

21. Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouille Y. Hepatitis C virus entry depends on clathrin-mediated endocytosis. Journal of virology 2006;80:6964-6972.

de Bouteiller O, Merck E, Hasan UA, Hubac S, Benguigui B, Trinchieri G, Bates EE, et al. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. The Journal of biological chemistry 2005;280:38133-38145.

23. Takeda K, Akira S. TLR signaling pathways. Seminars in immunology 2004;16:3-9.

Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A. Hepatic enrichment and activation of myeloid dendritic cells during chronic hepatitis C virus infection. Hepatology 2012.

25. Dental C, Florentin J, Aouar B, Gondois-Rey F, Durantel D, Baumert TF, Nunes JA, et al. Hepatitis C virus fails to activate NF-kappaB signaling in plasmacytoid dendritic cells. Journal of virology 2012;86:1090-1096.

Thomas E, Gonzalez VD, Li Q, Modi AA, Chen W, Noureddin M, Rotman Y, et al.

HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 2012;142:978-988.

Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X, Zhu Y. Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. Journal of virology 2012;86:1010-1020.

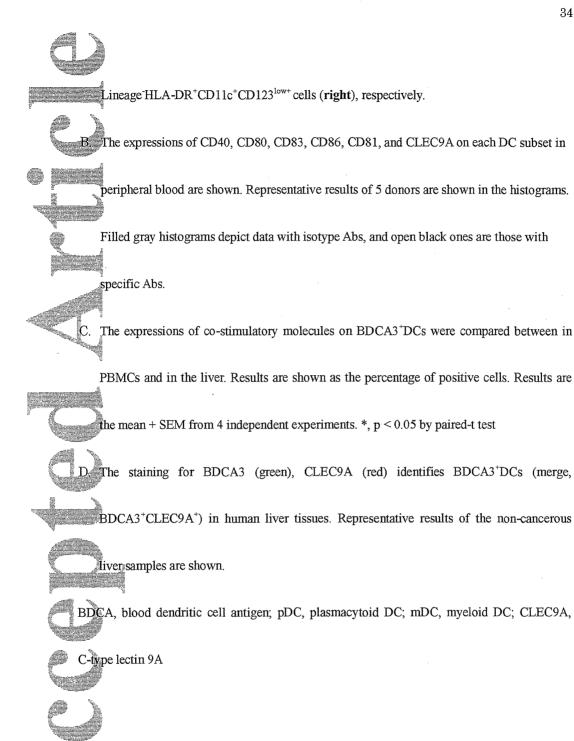
FIGURE LEGENDS

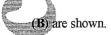
Figure 1: Identification and phenotypic analyses of peripheral blood and intrahepatic

We defined BDCA3⁺DCs as Lineage HLA-DR⁺BDCA3^{high+} cells (middle), pDCs as

Lineage HLA-DR CD11c CD123 eells and mDCs as

HEP-12-1228-R1




Figure 2. Analysis of frequency of DC subsets in the peripheral blood and in the liver

Frequencies of BDCA3⁺DCs, pDCs and mDCs in PBMCs (21 healthy subjects) (A) or in the

HEP-12-1228-R1

intrahepatic lymphocytes (IHLs) (11 patients who had undergone surgical resection of tumors)

Horizontal bars depict the mean \pm SD. **, p < 0.005; ***, p < 0.0005 by Kruskal-Wallis test

C. The paired comparisons of the frequencies of DC subsets between in PBMCs and in IHLs.

Results of 8 patients whose PBMCs and IHLs were obtained simultaneously are shown. *, p

