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of regular differential chains that is equivalent to the input
system (in this paper we can assume, with no loss of
generality, that the output comprises a single system). The
concept of a regular differential chain is a generalisation of
the concept of a characteristic set. Both concepts are
defined with respect to some ranking. The Rosenfeld—
Grobner algorithm was implemented in 1996 in the diffalg
package of the MAPLE computer algebra software. Starting
from MAPLE 14, it is replaced by the MAPLE Differential
Algebra package, which relies on the BLAD libraries [9].
Differential elimination was applied [10] to improve the
parameter estimation methods, especially in the model
dynamics including unmonitored variables. The idea
consisted of computing differential equations from the input
system, from which the unmonitored variables were
eliminated. These differential equations could then be used
to guess the initial values for the Newton-type numerical
parameters optimisation scheme. The overall method was
implemented over the BLAD libraries [11].

Recently, we proposed a novel method for optimising the
parameters [12-16], by using differential elimination.
Differential elimination was used in previously [10, 17] in
the context of a system identification based on physical
laws. In general, the previous methods required much more
computation time, making them less suitable to systems
biology applications. In our method, we use part of a
technique from a previous study [12], in which differential
elimination is introduced into the parameter optimisation in
a model including unmonitored variables. Instead of using
differential elimination for estimating the initial values for
the following parameter optimisation, as done in the
previous study [12], the equations derived by differential
elimination are directly introduced as the constraints into
the objective function for the parameter optimisation. In

the constraint introduction in the models of differential
equations to improve the estimation accuracy, in
comparison with previous methods. Recently, we also
designed a symbolic computation technique for analysing
the complex model to improve the computational time, to
accompany the constraint introduction [16].

In this review, we describe the methodology and the
applications of our new method. In the methodological
section, we will briefly explain the differential elimination
[12] and the following simplification of the equivalent
system derived by differential elimination into a reduced
system [16]. We then outline the introduction of the system
obtained by differential elimination into the objective
function in the numerical optimisation method [13—15]. In
particular, we present the implementations of the symbolic
computation parts in Maple and the algorithms of the
numeric computations in two appendices. In the application
section, we will illustrate the validity of our method, using
two models chosen from representative kinetic models for
biological phenomena [18]. One is a simple model of three
variables, analogous to a molecular reaction cascade, such
as phosphorylation in signal transduction, and the other is a
negative-feedback model of three variables with oscillation,
analogous to an oscillatory response, such as Mitogen-
activated protein kinase (MAPK) signalling pathways and
circadian rhythms [18~20]. In the former model, the entire
framework for introducing differential elimination is
illustrated by the same model as that previously reported
[13], but with larger different parameter values. In the latter
model, the procedure to simplify equations by symbolic
computation [16] is newly illustrated, to evaluate the
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reduction of the complexity of the equivalent system
obtained by pure differential elimination. Finally, the merits
and pitfalls of our method are further discussed, in terms of
its limitations and extensions.

2 Methods

First, we will describe the symbolic parts, differential
elimination and simplification, in our method. Second, we
will define the idea of the introduction of new constraints
by symbolic computation into the objective function in
numerical optimisation. Finally, we will briefly describe the
numerical part of the parameter optimisation techniques. In
addition, we present the implementation in Maple for the
symbolic part and the algorithms for the numeric part in
Appendices 1 and 2, respectively.

2.1 Differential elimination

The key point of this study is the introduction of new
constraints obtained by differential elimination into the
objective function, to improve the parameter accuracy. After
explaining differential elimination, we will briefly describe
the introduction of the constraints. Here, we provide an
example of differential elimination, as shown below,
according to Boulier {12].

Assume a model of two variables, x; and x,, which is
described by the following system of parametric ordinary
differential equations

Vexl
ke 4 x, M

Xy = —kppx; +kyyx, —
% = kipxy — kyx,

where ki», k21, k. and V, are some constants. Here, one
molecule, x;, is assumed to be measured, and the binding
between x; and x, and the degradation of x; are assumed to
occur according to mass-action kinetics and Michaelis—
Menten kinetics, respectively. The differential elimination
by the Rosenfeld—Grébner algorithm then produces the
following two equations equivalent to the above system

Cyp = xy(k, +x;) + leyy 3t + (kyy + Vo))

—hy (K +x21)x2 =0 )
Cyp =300y + k)" + (kyy + Fpp )2, 0y + &)

+V ik, + ke Vo (e + k) =0

When we define the left sides of the above system as C; , and
Cy, Cy i composed of xy, its derivatives, and the parameters
obtained by eliminating x,, and C,, is composed of x;, its
derivatives, the parameters and x,. Note that x, in C;, can
be obtained analytically or estimated numerically by x;, the
parameters and the initial value of x,. Then, the values of
Cy and Cy, can be calculated, if we have time series data
of x;, and they become zero, if all of the parameters were
exactly estimated. Thus, C;, and C,, can be regarded as an
objective function that expresses the difference between the
monitored and estimated data.

2.2 Simplification of the equivalent system

In general, reducing the evaluation complexity (additions,
multiplications) is a difficult problem and requires a large
number of computer operations (a.k.a. a high algorithmic
complexity). Moreover, the evaluation complexity of the
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Rosenfeld—Grobner output tends to be exponential, in terms
of the evaluation complexity of the input. Consequently,
before directly applying techniques such as factorisation,
Homer schemes, common subexpression detection, and so
on, for reducing the evaluation complexity, one should try
to use the existing knowledge available for the initial ODE
system. Here, as an example, we will demonstrate the
simplification for a preprocessing step [16], which speeds
up the evaluation of Cy ;4 C,,, as shown below.

The expressions of C;, and C,, in (2) are not the
expressions originally computed by the Rosenfeld—Grobner
algorithm. Indeed, the Rosenfeld—Grébner algorithm
outputs expand expressions. Thus, using the Rosenfeld—
Grobner outputs, one has to evaluate the following
expression Cpp(= Cy, + Cy)

Coe = |—kyxy k, — FyyXoxy + % k, + %1%,
+ Kok + kXt + Vx|
+ g1k Voxy + 2k kypx %y + 2k k%1%,
+ 2k xy + kg kg + kY
+ kpxixy + ey k2E) + ey Xiy
+ by AV, + 5y k2 + %1% 3)

which needs 18 additions + 46 multiplications (42 function
evaluations for the absolute value). These operations
represent the evaluation complexity of the expression Cyg.

