille de Calmetie ¢t
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immunatherapy for osteosarcoma include peptide therapy
or gene transfer therapy  combined  with hyperthermia
therapy [LO, 15, 21, 23, 33]. We asked whether (1) anti-
wmor immunity could be achieved through activation of
DCx combined  with refmplantation of the crvotrealed
printry tumor and (2) i metastatie lesions would e
prevented owing o enbanced T lymphocyte involvement.

We acknowledge limitations in this study. First, we used
mice with an identical genetic makeup. The structure of the
MUC Class 1 molecules wag similar and the T cells could
recognize the MHC Class 1. However, we needed to use
DCs from a different tatbeit genetically identical) mouse o
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accomplish our adoptive transfer experiments. We mini-
mized the potential for an immune response to nonself
antigens by using genetically identical tumor tissue and
mice. [t would be necessary to use BCs derived from the
same individual in clinical application, but this could not
be achieved in our mouse model. In humans, however,
monocytes are separated from the patient’s own peripheral
blood and DCs can be induced from these monocytes,
Second, we could not completely replicate the clinical
approach used in humans in our mouse model. In clinical
cases frozen bone always is retumncd to the same site.
However, it was impossible to replicate this in our exper-
imental mouse model in which transplanted tumor cells
were removed from the tibia and then returned to the same
place after cryotreatment. In a preliminary experiment we
attempted to do just that and these 20 mice could not move
and died of starvation. We therefore used the contralateral
gluteal region to check for local recurmrence after tumor
excision or recurrence from frozen tissuc.

Antitumor immunity appcared to be activated through
DCs combined with reimplantation of the cryotreated pri-
mary tumor or by exposing the transferred DC 1o lysates of
cryotreated tumor. The usc of lymphokine-activated killer
(LAK) therapy has been used with other types of wmors
{26]. However, T lymphocytes, which are the effeciors, do
not accumulate inside osteosarcoma mmors as expected.
Autoclaving supplemented by DCs is thought to enhance
the antitumor effect, but hyperthermia causes proteins to
denature, and activation of the antitumor effect is often
insufficient [37]. Several studics [12, 31, 41] repont peptide
vaccine therapy, but many patients apparently develop
immunotolerance [45]. Thus, immunotherapy for malig-
nant tumor achieved by these various methods has not been
established definitively although investigations continue to
try to overcome the major hurdles associated with immu-
notherapy (Table 1). We emphasize the immune response
is activated by cryotreatment but not by heat-treated tissue.
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{10}

Our method differs from thosc described by others {7, 9,
10, 14]. In some regards DCs are believed to be the prin-
cipal APCs for initiating immune responses in vivo [32].
In comparison with other traditional adjunct therapeu-
tic options for cancer, such as radiation therapy and
chemotherapy, immunotherapy provides a more targeted
treatment to the cancer, with potentially fewer detrimental
effects on noncancecrous cells [30, 40}, DCs without suffi-
cient cancer antigens may not have the ability to kill tumor
cells and present the antigen to T lymphocyies by them-
selves. Our data suggest the antitumor effect in the group
that reccived DCs without reimplantation of cryotreated
primary tumor was almost the same as that in the reim-
plamation of cryotrcated primary tumor alone group.
The data further suggest the effects increased only when
exposing the DCs to tumor lysates in the absence of
cryonecrotic primary tumors. However, combining reim-
plantation of cryotreated primary tumor and DCs exposed
to cryotreated tumor lysates produced synergistic effects.
Using reimplantation of cryotrcated primary tumor is more
appropriate for clinical applications. We therefore belicve
an efficient immunc response will be activated when DCs
recognize tumor antigens appropriately. CD8(+) T cells act
as an effcctor by the Thi route, and this is promoted mainly
by IFN-v and IL-12 [38]. However, IL4 [21], IL-6, and
I1L.-10 streagthen humoral immunity. Levels of IFN-y, IL-2,
and IL-12 generally increase when celi-mediated immunity
is activated, and IL-4, IL-6, and IL-10 increasc when
humoral immunity is activaied. These cytokines act in
opposition to maintain an immunc balance.