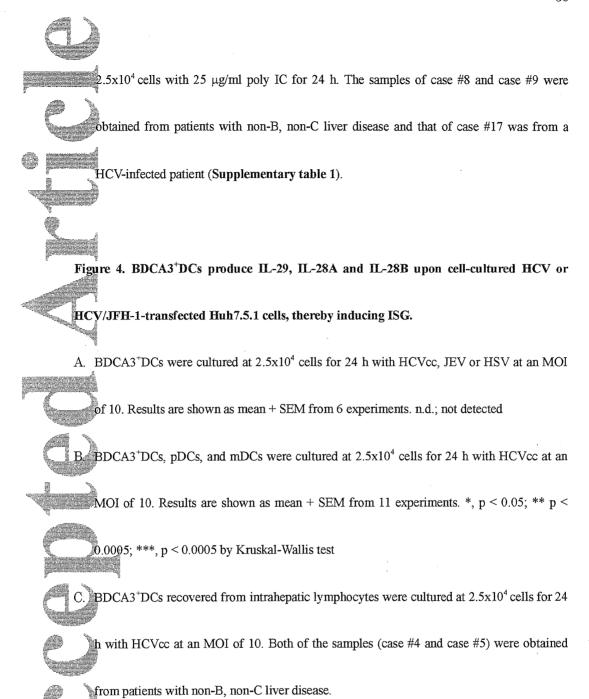
< 0.05; ***, p < 0.0005 by paired-t test

IHLs, intrahepatic lymphocytes; pDC and mDC, see Fig 1.

Figure 3. BDCA3⁺DCs recovered from peripheral blood or intrahepatic lymphocytes

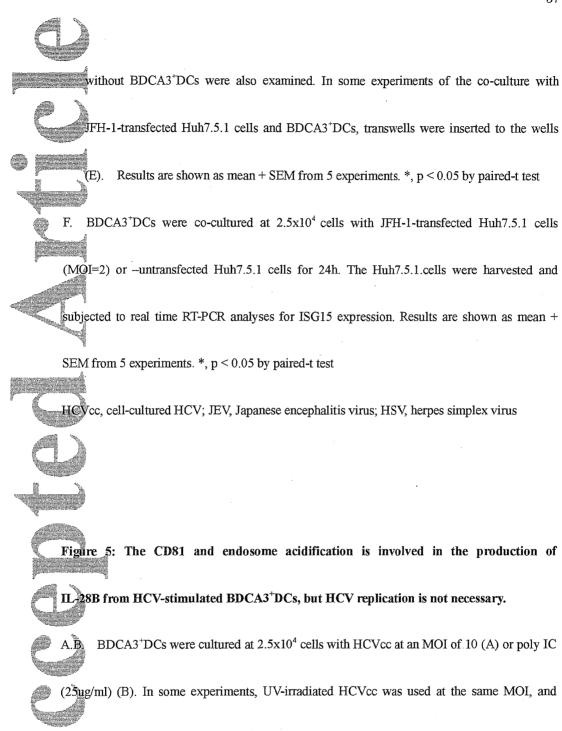
produce large amounts of IL-29/IFN-λ1, IL-28A/IFN-λ2 and IL-28B/IFN-λ3 in response to

...BDCA3⁺DCs and mDCs were cultured at 2.5x10⁴ cells with 25 μg/ml poly IC, and pDCs


were with 5 μM CPG for 24 h. The supernatants were examined for IL-29, IL-28A, IL-28B,

FN-β and IFN-α. Results are shown as mean +SEM from 15 experiments. *, p < 0.05; ***,

p < 0.0005 by Kruskal-Wallis test.

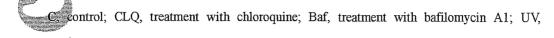

B. For the IL-28B production, BDCA3 DCs in intrahepatic lymphocytes were cultured at

HEP-12-1228-R1

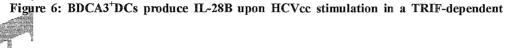
BDCA3⁺DCs were co-cultured at 2.5x10⁴ cells with JFH-1-transfected (MOI=2) or – untransfected Huh7.5.1 cells for 24h. The supernatants of JFH-1-transfected Huh7.5.1 cells

HEP-12-1228-R1

HEP-12-1228-R1


Hepatology

BDEA3*DCs were treated with anti-CD81Ab (5μg/ml), chloroquine (10μM), or bafilomycin A1


(25nM). Results are expressed as ratios of IL-28B quantity with or without the treatments. They

are shown as mean + SEM from 5 experiments. *, p < 0.05 by paired-t test

ultraviolet-irradiated HCVcc; n.d., not detected;

mechanism.