Since the expressions of C, , and C,, were computed from
an ODE system involving the denominator k. -+ x,
originating from a Michaelis—Menten factor, the expression
k.+x; can probably be factorised. Introducing a new
variable, d,=k,+x;, and applying the substitution
k. — (d. — x;) in the previous expression of Cp, yields

Cpp = | —kyxod, + %,d, + kppx,d, + Vx|
+ kg Voxyd, + kppiyd2 4+ V. 5,d,
= Vi, + ki dl + %,d2 | @

which requires 9 additions + 21 multiplications. Note that the
last expression of Cpg does not involve k, anymore, which
shows that the variable k, only appears in Cpg in the term
k.+x;. This trick with the denominators has divided the
number of operations by 2. For more complex systems, the
benefit can be much greater. It is worth noting that the trick
works similarly if several denominators are involved, and if
each denominator linearly involves a parameter that is not
involved in the other denominators. More precisely, if one has
n denominators of the form ; + f;, and if %; is not involved in
any f;, then one performs » substitutions k; — (f; — d)).

Further computations using a Horner scheme can then be
accomplished. For example, applying a recursive Horner
scheme with decreasing priority on the variables d,, x;, x,,
X; and X, yields

Cpg = Vx; — (eyyXy — %y — kypx))d,|
+ = Vxx, + Uy Voxy + V5%
+ Gy + (kg + kyy)i)d,)d, | )

which requires 9 additions + 12 multiplications.

To finish, extra simplifications can be achieved by using
the optimise command of the optimise package in the
Computer Algebra software MAPLE. This last command
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tries to recognise common expressions to compute common
subexpressions only once. This command is not very costly,
as it is based on easy heuristics. In our case, it yields the
sequence of the four following commands

ty = Vox; — (kyiXy — % — kyoxy )|

fy = Vox,

tig = |—tgxy + (ky Vexy + fg + (i) + (kyy + ko )k, )d, |
Coe =14 + 1

which need 9 additions+ 11  multiplications + 4
assignments. The benefit here is only one multiplication,
but it can be greater on bigger systems. All of the previous
operations can be automated in MAPLE, and the C code is
obtained by the C command of the optimise package (see
also Appendix 1).

2.3 Introduction of constraints by differential
elimination

The objective function in this study is composed of two terms
[13—16]: one is the standard error function between the
estimated and measured data, and the other is the
constraints obtained by differential elimination. The error
function is defined as follows: cuppose that x{, is the time-
course data at time ¢ of x; calculated by using the estimated
parameter values, and x;, represents the measured data at
time ¢. The sum of the absolute values of the relative errors
between xj, and x}; gives the averaged relative error over
the numbers of monitored variables and time points, E, as a
standard error function, that is

©)

where N and 7 are the number of monitored variables and the
time points, respectively.

Next, we define the constraints obtained by differential
elimination. In general, differential elimination rewrites the
original system of differential equations into an equivalent
system, which means that the number of equations is equal
in both systems (both systems have the same solutions).
Thus, we express the constraint by differential elimination,
the DE constraint (Cpg), as the average of the linear
combination of the equations in the equivalent system over
the number of equivalent equations and time points, as
follows

1 L T
Coe =772 1G] )

=1 j=1

where L and T are the number of equivalent equations and
time points, respectively.

Finally, we introduce Cpg into the objective function, F, in
combination with E, as

F=aE+(1-a)Cp ®

where a (0 < a <1) is the weight of two functions, and is
approximately estimated by the slope of the Pareto-optimal
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solutions [21] (see details in Figs. 26 and 5b) for E and Cpg,
and then is manually modified (see also Section 2.4). As a
result, our computational task is to determine a set of
parameter values that minimise F.

2.4 Optimisation technique

The new objective function can be generally introduced into
any type of optimisation techniques. Indeed, we previously
illustrated the introduction into two evolutionary
optimisation techniques [genetic algorithm (GA) and
particle swarm optimisation (PSO)] and one Newton type of
optimisation technique, and the new objective function
worked well in the evolutionary optimisation techniques
[14]. Here, the GA is used.

GA is a well-known parameter optimisation framework,
which was inspired by the evolutionary process of biology
[22, 23]. We apply an efficient computational technique
based on RCGAs as a non-linear numerical optimisation
method, by the combination of wunimodal normal
distribution crossover (UNDX) and minimal generation gap
(MGG) [24, 25]. The generation alternations are repeated
until either the value of the objective function £ becomes
less than a given threshold (we call this threshold the error
allowance on real-coded genetic algorithm (RCGAs)) or the
number of generation-alternation iterations reaches a given
threshold of maximum generation counts.

In the parameter optimisation, two thresholds are set to stop
the optimisation: the error function over time points, £, and
the number of generations per optimisation. In this study,
we perform the optimisation 200 times for the cascade
model and 100 times for the negative feedback model. In
each optimisation, the generation number is set to 2000,
and the thresholds of E for the simple cascade model and
the negative-feedback model with oscillation are set to 0.02
and 0.5, respectively. As a result, the numbers of successes
for 200 trials are 200 in both methods for the simple
cascade model, and 94 and 83 in the standard method and
our method for the negative-feedback model, respectively
(see also Appendix 2).

Note that only E is used to stop the optimisation by GA, but
Cpg is not. This indicates that the estimated value of «
obtained by the Pareto-optimal solution is large in this
procedure: E is optimised as the GA operation progresses,
whereas Cpg is calculated by the estimated parameter
values without optimisation. In other words, the Cpg for the
most effective optimisation in F of (8) is smaller than the
calculated Cpg corresponding to E in the Pareto-optimal
solution plot, and therefore the value of « is expected to be
small (see also Appendix 2).

2.5 Software: implementation of differential
elimination and simplification

All of the symbolic computations for the differential
elimination are performed using the diffalg package of
MAPLE 10. In the performance of differential elimination,
the ranking of variables was chosen as follows:
P(Pool) > x3 > x, >x; for the cascade model, and
X> Yp>Rp for the negative feedback model. The
following simplification of the polynomial equations
derived by differential elimination is also performed by
MAPLE 14. Finally, we generate the Java or C code from
the simplified system, by using the Code Generation feature
in MAPLE14 (see also Appendix 1).

284
© The Institution of Engineering and Technology 2011

e
X /kj X3/k;

kay \ /fu
X1
kei l

Fig. 1 Schematic representation of a simple cascade model

Model is composed of three variables, x;, x, and x3, with a pool, P. We
assume that time series data for one of the variables, x, are obtained

3 Results and discussion

First, we will follow our procedure with a simple model, on
the assumption that only one of the four variables in the
model is measured. Second, we will illustrate the
effectiveness of the symbolic technique for reducing
the evaluation complexity in a negative-feedback model
with oscillation. Finally, we will discuss the merits and
pitfalls of our method, in terms of further method expansion.

3.1 Simple cascade model

A simple model of three molecules for cascade reactions [13],
such as phosphorylation, is schematically depicted in Fig. 1
and the corresponding system of differential equations is
expressed as follows

dx;
= ky1xy + kyyx3 — kX

dr
dx,
—d—* —kepxy + kP — kyx,

& ©)
"(‘1"‘ ke2x_3 + kp3P - k31x3

dr

dar

Here we assume that the time series of only one variable, x;,
can be observed.