QOur data suggest enhanced T lymphocyte recruitment
and function reduce metastatic lesions in a murine ostco-
sarcoma model. Immunoreactivity increased slightly in
mice that received DCs exposed to lysates of cryotreated
tumor combined with reimplantation of the cryotreaied
primary tumor. NK cells attack the tumor independently of
APCs. NK cells attack cells that downreguiate MHC Class
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Table 1. immunotherapeutic trinls of malignant tumors
Tumor Immune intervention Route  Immunologic Comments References
response
Osteosarcomn BCG SC NC No consistent clinical cffect 122, 24§
Osteosarcoma Interieron & SC, IV PR-NC Osteosarcoma-associated antigens have }36)
potential for targeted immunotherapy
Unknown LAK v NC T lymphocytes were unable to penetrate |26}
the tumor
Osteosarcoma Antiidiotypic antibodies 137 NC It may be possible to circumvent this 118, 51, 52}
: heterogeneity by activation of tissue
macrophages to the tumoricidal state
Breast cancer, Peptide therapy combined with SC. v 1t may be a potential agent for use in {15, 20}
osteosarcoma hyperthermia therapy immunotherapy
Osteosarcoma Gene transfer therapy combined v IL-23 scems to be a less effective 125. 331
with hyperthermia therapy immunotherapeutic for adjuvant
treatment of ostcosarcamas
Unknown Peptide vaccine therapy SC NC-PD Many patients have peplide-induced {451
’ tolerance develop
Osteosarcoma Crysimmunclogy and DCs SC Combining cryotreatment with DCs Our data

resulted in enhanced antitumor effects

BCG = Bacille de Calmette et Guérin; SC = subcutaneous; NC = no change; 1V = intravenous; PR = partial response; LAK = lymphokine-
activated killer; IL = imterleukin; PD = progressive discase; DCs = dendritic cells.

I expression or have a stressed appearance [44]. We
observed a reduced tumor burden in the groups that
received transplanted DCs, which corrclated with recruit-
ment of CD8 lymphocytes to the tumor site as observed
with immunohistochemistry.

Returning the frozen bone after liquid nitrogen treatment
to its original place can be readily used in the clinic. Afier
the first cryotreatment, it is possible to perform the treat-
ment again using cultured DCs if a patient’s tumor cells
have been preserved. This approach therefore still can be
used cven after other methods (such as chemotherapy,
radiation therapy, or surgery) no longer arc reasonable.
Combining DCs pulsed with lysates of cryotreated tumor
and reimplantation of the cryotreated primary tumor
enhanced antitumor effects. We believe the approach may
be a useful alternative for patients with osteosarcoma when
other treatment options including chemotherapy, radio-
therapy, and surgical treatment have been incffective.
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Antitumor Effect after Radiofrequency Ablation of Murine
Hepatoma Is Augmented by an Active Variant of CC
Chemokine Ligand 3/Macrophage Inflammatory Protein-1a

Noriho lida', Yasunari Nakamoto!, Tomohisa Baba?, Hidetoshi Nakagawa', Eishiro Mizukoshi', Makoto Naito®,
Naofumi Mukaida?, and Shuichi Kaneko'

Several chemokines are used for immunotherapy against cancers because they can attract immune cells
such as dendritic and cytotoxic T cells to augment immune responses. Radiofrequency ablation (RFA) is used
to locally eliminate cancers such as hepatocellular carcinoma (HCC), renal cell carcinoma, and lung cancer.
Because HCC often recurs even after an eradicative treatment with RFA, additional immunotherapy is neces-
sary. We treated tumor-bearing mice by administering ECI301, an active variant of CC chemokine ligand 3,
after RFA. Mice were injected s.c. with BNL 1ME A.7R.1, a murine hepatoma cell line, in the bilateral flank.
After the tumor became palpable, RFA was done on the tumor of one flank with or without ECI301. RFA alone
eliminated the treated ipsilateral tumors and retarded the growth of contralateral non-RFA-treated tumnors
accompanied by massive T-cell infiltration. Injection of ECI301 augmented RFA-induced antitumor effect
against non-RFA-treated tumors when administered to wild-type or CCR5-deficient but not CCRI-deficient
mice. ECI301 also increased CCR1-expressing CD11c” cells in peripheral blood and RFA-treated tumors after
RFA. Deficiency of CCRI impairs accumulation of CD11¢*, CD4", and CD8" cells in RFA-treated tumors, Further-
more, in IFN-y-enzyme-linked immunospot assay, ECI301 augmented tumor-specific responses after RFA
whereas deficiency of CCRI abolished this augmentation. Thus, we proved that ECI301 further augments
RFA-induced antitumor immune responses in a CCR1-dependent manner. Cancer Res; 70(16); 6556-65. ©2010 AACR.