BDCA3 † DCs or pDCs had been treated with 5 or 50 μM TRIF inhibitory peptide or control

pertide for 2h. Subsequently, BDCA3⁺DCs were stimulated with PolyIC (25ug/ml) or HCVcc

(M.O.I.=10), and pDCs were stimulated with HCVcc (M.O.I.=10), respectively. IL-28B was

quantified by ELISA. They are shown as mean + SEM from 5 experiments. *, p < 0.05 by

paired-t test.

C, TRIF control peptide; I, TRIF inhibitory peptide.

Figure 7. In response to HCVcc, BDCA3⁺DCs of healthy donors with IL-28B major

genotype (rs8099917, TT) produced more IL-28B than those with minor type (TG).

HEP-12-1228-R1

BDCA3 DCs of healthy donors with IL-28B TT (rs8099917) or TG genotype were cultured at

 5×10^4 cells with 25 $\mu g/ml$ poly IC (A), with HCVcc at an MOI of 10 (B) or with

JFH-1-infected- Huh 7.5.1 cells (C) for 24 h. The supernatants were subjected for IL-28B

 $ELISA. \ The \ same \ healthy \ donors \ were \ examined \ for \ distinct \ stimuli. \ The \ results \ are \ the \ mean+$

SEM from 15 donors with TT and 8 with TG, respectively. *, p < 0.05 by Mann-Whitney U-test.

HEP-12-1228-R1

4

<u> ಭಾರೆ</u>

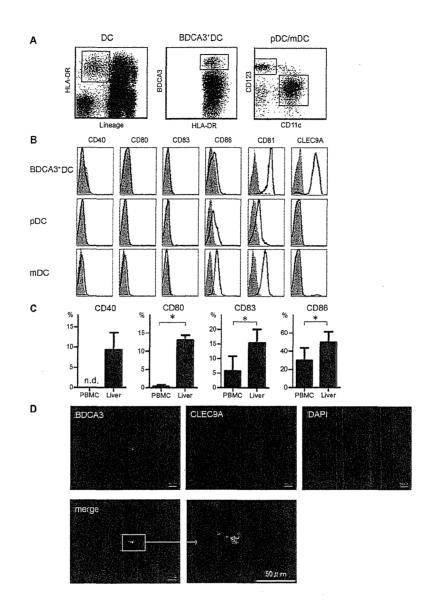
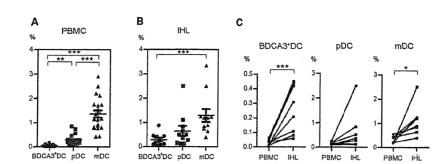



Figure 1: Identification and phenotypic analyses of peripheral blood and intrahepatic BDCA3+DCs.

A. We defined BDCA3+DCs as Lineage-HLA-DR+BDCA3high+ cells (middle), pDCs as Lineage-HLA-DR+CD11c-CD123high+ cells and mDCs as Lineage-HLA-DR+CD11c+CD123low+ cells (right), respectively.

B. The expressions of CD40, CD80, CD83, CD86, CD81, and CLEC9A on each DC subset in peripheral blood are shown. Representative results of 5 donors are shown in the histograms. Filled gray histograms depict data with isotype Abs, and open black ones are those with specific Abs.