For the above equations, the system equivalent to the
original system was obtained by d1fferent1al elimination, as
follows

dle 0]

dr?
sk + ke ky3ksy
+ (K,

o1 R ks kokyake)

&x 1)
C = ( d]3( + Qhyskey + oy + oy +h3y)
+ (e kpsker + 2k skokysk,y + Kok,

(f)
+ kyikpske + kS + Ky k 3ker) —— 1

+ ki kpaks sk + ksikys eka3

X kp}’xl(t)) [kpaksksikpskyy + kpkiyskpakyskn,
+ kskysho kyskay + kyskyskokysks) — P
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(k 2k2] -k 2 kZl k3]

; dzx ®
kp2k21 — ke kp3k31)_—dt]2
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kez kpS k3 1
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+ ke?.kpzkgl = kyoksky ke — k321k21kp3

- kg]kp3ke2 + kpokpokysksy + K 221k31)) —x3(9)

d3
6= (bt = kst 82

+ (kp2k221 + ko by + k321kp3 + kepky3ksy
ds

+ (kyok, ak + k& 2k31k21 + kok, 27621 —k,

+ k31kelkp3 + kokpokykey + koo kysksy

dx (l‘)

+ kpkpokyy + koyky3kar)

2k3]k21k22

- p2k3zlkll)

+ (—hkyoks ey eZk

ol Ky Ky
k5 1)/
(kZI(_kp2k?%lk21 + kp2k31k§l + kokkiy

— kpk ko — k321k21kp3 -

+ kp2k31kelk221 + kokpoke

kgl kp3 keZ
+ kpokypkysks; + kp3k221k3])> —x,(1)

d43‘1 ®
drt

+ (ks — kokoy — koikoy — kz
dxz(o

0]

== K

+ =k — k31 — 2k — k)

kelk31 - keZkSI - 2kelk 2)

+ (hkaikg — kokorka

= ko lsy — kkl)—-= (t) (10)

Since the above system was not so complicated, we
directly introduced it into the objective function as the DE
constraints.

According to the model in Fig. 1, the reference curve of one
variable, x;, was generated in Fig. 2¢. Among the parameters in
the model, the values of two parameters, k,; and ks, were
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Fig. 2 Reference curve simulated based on the cascade model and
its Pareto-optimal solution plot

a According to the kinetics of the model (9), a reference curve of one
variable, x;, was generated for 0 = ¢ = 0.5 with intervals of 0.01, under
the following conditions: x(0) = 10.0, x,(0) = 20.0, x3(0) = 30.0,
P =300, ky; =100, ks; = 3.0, k=230, ky3 =40, k,, =150 and
kp=4.0

b The empty square ([J) indicates the set of evaluated values, £ and C. The
filled square (M) shows the Pareto-optimal solutions, and the line represents
the fitted line for Pareto-optimal solutions

estimated, and the values of the remaining parameters were
the same as those used in the simulation of Fig. 2a. The
Pareto-optimal solution plot for the reference curve is shown
in Fig. 2b. From the Pareto-optimal solution plot, o was
estimated to be 0.999892, which was large in the present
procedure, as described in Section 2.4. As for each
contribution of £ and Cpg in F of (8), the orders of «F and
(1 — @)Cpg are approximated to 10° and 107, respectively,
according to (8) and the above value of «. Thus, although the
a value is almost equal to 1, the DE constraint exerts a large
influence on the parameter optimisation.

The introduction of the DE constraint into the objective
function was quite effective in the comparison with the
distributions of the parameter values estimated with and
without the DE constraint (Fig. 3). Indeed, the distribution
of the estimated k,; and k3; values was highly concentrated
around the correct values by the estimation with the DE
constraint (Fig. 3a), whereas the distribution of the two
parameter values was broader in the larger space by the
estimation without the DE constraint (Fig. 35). In other
words, the values with the DE constraint were distributed in
a relatively narrow range, whereas those without the DE
constraint were distributed over a wide range. As a result,
the parameter accuracy was improved by the new objective
function with the introduction of the DE constraint, in the
model of Fig. 1.
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Fig. 3 Comparison of parameter value distribution estimated for
the reference curve in Fig. 2

a With DE constraint
b Without DE constraint
The given values of &y, and k3; were 10.0 and 3.0, respectively

3.2 Feedback loop model with oscillation

A negative-feedback model with oscillation [18] is
schematically depicted in Fig. 4, and the system of
differential equations is expressed as follows

dx

Y BX(Ur=Y) kY

dt —Km3+YT“YP Km4+YP (11)
dRp _ ksYp(Rr —Rp)  keRp

dt ~ K,s+Rr—Rp K,c+Rp

Here we assume that the time series of three variables, X, Yp
and Rp, can be observed. For these equations, the system
equivalent to the original system was obtained by
differential elimination, but it was huge in size (7.4 MB in
file size). Therefore the we simplified the equivalent system
into a reduced system (0.1 MB, data not shown) [16] was
performed. Then, the reduced system was introduced into
the objective function as the DE constraints.

The above system was used to generate the reference
curve for parameters optimisation, as shown in Fig. 5a.
The task is to estimate the values of 6 parameters, ki,
kap, k3, ks, ks and ks, among the 12 parameters in the
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Fig. 4 Schematic representation of the negative-feedback model

The model is composed of three variables, x,, x, and x3, with a pool, P. We
assume that time series data for one of the variables, x;, are obtained
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Fig.5 Reference curve simulated based on the negative-feedback
model and its Pareto-optimal solution plot

a According to the kinetics of the model (11), a reference curve of variables,
X(0), Yp([) and Rp(), was generated for 0 =¢= 50 with intervals
of 1.0, under the following conditions: X(0)=15.0, Yp(0)= 1.0,
Rp(0) = 0.01, kp = 0.0, k; = 1.0, k» = 0.01, k3 = 0.1, k3 = 0.2, ks = 0.1,
ks =0.05, ky, =100, Y7=Rr=10, K,3=Kpus=Kys= K= 1001
and $=2.0

b The empty square ({J) indicates the set of evaluated values, £ and C. The
filled square (M) shows Pareto-optimal solutions, and the line represents the
fitted line for Pareto-optimal solutions

IET Syst. Biol., 2011, Vol. 5, Iss. 5, pp. 281-292
doi: 10.1049/iet-syb.2010.0051

- 856 —



a.2s
8.2
.15
A3
0.08

ke

www.ietdl.org

Fig. 6 Comparison of parameter value clouds estimated by our method (a) and the standard method (b)
The given values are as follows: &y = 1.0, k3 = 0.1, ks = 0.2, ks = 0.1, kg = 0.05, kp, = 10.0

model. The values of the remaining parameters were the
same as those used in the simulation of Fig. S«. This is
because one can experimentally measure biochemical
properties, such as the synthesis and degradation rates of
a protein (ko and k) or the Michaelis—Menten constants
K3, Kpa, Kns and K,6). The Pareto-optimal solution
plot for the reference curve is shown in Fig. 54, anda
was estimated to be 0.002665. Since the value of a was
very small and was estimated to be large in the present
procedure, @ was set to 0.0 in this case. Thus, £ was
used only as the threshold for the stopping rule in GA,
and the objective function for parameter optimisation was
composed of only Cpg. Note that the magnitude of the «
value depends on the relative magnitudes between E and
Cpg simulated in Figs. 2 and 5b. Indeed, the order of
(1 — a)CpE is larger than that of aF, indicating the strong
influence of the DE constraints on the parameter
optimisation, as in Section 3.1.