6556

Chemokines are a class of candidate molecules for immu-
notherapy. Chemokines are presumed to play an essential
role in the regulation of leukocyte trafficking and dendritic
cell-T-cell interactions (1-4). In animal experiments, intratu-
moral use of chemokines, such as monocyte chemoattractant
protein-1/CC chemokine ligand 2 (CCL2), macrophage in-
flammatory protein (MIP)-1a/CCL3, or MIP-3c/CCL20, suc-
ceeds in decreasing tumorigenesis accompanied by increase
in the numbers of tumor-infiltrating dendritic, natural killer,
or T cells (5-7). Thus, application of chemokines in immu-
notherapy is promising but needs further refinement before
they can be used in clinical situations.

Radiofrequency ablation (RFA) is an eradicative treatment
against cancers, such as hepatocellular carcinoma (HCC), re-
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nal cell carcinoma, and lung cancer. RFA of HCC can gener-
ate HCC-specific T cells in peripheral blood (8). Activation of
dendritic cells in human peripheral blood is also observed
after this treatment (9). Thus, RFA can induce immunogenic
tumor cell death and subsequently tumor-specific immune
responses (8-11). However, multicentric development of
HCC in the cirrhotic liver frequently results in tumor recur-
rence even after the apparent curative treatment of HCC by
RFA (12). These observations suggest that RFA-induced
tumor-specific immune responses are often not sufficient
to prevent tumor recurrence. Thus, additional treatment
modalities are required to augment HCC-specific immune
responses.

CCL3/MIP-la can augment immune responses but pro-
blems arise because of its tendency to form large aggregates
at high concentrations when administered systemically. Un-
like human naive CCL3, BB-10010 is generated by a single
amino acid substitution of Asp26 to Ala and exhibits similar
biological potencies, but rarely forms large aggregates (13).
Based on its activity to mobilize bone marrow cells to periph-
eral blood, randomized clinical trials were performed to ex-
amine whether the combined administration of BB-10010
and chemotherapeutic agents can protect against chemo-
therapy-induced neutropenia. However, the myeloprotective
effects of BB-10010 were not sufficient to warrant its use with
chemotherapy (14). Concomitantly, several lines of evidence
reveal that the administration of human recombinant CCL3
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can mobilize activated T-cell and dendritic cell precursors
into circulation (15, 16).

ECI301, which has the same amino acid sequence as
BB-10010, was generated using the fission yeast (Schizosac-
charomyces pombe) expression system. ECI301 can augment
irradiation-induced tumor regression when administered
systemically to mice bearing multiple subcutaneous tumors
(17). Of interest is the fact that the effects were observed in
both unirradiated and irradiated tumors. Thus, systemic
ECI301 treatment can augment irradiation-induced tumor-
specific systemic immunity. These observations prompted
us to investigate the effects of ECI301 on RFA-treated mice.
Here, we show that ECI301 further augments RFA-induced
antitumor immune responses in a CCR1-dependent manner.

Mice

Seven- to 9-week-old specific pathogen-free female BALB/c
mice were purchased from Charles River Japan and designat-
ed as wild-type (WT) mice. BALB/c-nu/nu mice were pur-
chased from CLEA Japan. CCRI-deficient (CCRI™'™) mice
were a gift from Dr. Philip M. Murphy (National Institute
of Allergy and Infectious Disease, NIH, Bethesda, MD);
CCR5-deficient (CCR5™") mice were a gift from Dr. Kouji
Matsushima (Department of Molecular Preventive Medicine,
Tokyo University, Tokyo, Japan). All mice were backcrossed
to BALB/c mice for 8 to 10 generations. All animal experi-
ments were performed under specific pathogen—free condi-
tions in accordance with the Guidelines for the Care and
Use of Laboratory Animals of Kanazawa University (Japan).