- C. The expressions of co-stimulatory molecules on BDCA3+DCs were compared between in PBMCs and in the liver. Results are shown as the percentage of positive cells. Results are the mean + SEM from 4 independent experiments. *, p < 0.05 by paired-t test
- D. The staining for BDCA3 (green), CLEC9A (red) identifies BDCA3+DCs (merge, BDCA3+CLEC9A+) in human liver tissues. Representative results of the non-cancerous liver samples are shown. BDCA, blood dendritic cell antigen; pDC, plasmacytoid DC; mDC, myeloid DC; CLEC9A, C-type lectin 9A

e diffe

Figure 2. Analysis of frequency of DC subsets in the peripheral blood and in the liver Frequencies of BDCA3+DCs, pDCs and mDCs in PBMCs (21 healthy subjects) (A) or in the intrahepatic lymphocytes (IHLs) (11 patients who had undergone surgical resection of tumors) (B) are shown. Horizontal bars depict the mean \pm SD. ***, p < 0.005; ****, p < 0.0005 by Kruskal-Wallis test C. The paired comparisons of the frequencies of DC subsets between in PBMCs and in IHLs. Results of 8 patients whose PBMCs and IHLs were obtained simultaneously are shown. *, p < 0.05; ***, p < 0.0005 by paired-t test

IHLs, intrahepatic lymphocytes; pDC and mDC, see Fig 1.

173x233mm (300 x 300 DPI)

-

·

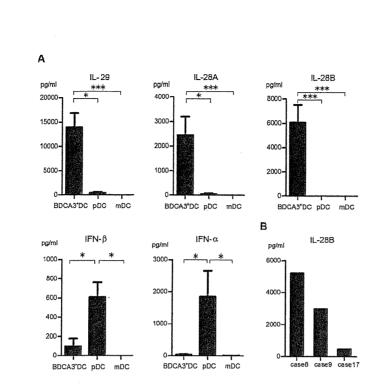
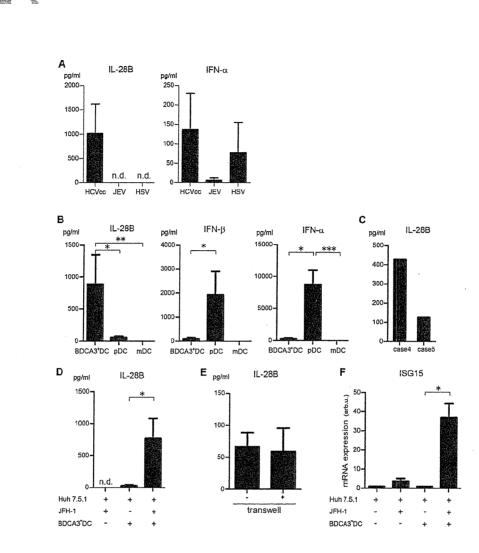



Figure 3. BDCA3+DCs recovered from peripheral blood or intrahepatic lymphocytes produce large amounts of IL-29/IFN-λ1, IL-28A/IFN-λ2 and IL-28B/IFN-λ3 in response to poly IC.

A. BDCA3+DCs and mDCs were cultured at 2.5x104 cells with 25 μg/ml poly IC, and pDCs were with 5 μM CPG for 24 h. The supernatants were examined for IL-29, IL-28A, IL-28B, IFN-β and IFN-α. Results are shown as mean +SEM from 15 experiments. *, p < 0.05; ***, p < 0.0005 by Kruskal-Wallis test.

B. For the IL-28B production, BDCA3+DCs in intrahepatic lymphocytes were cultured at 2.5x104 cells with 25 μg/ml poly IC for 24 h. The samples of case #8 and case #9 were obtained from patients with non-B, non-C liver disease and that of case #17 was from a HCV-infected patient (Supplementary table 1).

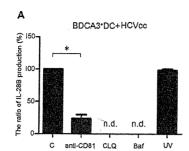
173x233mm (300 x 300 DPI)

4

Figure 4. BDCA3+DCs produce IL-29, IL-28A and IL-28B upon cell-cultured HCV or HCV/JFH-1-transfected Huh7.5.1 cells, thereby inducing ISG.