Our method was also highly effective for the negative-
feedback model with oscillation, in terms of improving the
estimation accuracy (Fig. 6).The clouds of the six parameter
values were clearly smaller in the estimation with the DE
constraint (Fig. 6a), in comparison with the parameter
clouds in the estimation with only the error function
(Fig. 6b). Note that the objective function in our method
comprises only the DE constraint in this case, because of
the small influence of the error function on the objective
function through the value of «, in the estimation by the
slope of the Pareto-optimal solutions. Interestingly, this
means that the error function that measures the difference
between the sample and the estimated data is not effective
for parameter estimation. Instead of the error function, the
new constraints including the derivatives also include the
information on the curve form. Thus, the new constraints
may be useful for estimating the parameter values,
especially in models with characteristic curve forms, such
as oscillation. Note that all of the variables are observed in
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the above model. Even in the complete set of data for all
variables, it may be difficult to precisely estimate the
parameter values in the oscillation model, since the error
function estimates a similar degree of differences between
the measured and simulated values, which frequently
emerge at different time points.

We also compared the fitness between the curves with the
parameters estimated with and without the DE constraint.
Since the error range for the error function, £, was set to
50%, the fitness is also regarded as a measurement of the
estimation accuracy in the negative-feedback model, in
comparison with the case of 2% in the cascade model.
The averages and the standard deviations of the three
variables were plotted at each time point in Fig. 7. Since
all of the parameters were attained with error values
within 50%, most of the values of the reference curve at
each point ranged within the average + the standard
deviation. However, as easily seen in the figure, the points
calculated with the parameters estimated by our methods
(Fig. 7a) fit better than those obtained by the standard
method (Fig. 7). Indeed, most of the averages at each
time point in Fig. 7a were approximately the same values
as those in the reference curve. In contrast, the averages
were relatively different from the values of the reference
curve, and in particular, the difference widened as the
amplitude of the curve increased, in a comparison between
the three curves. Thus, our method clearly improved the
estimation accuracy, in terms of the fitness of the
estimated curve.

3.3 Limits and further extensions

As expected, the new objective function requires more
computational time, in comparison with an objective
function with only a standard error function, because of the
increased number of functions in the DE constraint. Indeed,
the computational time of our method was longer than that
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Fig. 7 Comparison of fitness estimated by the standard method
and our method

a With DE constraint

b Without DE constraint

The empty circles (O), squares ((J) and triangles (A) indicate the reference
curves for X, ¥ and Rp, respectively. The filled circles (@), squares (M)
and triangles (A) indicate the averaged values of the fitted curves. The
error bars show standard deviations

of the standard method in Models 1 and 2; the respective
computational times for the standard method and our
method were 0.0011 and 0.015 h in Model 1, and 0.8 and
49h in Model 2 [128 CPUs of Intel(R) Xeon(R) X5550
2.67 GHz]. In addition to the computational time, a pitfall
of our method is the model size or the equation size of the
DE constraint. In the equivalent systems, the number of
terms frequently increases, and this may make the
application of our method to a complex or large model
more difficult. Indeed, the parameters in the feedback
model with the DE constraint could not be estimated
without the simplification. The memory required for the DE
constraint after the equation simplification by symbolic
computation was reducedby 740-fold in the negative-
feedback model with oscillation, as compared to that
needed for the pure differential elimination. Thus, the
simplification by symbolic computation [16] is prerequisite
to the present procedure, especially for complex models.
Another possible way to overcome the difficulty in
complex models is to approximate the DE constraint. In
the DE constraint, the terms with a higher order of
derivatives in the differential equations generally appeared
in the equivalent system. As discussed in Section 3.2 of

288
© The Institution of Engineering and Technology 2011

the feedback loop model, the DE constraints reflect well
the form of the data curve. Indeed, the effects of lower
order derivatives to fit the curve, such as the slope and
the inflection point, can be geometrically interpreted,
whereas those of higher order derivatives seem difficult
to be intuitively interpreted. Although our method was
useful, even for noisy data in a simple model [15], the
estimated values of the higher order derivatives for noisy
data may become more unstable. If the terms with
higher order derivatives can be neglected in the
estimation, then the computational time may be reduced.
Further studies to improve the computational time, by
approximation of the DE constraint, will be reported in
the near future.

Note that the complexity of the DE constraints generally
depends on the mathematical model and the corresponding
system of differential equations. When the model and the
corresponding system are simple, the DE constraint also has
a simple form, and the computational time required by our
method is reasonable. Indeed, we successfully analysed the
cascade model of ten molecules within a reasonable time
(data not shown). Since the modelling depends on
biological knowledge, rather than the computational
convenience, we should continuously reduce the
computational time.

4 Conclusions

The introduction of the DE constraint, derived from the
original system of differential equations into the objective
function, clearly improved the parameter accuracy. The
performance of the new method is illustrated by simple and
complex models with small sizes, which are analogous to
two of the molecular reactions responsible for biological
phenomena. One of the features of the DE constraint is that
it includes the derivatives of the original system for the
model. Since the derivatives generally contain the curve
form information of the measured time-series data, such as
slope, extremal point and inflection point, the new objective
function estimates the difference of not only the values but
also the comprehensive forms between the measured and
estimated data, whereas the standard objective function
estimates only the value difference. Note that the DE
constraint is rationally reduced from the original system of
differential equations for a given model, in a mathematical
sense. Thus, our approach is expected to become a general
approach in parameter optimisation for improving the
parameter accuracy.

As described in this review, symbolic computation played
a central role in improving the estimation accuracy in our
method, and a computer algebra system based on symbolic
computation was used to implement it. The well-known
Grébner base, which was found by Buchberger {26, 27], is
an underlying principle for symbolic computation, and for
various fields of mathematics and computer science [28,
29]. Indeed, we have applied symbolic computation
techniques to solve issues in systems biology [30, 31], as
encouraged by stimulating discussions in the ‘Algebraic

name the feasibility of symbolic computation implemented
in the computer algebra system as ‘Bruno force’, after his
discovery of the Grobner base, in contrast to that of
numeric computation depending on computer performance,
which is frequently referred to as ‘Brute force’. The present
study is an example of the happy union between Brute
force and ‘Bruno force’, and further progress is expected in
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various fields of systems biology by the amalgam of rational
mathematical manipulation by ‘Bruno force’ and powerful
numerical computation by Brute force.
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7 Appendix 1: implementation of differential
elimination and simplification in Maple 14

All procedures for deriving the DE constraints and for
simplifying the resulting equations are described as the
commands of the new Differential Algebra package in
Maple 14 as given in Fig. 8.