Tumor cell line

A murine HCC cell line, BNL 1ME A.7R.1 (BNL), was pur-
chased from the American Type Culture Collection in 1998
and kept at low passage throughout the study. The cells were
screened for bacteria, fungus, and Mycoplasma contamina-
tion by direct culture method in 2006 before start of the
study. The cells were cultured in DMEM (Sigma Chemical
Co.) containing 10% fetal bovine serum (¥BS), 0.1 mmol/L
nonessential amino acids, 1 umol/L sodium pyruvate,
2 mmol/L 1-glutamine, 50 pg/mL streptomycin, and
100 units/mL penicillin (Life Technologies, Inc.).

Animal models

ECI301 was generated as previously described and provid-
ed by Effector Cell Institute, Inc. (17, 18). The left and right
flanks of 7- to 9-week-old female WT, CCRI™~, CCR5™", and
nu/nuz mice were injected s.c. with 5 x 10° BNL cells in 100 pL
of PBS. Fourteen days later, when tumor size reached a diam-
eter of 6 to 8 mm, tumors of one flank were treated using a
radiofrequency generator (RITA 500PA, RITA Medical Sys-
tems) and needle as described below. On days 0, 2, and 4 af-
ter RFA, 20 ug of ECI301 in 100 uL of PBS were injected iv.
via the tail vein, whereas mice treated with RFA alone were
injected with 100 puL of PBS. Untreated tumor-bearing mice
were used as controls. In another schedule, 2 pg of ECI301 in
100 uL of PBS were injected iv. from day 0 to day 4 (5 con-

secutive days). The sizes of non-RFA-treated tumors on the
contralateral flank were evaluated twice a week using cali-
pers, and tumor volumes were calculated using the following
formula: tumor volume (mm®) = (longest diameter) x (short-
est diameter)® / 2.

RFA-treated or non-RFA-treated tumors were excised at
the indicated time intervals for immunohistochemical analy-
sis and quantitative real-time reverse transcription-PCR
(RT-PCR). Spleens and peripheral blood were removed from
the mice at the indicated time intervals for flow cytometric
analysis and enzyme-linked immunospot assay (ELISPOT).

Radicfrequency ablation

Mice were anesthetized by ip. injection of Somnopentyl
(Schering-Plough Animal Health) and carefully shaved in
the tumor area. After placing the mice onto an aluminum
plate attached with an electricity-conducting pad, an RFA
needle of expandable electrode with maximum dimension
of 20 mm (70SB 2 cm; RITA Medical Systems) was inserted
into the middle of the tumors and expanded at 2 or 3 mm.
RFA treatments were done using a radiofrequency generator
at a power output of 25 W for 1.5 minutes and the temper-
ature of the needle tips reached 70°C to 80°C.

Immunohistochemical analysis

The removed tumor tissues were embedded in Sakura
Tissue-Tek optimum cutting temperature (OCT) compound
(Sakura Finetek) as frozen tissues. Cryostat sections of the
frozen tissues were fixed with 4% paraformaldehyde in PBS
and stained with rat anti-mouse CD4 (BD Biosciences), rat
anti-mouse CD8a (BD Biosciences), hamster anti-mouse
CD1lc (BD Biosciences), and rat anti-mouse F4/80 anti-
bodies (Serotec) overnight at 4°C. The sections were then
incubated with biotinylated rabbit anti-rat IgG (DakoCyto-
matijon) or biotinylated mouse anti-hamster IgG (BD Bio-
sciences) for 1 hour at room temperature. The immune
complexes were visualized using the Catalyzed Signal Ampli-
fication System (DakoCytomation) or the Vectastain Elite
ABC and DAB substrate kits (Vector Laboratories) according
to the manufacturer's instructions. As a negative control, rat
IgG (Cosmo Bio) or hamster IgG (BD Biosciences) was used
instead of specific primary antibodies. The numbers of pos-
itive cells in each animal were counted in 10 randomly select-
ed fields at 400-fold magnification by an examiner without
any prior knowledge of the experimental procedures.