- A. BDCA3+DCs were cultured at 2.5x104 cells for 24 h with HCVcc, JEV or HSV at an MOI of 10. Results are shown as mean + SEM from 6 experiments. n.d.; not detected
- B. BDCA3+DCs, pDCs, and mDCs were cultured at 2.5x104 cells for 24 h with HCVcc at an MOI of 10. Results are shown as mean + SEM from 11 experiments. *, p < 0.005; *** p < 0.0005; ***, p < 0.0005 by Kruskal-Wallis test
- C. BDCA3+DCs recovered from intrahepatic lymphocytes were cultured at 2.5x104 cells for 24 h with HCVcc at an MOI of 10. Both of the samples (case #4 and case #5) were obtained from patients with non-B, non-C liver disease.
 - D. E. BDCA3+DCs were co-cultured at 2.5x104 cells with JFH-1-transfected (MOI=2) or –untransfected Huh7.5.1 cells for 24h. The superrnatants of JFH-1-transfected Huh7.5.1.cells without BDCA3+DCs were also examined. In some experiments of the co-culture with JFH-1-transfected Huh7.5.1 cells and

BDCA3+DCs, transwells were inserted to the wells (E). Results are shown as mean + SEM from 5 experiments. *, p < 0.05 by paired-t test


F. BDCA3+DCs were co-cultured at 2.5x104 cells with JFH-1-transfected Huh7.5.1 cells (MOI=2) or -

F. BDCA3+DCs were co-cultured at 2.5x104 cells with JFH-1-transfected Huh7.5.1 cells (MOI=2) or – untransfected Huh7.5.1 cells for 24h. The Huh7.5.1.cells were harvested and subjected to real time RT-PCR analyses for ISG15 expression. Results are shown as mean + SEM from 5 experiments. *, p < 0.05 by paired-t test

HCVcc, cell-cultured HCV; JEV, Japanese encephalitis virus; HSV, herpes simplex virus

173x233mm (300 x 300 DPI)

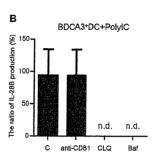


Figure 5: The CD81 and endosome acidification is involved in the production of IL-28B from HCV-stimulated BDCA3+DCs, but HCV replication is not necessary.

A.B. BDCA3+DCs were cultured at 2.5x104 cells with HCVcc at an MOI of 10 (A) or poly IC (25 μ g/ml) (B). In some experiments, UV-irradiated HCVcc was used at the same MOI, and BDCA3+DCs were treated with anti-CD81Ab (5 μ g/ml), chloroquine (10 μ M), or bafilomycin A1 (25nM). Results are expressed as ratios of IL-28B quantity with or without the treatments. They are shown as mean + SEM from 5 experiments. *, p < 0.05 by paired-t test

C, control; CLQ, treatment with chloroquine; Baf, treatment with bafilomycin A1; UV, ultraviolet-irradiated HCVcc; n.d., not detected

173x233mm (300 x 300 DPI)

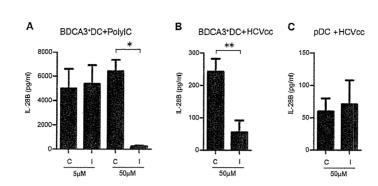


Figure 6: BDCA3+DCs produce IL-28B upon HCVcc stimulation in a TRIF-dependent mechanism. BDCA3+DCs or pDCs had been treated with 5 or 50 μ M TRIF inhibitory peptide or control peptide for 2h. Subsequently, BDCA3+DCs were stimulated with PolyIC (25 μ g/ml) or HCVcc (M.O.I.=10), and pDCs were stimulated with HCVcc (M.O.I.=10), respectively. IL-28B was quantified by ELISA. They are shown as mean + SEM from 5 experiments. *, p < 0.05 by paired-t test. C, TRIF control peptide; I, TRIF inhibitory peptide.