8 Appendix 2: algorithms of numerical parts

Algorithms of the estimation of « value by using Pareto-
optimal solutions (Algorithms 1-1 and -2 given in Figs. 9
and 10) and those of the real-coded GAs by the
combination of UNDX with MGG (Algorithms 2-1, -2 and
-3 given in Figs. 11-13) are described, respectively. Note
that Algorithms 2-1, -2, and -3 are used in line 1 of
Algorithm 1-2.
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> with{Differentialalgebra):

> with(CodeGeneration):

> with({codegen):

> sys =

> ®rI{t] = =~k12%*x1 4 k21%*x2 ~Ve*x1/({(ke+xl)},

> x2{t] -{ -k12*xl -~kZ1l¥x2),

> H
Ve xi

sys = [x1[t] + kK12 x1 ~k21 B2 + =wemee- , o x2[{t}] ~k12 x1 + k21 x2]
ket 2l

>

> R = DifferentialRing (blocks={x2,x1,k120),k210,Ve() , ke(}], derivations=[t]);
R v differsntial_ring
> Ids 1= RosenfeldGrosbunexr{ numer{sys}, denom{sys), R,
basefieldsfield{gaenerators={kl2,k21,ve, kell));
Ids := [regular_differential_chain]
1= RBguations{Ids{i});

2
k21x2x1+ k21 x2ke -xl{tlzl -xziftlke -ki12xl -k12xlke -Ve x1,

2 2 2
x1{t, £] =1 + 2 x1it, v} =1 ke + x»lit, t] ke + x1{t}] =1 xi2

2 2
+ xi{t] x} k21 % 2 x1[t] %1 ki2 ke + 2 xlit]l x1 k21 ke + x1[t] k12 ke

2 2
+ x1{t] k21 ke + x1{t] Ve ke + x1 k21 Ve + xl k21 Ve ke]

# One performs some necessary renaming

> egs := subs{x1[t,tl=xitt, xIl{tl=xlt, x1[}=xl, x2[tl=x2t, =22{]=x2, eqgs);
2

egs = [k21 %2 xI+ k21 x2 ke -xit x1 =-xl1¢ ke -k1Z xI =%k12 x1 ke ~Ve xi,

2 2 2 2
xltt x1 +2 xltt x1 ke+ xitt ke + xlt xl ki2+ xit xl k21

2 b4
+2 %1t 21 k12 ke+2 x1t x1 k21 ke+ x1t k12 ke + x1t k21 ke

2
+ xlt Ve ket x1 k21 Vet xl k21 Ve kel

toTransform := [ result = abs{egs(l}) + abs{egs{2l) ):

toTransforn := [result =
2
P~k21 %2 x1 ~k21 ®2 ket+ x1t xl+ xIt ke+ k12 x1 + k12 x1 ke+ Ve xli

2 2 2 2
+{ =21ttt x1 +2 xzitt x1 ke+ xitt ke + k1t x1 ki2+ xlt x1 k21

2 2
+2 1t x1 k312 ke+2 x1t 1 k21 ket 2lt k12 ke + x1t k21 ke

2
+ x1t Ve ket x1 k21 Ve+ xl k21 Ve kell

> cost{tofransform);
18 additions + 2 functions + 46 multiplications + assignments

# One guesses that the denominator ketxl appears in many places.

¢ To make it appear, ocne introduces de = ke + xl

# and performs the substitution ke -> de ~xl

> toTransform? := subs(ke = de -xi, toTransform):

> toTransform? = simplify(teTransform2);

toTransform?2 := [result = | -k21 x2 de + xit de + Kki2 xl de + Ve x1 | + |

2 2 2
xltt de + xlt k12 de + xit k2l de + rit Ve de -xlt Ve xl + xl1 k21 Ve de
i1
> cost {toTransiorm?);
¢ additions + 2 functions + 21 multiplications + assignments

Fig. 8 Commands of the new Differential Algebra package in Maple 14
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> egs2 := subs(ke = de -xl, egs):
> egs? = simplify(egs?);
egsZ = [kZ1 xZ de -xlt de ~ki12 x1 de ~Ve x1,

4 2 2
xitt de + xlt k12 de + xit k21 de + xit Ve de ~-xl1t Ve xl + rl k21 Ve de

1

¢ One remarks that ke does not appear anymore.

# Using hornsr and optimization.

> eqs3 1= convertlegs?, horner, [de,xl,xZ,xlt,xitt]);
egsd = [~Ve x1 + (k21 =2 ~-xit -ki2 x1) de,

-xlt Ve xI + {x1 k21 Ve + xzlt Ve + (xitt + (k12 + k21) xlt} de) ds}

> toTransform ;= [ result = abs{egs3{l}]) + abs{egs3{2]) I;
toTransform 1= [result = | Ve x1 -(k21 =2 -xlt -k12 x1) de |

+ ] ~xlt Ve x1 + (x1 k21 Ve + xlt Ve + (xltt + (k12 + k21) xlt) de) de }]

> cost{ toTransform);
¢ additions + 2 functions + 12 multiplications + assigaments

> put = optimize( toTransform );

cut:=t? ={Ve x1 ~(k21 =2 -xit -k1Z x1) dei,td =xlt Ve,

£19 =] -8 x1+ (x1 k21 Ve + t8 + (xltt + (k1Z + k21) x1t) de) del,
b to= £7 + tl19

> cost{[out]);
2 functions + 11 multiplications + 9 additions + 4 assignments
# One generates the C code

> C{ [ our 1Yys

t7 = fabs (Verxl-(k21*x2-x1t~k12%x1)%de);

t8 = xit*Ve;

18 = fabs{~t8*xI+{(x1*k21*Ve+t 8+ (xitt+(ki2+k21)*xit) *de) *de);
result = £7+t19;

> quit
memory used=32.7TMB, alloc=28.4MB, time=0.18

Fig. 8 (Continued)
Algorithm 1-1 Algorithm 1-2
Funetion seiect,pa‘rem.op&imal,solutions[R} Function : estimatealphald, n, a = 1, pop, gen, trials)
Taput @ R set of f?Sﬂfmf!Xf parameters Input : ervor tolorance §, number of trials o, population size of GA pop, maxi-
Returt : Pareto-optimal solutions (17} mum generation counts gen, trial number of GA trials, and tentative value of
==l
3P Return : estimated value of weighting factor &
% EV e @
a V' — b RES « compute.parameterset{a = 1, §, pop, gen, trials)
4 n size of R 2 P o select paretooptinmalsolutions(RES)
5 fori to n do 3 BV e ¢
& EV e EV union E{R) £ OV &
7 CV = CV union C(R,) 5 n size of P