Double-color immunofiuorescence analysis

Tumor tissues were embedded in OCT compound as fro-
zen tissues. After fixation with 4% paraformaldehyde/PBS,
cryostat sections were stained with the combinations of anti-
CD4 and goat anti-mouse CCR1 (Santa Cruz Biotechnology),
anti-CD8a and anti-CCR1, anti-F4/80 and anti-CCR1, phy-
coerythrin (PE)-conjugated hamster anti-CD1lc (BD Bio-
sciences) and anti-CCR1, anti-F4/80 and goat anti-mouse
CCL3 (R&D Systems), and anti-F4/80 and goat anti-mouse
CCL4 antibodies (R&D). After extensive washing, AF488 don-
key anti-rat IgG (Invitrogen) was used as a secondary anti-
body to detect CD4”, CD8a’, or F4/80" cells. Simultaneously,
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AF546- or AF488-donkey anti-goat IgG (Invitrogen) was used
to detect CCR1*, CCL3", or CCL4" cells. The sections were ob-
served using a confocal microscope (LSM 510 META, Zeiss).

Quantitative real-time RT-PCR

Total RNA was extracted from the resected tumor using
RNeasy Mini Kit (Qiagen) according to the manufacturer's in-
structions. After treating the RNA preparations with RNase-
free DNase I (Qiagen) to remove residual DNA, ¢cDNA was
synthesized as described previously (19). Quantitative real-
time PCR was done on a StepOne Real-Time PCR System
(Applied Biosystems) using the comparative Cr quantifica-
tion method. TagMan Gene Expression Assays (Applied Bio-
systems) containing specific primers and probes [accession
numbers: CCL3, Mm00441258_ml; CCL4, Mm00443111_m1;
CCL5, Mm01302428_m]; glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), Mm99999915_gl] and TagMan Fast
Universal PCR Master Mix were used with 10 ng of cDNA
to quantify the expression levels of CCL3, CCL4, and CCL5.
Reactions were performed for 20 seconds at 95°C followed
by 40 cycles of 1 second at 95°C and 20 seconds at 60°C.
GAPDH was amplified as an internal control and its Cr va-
lues were subtracted from the Cr values of the target genes

(ACy). The ACy values of tumors after RFA with or without
ECI301 were compared with the ACr values of tumors of
untreated mice.

Enzyme-linked immunospot assay

To prepare tumor lysates, BNL or CT26 cells were sus-
pended in PBS and subjected to four cycles of rapid freezing
in liquid nitrogen and thawing at 55°C. The lysate was spun
at 15,000 rpm to remove particulate cellular debris. After har-
vesting murine spleens on day 21 after RFA, mononuclear
cells were isolated by centrifugation through a Histopaque-
1083 density gradient (Sigma Chemical). ELISPOT was
performed using an IFN-y-ELISPOT kit (Mabtech). Ninety-
six-well plates coated with anti-mouse IFN-y antibody were
blocked for 2 hours with RPMI 1640 (Sigma Chemical) con-
taining 10% FBS. Two hundred fifty thousand splenic mono-
nuclear cells were added in triplicate cultures of RPMI 1640
containing 10% FBS together with BNL or CT26 lysates at a
tumor cell-to-mononuclear cell ratio of 2:1. After 48 hours of
culture, the plates were washed eight times with sterile PBS
and further incubated for 2 hours with biotinylated anti-
mouse IFN-y antibody. After another eight washes, alkaline
phosphatase—-conjugated streptavidin was added to these
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. ECI301-induced augmentation of antitumor effects after RFA. WT mice were injected s.c. with 5 x 10° BNL cells into the left and right flanks.

Fourteen days later, when tumors became palpable, tumors of one flank were treated using the RFA generator and needle. On day 0, 2, and 4 after RFA,
20 ug of ECI301 in 100 pL of PBS were injected i.v. into each mouse, whereas mice treated with RFA alone were injected with 100 pL of PBS. Tumor-bearing
untreated mice were observed as controls. A, macroscopic appearances of the mice on day 14 after RFA are shown. Arrowheads indicate the scar
after RFA. Representative resuits are from at least 10 mice in each group. B, non-RFA-treated tumor volumes after RFA with or without ECI301 were
measured twice a week. Points, mean; bars, SE. *, P < 0.05; **, P < 0.001. C, volumes of non—-RFA-treated tumors on day 14 after RFA. In addition to the
groups described in B, tumor volumes were determined in animals receiving 2 pg of ECI301 in 100 pL of PBS iv. from day 0 to day 4 (5 consecutive

days) after RFA and those receiving 20 pg of ECI301 alone without RFA. Columns, mean; bars, SE. *, P < 0.05; ™,

untreated mice.

P < 0.01; ™, P < 0.001, compared with
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