173x233mm (300 x 300 DPI)

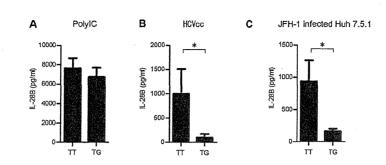


Figure 7. In response to HCVcc, BDCA3+DCs of healthy donors with IL-28B major genotype (rs8099917, TT) produced more IL-28B than those with minor type (TG).

BDCA3+DCs of healthy donors with IL-28B TT (rs8099917) or TG genotype were cultured at 2.5x104 cells with 25 μ g/ml poly IC (A), with HCVcc at an MOI of 10 (B) or with JFH-1-infected- Huh 7.5.1 cells (C) for 24 h. The supernatants were subjected for IL-28B ELISA. The same healthy donors were examined for distinct stimuli. The results are the mean + SEM from 15 donors with TT and 8 with TG, respectively. *, p < 0.05 by Mann-Whitney U-test.

173x233mm (300 x 300 DPI)

Supplementary materials

Human BDCA3⁺ dendritic cells are a potent producer of IFN-λ in response to

hepatitis C virus

Sachiyo Yoshio¹, Tatsuya Kanto¹*, Shoko Kuroda¹, Tokuhiro Matsubara¹, Koyo Higashitani¹,

Naruyasu Kakita¹, Hisashi Ishida¹, Naoki Hiramatsu¹, Hiroaki Nagano², Masaya Sugiyama³,

Kazumoto Murata³, Takasuke Fukuhara⁴, Yoshiharu Matsuura⁴, Norio Hayashi⁵, Masashi

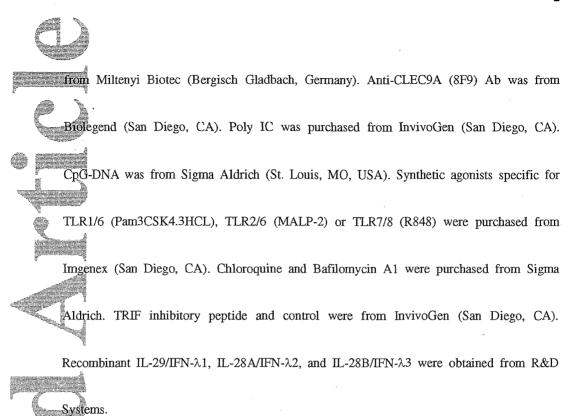
Mizokami³, and Tetsuo Takehara¹

Supplementary material and methods

Reagents.

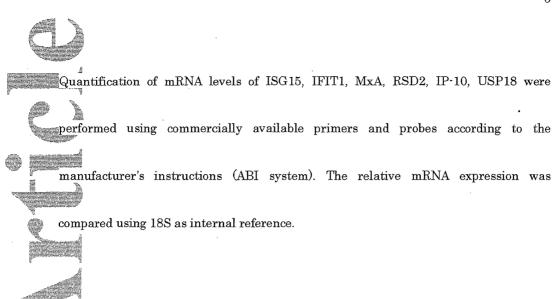
Antibodies (Abs) to Lineage-1 (Lin-1) cocktail (CD3, CD14, CD16, CD19, CD20,

and CD56), HLA-DR (clone, L243), CD123 (7G3), CD11c (B-ly6), CD40 (5C3), CD80


(L307.4), CD83 (HB15e), CD86 (2331), CD81 (JS-81), and isotypes were purchased from BD

Biościence Pharmingen (San Diego, CA). Anti-BDCA-3/CD141 (AD5-14H12) Ab,

FcR-blocking, anti-CD3, anti-CD14, anti-CD19, and anti-CD56 micro-beads were obtained


HEP-12-1228-R1

Quantitative RT-PCR

Total RNA was prepared using the RNeasy mini kit (Qiagen, Valencia, CA) according to the manufacturer's instructions. Quantification of mRNA levels of IL-29/ λ 1, IL-28A/ λ 2, IL-28B/ λ 3 and IFN- β were performed by Light Cycler 480II (Roche Applied Science, Basel, Switzerland). Data were analyzed by absolute quantification using Light Cycler 480 software and normalized using β -actin. Specific primer sets for the detection of IFN- λ 1, 2, or 3 cDNA and the PCR conditions specific for each were set as reported previously (1).