@

: end for

& for i=0ton do

o for\;’ =0 tondo 7 BV e BV union £{P)

e Flag Ip = true 8 OV « CV union C{LP)

t1: for j=0tondo ) % end for

12 if HEV, € £V, and OV, £ CV;) then 1 fit OV, = ~aEV; + b from £V and CV by using least square method
ES Ip e false i return ¢f{a -+ 1}

IEN end if

1% end for

16 if Ip then Fig. 10 Estimation of weighting factor «
54 P o~ P union Ry

% endif

19: end for

20: return P

Fig. 9 Pareto-optimal solutions
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Algorithm 2-1

Function compute_next.genorationfo, K}
Input : the weighting factor a, a parameter set K

< nosize of K

: denote K= (k..o b}

: compute 1< ¢ < on osuch that &, is the one best element according to the F
funetion (e, F(k) s the minimum of F{E&),. . PG

: pick a randomn mumber r such that 1 < r < o, and 7 is different from s

: mix ke and ke and compute a new set &' = (K. kL)

2 K e B union (k)

s modify & by replacing b, and &, by the two hest elements of K according
to the F funetion

ot o

s

oo

Algorithm 2-3

Function : compute.parameter.sets{e, 8, pop, gen, trinls}

Input : the weighting factor a, the error tolerance 4 for function F, the pop-
ulation size of GA pop, the maximum generation counts gen, the tvial number
trinls

Return @ a list of parameter sets

n BES v

% for i =1 to trials do

3 RES « RES union compute.one.parameter.set(a, &, pop, gen)
4 end for

% return RES

Fig. 13 Generation of a list of estimated parameter sets

Fig. 11 Modification of the parameter set K by computing the next
generation

Algorithm 2-2

Function : compute.one parameterset{a, &, pop, gen)

Input : the weighting factor «, the error tolerance § for function F| the popu-
lation size of GA pop, the maxhnum generation counts gen

Return @ a set containing zero or one p wr set

: create & set K containing pop random parameter sets
2 for § = 1 to gen do
3 computegiextgeneration{a, K)

4 if an elament & in K satishes B(A) < 4 then
5 return &

6 endif

7 end for

& return é

Fig. 12 Optimisation process
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We developed a method in which the relationship between chemical compounds, characterized by the
secondary dimensional descriptors by a standard method, is first determined by network inference, and then
the inferred network is divided into the compound groups by network clustering. We applied this method
to 279 active inhibitors of factor Xa found by the first screening. A large network of 266 active compounds
connected with 408 edges emerged and was divided into 10 clusters. Surprisingly, the chemical structures
that were common within the clusters, but diverse between them, could be extracted. The activity differences
between the clusters provide rational clues for the systematic synthesis of derivatives in the lead optimization
process, instead of empirical and intuitive inspections. Thus, our method for automatically grouping the
chemical compounds by a network approach is useful to improve the efficiency of the drug discovery process.

1. INTRODUCTION

Novel computational approaches and methodologies are
increasing the efficiency of drug discovery, which involves
numerous processes.! Indeed, various computational ap-
proaches in virtual screening are utilized to predict the
activity of hypothetical compounds, based on the quantitative
structure—activity relationship (QSAR).?~* In particular, the
selection of compounds from a library or database of
compounds is widely used to identify those that are likely
to possess a given activity, when a single bioactive reference
structure is available.®”® In this approach, fingerprint-based
similarity searching is performed to identify the database
molecules that are most similar to a user-defined reference
structure.® Furthermore, the support vector machine is utilized
to predict the activity of newly synthesized compounds with
high accuracy.’® The principal component analysis (PCA)
also presents the relationship between the compounds, to
allow a visual investigation of their activities in the principal
component space. In particular, it generates a concept for
the distribution of chemical compounds, named the chemical
space, where different chemical compounds are reasonably
distributed, depending on their corresponding origins.'!

In spite of the popularity of computational approaches,
empirical and intuitive approaches are still employed in drug
discovery processes.' One reason for retaining the empirical
and intuitive approaches is that after the first screening, the
active compounds are usually compared in terms of the
relationship between the chemical structure and its activity,

* Corresponding author. E-mail: k.horimoto@aist.go.jp.. Telephone: +81
3 3599 8711.

" National Institute of Advanced Industrial Science and Technology
(AIST).

$ INFOCOM Corporation.

* Shanghai University.

10.1021/¢1100262s

before the next step of synthesizing the derivatives for
selecting the ultimate lead. Unfortunately, this step partially
depends on the empirical selection of the candidates for the
chemical synthesis of the drug target, with reference to the
chemical structures of the active and inactive compounds
obtained by the first screening. Indeed, the structural
information on the active compounds after the first screening
is not fully utilized for selecting candidates of seeds for the
derivative synthesis. Thus, the extraction of useful informa-
tion about chemical structure and activity, in an automatic
and visual manner, is desirable to systematically and ef-
ficiently synthesize derivatives for drug discovery.

We now propose an automatic method to visually group
chemical compounds based on their structures, by using two
types of network analysis methods. One is the network
inference method. In the present study, we use the path
consistency algorithm,'? one of the graphical models from
the family of probability models simplified by the conditional
independences inherent in the graph,'® which can visually
infer the relationships between variables in a network form.
Another is the network clustering method. This is a method
to extract one property, named the “community structure”,
which indicates that the vertices in networks are often
clustered into tightly knit groups, with a high density of
within-group edges and a lower density of between-group
edges.'* This method is useful to automatically group the
variables into some clusters from the connected network
structure. Here we utilized the two network analysis methods
to assess the relationship between chemical compounds. The
utility of the present method is demonstrated by a set of
chemical compounds after the first screening. The merits and
pitfalls of the present method are also discussed, in terms of
the previous computational methods.

© 2011 American Chemical Society

Published on Web 12/09/2010
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Ensemble of Active Compounds

o Characterization by
structural properties
Physico-Chemical Properties of

Active Compounds
4~ — — — Network Inference

Active Compound Network

4 — — — Network Clustering

© Active Compound Network Clusters

l*___

Common Chemical Structures
in Each Network Cluster

Figure 1. Workflow of the present method. The present method is
schematically described in four steps.

Extraction of maxinmm
common Structures

2. MATERIALS AND METHODS

2.1. Overview of the Present Method. An overview of
our method is schematically described in Figure 1. First, the
chemical compounds selected by the first screening, in terms
of drug activity, are characterized by their secondary structure
properties, by a standard procedure. Second, the relationships
between the compounds are investigated by a network
inference method, the path consistency algorithm.'? Third,
the inferred network structures are divided into groups by a
network clustering method, the Newman algorithm.'* Fourth,
the maximum common structures of the compounds are
extracted in each cluster by a standard method. Thus, the
characteristic features of the chemical structures hidden in
the active chemical compounds are revealed visually and
automatically by network analysis methods. The details of
each step are described below.

2.2. Data Set. The data set contains a wide series of
inhibitors of factor Xa extracted from the literature, all
sharing a benzamidine moiety.”> The considered data set
contains 279 very active compounds (K; lower than 10 nM)
among a total of 435 chemical compounds, also including
156 low-activity compounds (K; higher than 1 uM).

2.3. Descriptors. The calculated 2D descriptors were
derived from the commercially available software, MOE, by
Chemical Computing Group Inc. (http://www.chemcomp.
com/). As a preprocessing step for the following analyses,
the values of each descriptor were standardized by their
averages and standard deviations. In this step, the number
of descriptors was reduced, by leaving only the continuous
values of the descriptors. Finally, 158 descriptors were used.

2.4. Network Inference by Path Consistency (PC)
Algorithm with Modifications. The path consistency (PC)
algorithm is a network inference method based on the
graphical model.? The original PC algorithm is composed
of two parts: the undirected graph inference by the partial
correlation coefficient and the following directed graph
generated by using the orientation rule. The present method
partially exploits the first part of the PC algorithm, because
the aim of the present application of the network inference
method is to scrutinize the relationships between the chemical
compounds, without the causality.

SAITO ET AL.

The algorithm for the first part is simple. The relationship
between two variables is tested from the lower partial
correlation coefficient to the higher one. For example, the
relationship between the two variables is first tested by the
zero-th partial correlation coefficient. If the null hypothesis
is accepted, i.e., no association between the two variables,
then no further test is performed for the higher order of the
partial correlation coefficient. If it is rejected, then the
relationship between the two variables is tested by the first
partial correlation coefficient. In general, the (72 — 2)-th order
of the partial correlation coefficient is calculated between
two variables, given (n — 2) variables, i.e., 7.y, between
X; and X, given the ‘rest’ of the variables, {X;} for k = 1,
2, ..., m, and k = i, j, and after calculating the (m — 2)-th
order of the partial correlation coefficient, the algorithm
naturally stops. However, the algorithm does not usually
request the (m — 2)-th order of the partial correlation
coefficient for the natural stop. This is because no adjacent
variables will be found after excluding the variables, even
in the calculation of the lower order of the partial correlation
coefficient. We provide the pseudocode of the algorithm in
Figure 2.

In the sample data, the zero-th order (i.e., the condition
where subset § is empty) of the partial correlation coefficient
is calculated by Pearson’s correlation coefficient, rjs = 4,
expressed by

cov(X,, Xj)
\lvar(X[) Var(Xj)

Fijis=p =
where cov(X;, X)) and var(X;) are the covariance between X;
and X; and the variance of X;. The higher order of the partial
correlation coefficients, r;s, expressed by

—Y

Fige == ————
igls U
[

where ijlS means S={1, 2, ..., p}\Mij}, and 7V is the i-j
element of the inverse correlation coefficient matrix.'* Note
that the dimensions of the correlation coefficient matrix are
related to the orders of the partial correlation coefficients.
The m-th order partial correlation coefficient is calculated
from the (m + 2) dimension of the correlation coefficient
matrix. The partial correlation coefficient is statistically tested
by using the Z-statistic.'® First, z-transforms of the partial
correlation coefficients are calculated, by the following

equation:

1. {1+ |rij|sl

= —jp| ——>

Zu 2 n(l - |rij|5|
Then, the z-statistic is obtained from the following equation:

Z=

1/n —3 — p
where n is the number of samples and p = IS| is the
conditioning order of the partial correlation coefficient. The
z-statistic follows the standard normal distribution, N(0,1),
and the significance probability can be set according to this
distribution; i.e., we reject the null hypothesis Ho:rij, = 0, if
Z > Zypwith significance level a. If Hy is not rejected, then
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Let Adj(G.X) \ {X;} be the set of nodes (variables) adjacent to .X;, except for Xj, in the undirected graph G.

Let p be the degree of conditioning.
1: G ¢complete undirected graph
2:p=0

3: repeat

4:  for all X; such that |[4dj(G.X))| -12p do

5: for all Xje Adj(G X)) do

6: for all subset Sc Adj(G.X;)\ {X;} such that |S|=p do
7: if X; _||_X;| S then

8: delete edge between X; and Xj in G

9: end if

10: end for

11: end for

12: end for

13: p=p+1

14: until [4dj(G.X)| - 1<p, VX

15: return G

Where “X;_||_X; | §” means X; and X; are conditionally independent on S; i.e., there is no edge between X; and X;.

Figure 2. Pseudocode of the modified path consistency algorithm. A pseudocode of the modified PC algorithm is described. In line seven,
statistical hypothesis testing for the partial correlation between X; and X; conditioning on S is used to determine whether X; and X; are
conditionally independent (for details, see text). If the partial correlation cannot be calculated, due to the multicollinearity, then we consider
that X; and X; are always conditionally dependent on any other variables.

we consider ry; = 0, and we judge the i-th and j-th nodes as
being conditionally independent of S.

The key point in the present network inference is the two
modifications of the original PC algorithm, for application
to the chemical compounds. The first modification is the
correction of the algorithm in the calculation of the partial
correlation coefficient. Since many compounds frequently
show very similar descriptor values, the difficulty increases
in the numerical calculation of the partial correlation coef-
ficients, due to the multicolinearity between the variables.
The original PC algorithm accidentally stops if only one
partial correlation between a pair of variables violates the
numerical calculation, against the high similarity of the
descriptors. To avoid the accidental stops by the highly
associated compound pairs, the original PC algorithm is
modified as follows: If the calculation of any order of the
partial correlation coefficient between the variables is
violated, then the corresponding pair of variables is regarded
as being dependent. The second modification is the correction
of the output by the algorithm. The network inference outputs
the edges with positive and negative correlations. The edge
with a positive correlation in the network can be interpreted
as a relationship with direct similarity between the properties
of the chemical compound structures, while the edge with a
negative correlation indicates a relationship with dissimilarity
in a linear fashion. Thus, the edges with the positive
correlation are adopted, and those with the negative correla-
tion are excluded from the inferred network.

2.5. Grouping of Chemical Compounds by Network
Clustering. In networks, the vertices are often clustered into
tightly knit groups, with a high density of within-group edges
and a lower density of between-group edges. This property

is called a “community structure”, and the computer algo-
rithms for identifying the community structure are based on
the iterative removal of edges with high “betweenness”
scores, which identify such structures with some sensitivity.
Here, we applied one of these algorithms to group the
chemical compounds in the inferred network.'*

This method is based on the modularity that is measured
by a parameter, the Q-value. The Q-value is defined as
follows:

0= z(eﬁ - a?)

where e; means the fraction of edges in cluster i with respect
to all edges in the network, and a; means the fraction of the
number of edges that end in cluster i. First, this method
considers each node as a cluster. In each subsequent step,
two clusters are combined to maximize the increment of the
O-value, AQ. AQ is calculated as follows:
AQ = e;t+e; — 2aiaj = 2(31‘,‘ - aa)

where e; means the half of the fraction of edges between
clusters i and j with respect to all edges in the network. In
addition to the above definition, e; is commutative, e; = ej;,
in the undirected graph. The complexity of the calculation
is on the order O(N), where N is the number of nodes in the
network, and we combine two clusters at most (N — 1) times;
therefore, in sparse networks, the clustering is complete after
O(N?) times.