HEP-12-1228-R1

Analysis of Genetic Variations of IL28B

The IL-28B genotypes (rs 8099917 SNP) of healthy subjects were determined using

ABITTaqMan SNP genotyping assays (Applied Biosystems).

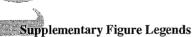
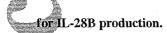


Figure S1. The degree of CD81 expression on BDCA3⁺DCs is higher than those on pDCs.

The PBMCs from healthy donors were stained with antibodies for DC phenotypes and CD81 as

described in Materials and Methods. The percentage of CD81-positive cells in DCs was


examined by FACS. Results are shown as the mean + SEM from 6 independent experiments.

*** p < 0.0005 by Kruskal-Wallis test.

HEP-12-1228-R1

Figure S2. BDCA3⁺DCs, pDCs and mDCs distinctively respond to various TLR agonists

Various DCs were placed at 2.5×10⁴ cells/100 μl and were incubated with each TLR agonist; 50

ng/ml Pam3CSK4.3HCL (for TLR1/6), 25 µg/ml poly IC (TLR3), 50 ng/ml MALP-2 (TLR2/6),

1 μg/ml R848 (TLR7/8) and 5 μM CPG-DNA (TLR9). After 24h incubation, the supernatants

were examined for IL-28B. Results are shown as mean + SEM from 3 independent experiments.

Figure S3. BDCA3⁺DCs express and produce IL-29, IL-28A and IL-28B in response to

poly IC, the levels of which are positively correlated each other.

BDCA3+DCs, and mDCs were placed at 2.5×10⁴ cells/100 µl and were incubated with 25 µg/ml

poly IC, and pDCs with 5µM CPG-DNA.

A. The expressions of IL-29, IL-28A, IL-28B and IFN-β mRNA were compared among the DC

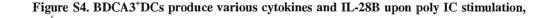
subsets after 4h. The relative mRNA expression (arbitrary unit) was compared using

β-actin as internal reference. Results are shown as mean + SEM from 5 independent

expériments. *, p < 0.05 by Kruskal-Wallis test

B. The levels of IL-29, IL-28A, IL-28B, IFN- β and IFN- α produced from poly IC-stimulated

HEP-12-1228-R1


BDCA3+DCs and CpG-stimulated pDCs were evaluated by ELISA. Results are shown as

mean + SEM from 5 independent experiments.

C. D. A correlation was analyzed between the IL-28B and IL-29 (C) or IL-28B and IL-28A

levels (D). IL-28B and IL-29, R²=0.76, p<0.05, IL-28B and IL-28A, R2=0.84, p<0.005, by

Spearmann's correlation coefficient.

exhibiting suppressive effect on HCV replication.

A. BDCA3⁺DCs and mDCs were placed at 2.5×10⁴ cells/100 μl and were incubated with 25

μg/ml poly IC, and pDCs with 5μM CPG-DNA. The supernatants were examined for

TNF-α, IL-6, IL-10, and IL12p70. Results are shown as mean + SEM from 15 independent

experiments. *, p < 0.05; **, p < 0.005 by Kruskal-Wallis test. n.d., not detected

B. The comparison of the suppressive effect on HCV replication of supernatants from poly

IC-stimulated BDCA3⁺DCs and recombinant IFN-λs. As for an assessment of HCV

replication, Huh7 cells transfected with pNNeo/3-5B harboring subgenomic

replicon-(HCV-N strain) was used (2). The IL-28B concentration in the supernatants from

HEP-12-1228-R1