2.6. Maximum Common Structures of Clusters. The
maximum common structure within the constituent com-
pounds belonging one cluster was obtained by using
ChemAxon JKlustor 1ibMCS."”
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Figure 3. Chemical compound network inferred by path consistency algorithm. A large network of 266 compounds, inferred by the path
consistency algorithm with 5% significance probability,'? is described. The compounds and the established edges between compounds are

denoted by open circles and straight lines, respectively.

3. RESULTS AND DISCUSSION

3.1. Chemical Compound Network. The relationships
between the 279 active compounds were inferred by the PC
algorithm. By the network inference, a large network
containing 266 of the 279 active compounds emerged, as
shown in Figure 3. Only seven compounds remained apart
from the large network, and among them, five edges of the
seven compounds were established. The emergence of a large
network seems natural, because all of the compounds
analyzed in this study share similar physicochemical proper-
ties, in terms of drug activity.

The large network contained 408 edges between com-
pounds, and the average connectivity ([number of edges]/
[n(n — 1)/2], where n is the number of nodes) was about
0.0116. As shown in Figure 3, the inferred network was
relatively sparse, in terms of edge connectivity. Although
several hubs were observed in the network, it seems difficult
to identify clear relationships between the compounds by
visual inspection.

3.2. Chemical Compound Network Clusters. To scru-
tinize the compound relationships, we applied a network
clustering method to rationally rearrange the connectivity in
the inferred network of Figure 3. In Figure 4, 10 clusters
naturally emerged from the entire connectivity in the inferred
large network. Thus, the large, complicated network was
transformed into distinctive clusters, with the number of
compounds in each cluster ranging from 14 to 41. The
emergence of the clusters indicates that some distinctive
compound groups with similar structural properties exist in
the network. The following step involves the investigation

of the constituent compounds of each cluster that emerged
by two network analyses, in terms of chemical structure and
activity.

3.3. Common Structures of Chemical Compound
Network Clusters. We surveyed the structural relationship
between the constituent chemical compounds that belong to
each cluster in the active network. Interestingly, the structures
of the constituent compounds were common within each
cluster, and they were diverse between the clusters.

The common structures of the member compounds in the
clusters of the active network are shown in Figure 5A. It is
readily apparent that common structures were found for all
of the clusters, and high densities of the constituent com-
pound structures were present in all of the clusters. Indeed,
on average, ca. 63.7% of the compounds shared common
structures: the highest and lowest share rates were 100.0%
in cluster 6 and 35.5% in cluster 3. In addition, the average
density of heavy atoms over all constituent compounds in
each cluster was high: 9 of the 10 clusters showed more than
50% of the average density, and the exceptional cases were
found in cluster 8. Furthermore, the common structures of
each cluster were distinctive between them, as seen in Figure
SA. To estimate the differences between the common
structures, the Tanimoto coefficients were calculated between
them, as follows:

2 XX
T.= k
' ZX?k + zszk - Z(Xikak)
k & k
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Figure 4. Network clusters of a large network of active chemical compounds. The network clusters estimated for the large network of
active compounds in Figure 3 are depicted. Ten clusters emerged, and they are numbered in the order of the numbers of constituent compounds

within the clusters.

As shown in Table 1, the Tanimoto coefficients for all
pairs of common structures were much less than 0.85, a value
that is generally considered to reflect similarity to each other.
All of the coefficients were less than 0.4, except for only
0.688 between the common structures of clusters 5 and 6.

The structures common within clusters and diverse be-
tween clusters were further investigated in terms of the
activity distribution, expressed by the —log(ICsp) histogram
of the constituent compounds. For reference, the histogram
of all compounds was also drawn in Figure 5B, and in the
histogram, the compounds with a —log(ICsp) value of less
than 9 (10 nM), which is generally regarded as the lead
compound, were frequently included (29.3% of compounds).
Subsequently, the compounds with ICs, values less than 10
nM were frequently observed in the histograms of each
cluster in Figure SA. Interestingly, some exceptions were
also observed. A statistical difference between the total ICs
distribution in Figure 5B and the distributions in Figure 5A
was found in several clusters. In the distributions of clusters
5 and 10, the frequency of observing an ICs, value than 10nM
was relatively high, in comparison with the total distribution.
This indicates that the common structures in clusters 5 and
10 may show a robust ICs, for any chemical modification.
Thus, the common structure may be a candidate for lead
optimization. In contrast, the frequencies of ICs, values less
than 10 nM in clusters 4 and 9 were much lower than that
in the total ICs, distribution. This indicates the possibility
that many compounds with an ICsy activity of less than 10
nM can be synthesized from the common structures of the
two clusters. Thus, the correspondence between the common
structures and the ICs distributions of each cluster provides
some clues for the synthesis of new compounds in the lead
optimization process.

3.4. Related Methods. For comparison with the perfor-
mance of the present method, the PCA was performed for
the same data. Figure 6 shows the projection of the cluster

members of the active network in Figure 4 into the principal
component space. As easily seen in the figure, the cluster
members with each common structure are scattered in the
space. Indeed, the constituent compounds in each cluster
were projected into some duplicated spaces, while the
compounds of clusters 5 and 6 were relatively separated from
the other clusters in the projected space. As indicated in the
preceding subsection, the Tanimoto coefficient between the
common structures of clusters 5 and 6 was exceptionally
large, and this similarity reflects the common configuration
of the constituent compounds in the two clusters in the
principal component space. In contrast, the Tanimoto coef-
ficients between the common structures of the other clusters
were small, and therefore the compounds were not clearly
discriminated in the space. Thus, the PCA may be a low-
resolution method to clearly detect the groups with common
chemical structures in the data, followed by the first
screening.

The fingerprint approach is well-known as another method
to detect common structures in an ensemble of compounds.®
Actually, we used this approach to identify the common
structure of the constituent compounds in the respective
clusters. As a trial, we applied the fingerprint approach to
all of the compounds but were unable to find the common
structure (data not shown). We expected this failure from
the fact that the common structures of each cluster show
much less similarity, as depicted in Figure SA. In contrast
to the PCA, therefore, the fingerprint method may be a high-
resolution technique to detect the distinctive groups with
common chemical structures.

Note that there are two reasons why we use the Newman
method, instead of the standard hierarchical clustering by
using the partial correlation matrix as a distance measure.
One reason is that the edges in the inferred network are
established by considering the higher order of correlation
between multiple variables, instead of the distance between
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Figure 5. Maximum common structures of the active compound network clusters, together with ICsq histograms of constituent compounds.
(A) The numbers of clusters in the first column are those described in Figure 4. The common structures of the 10 clusters in the second
column were extracted by using ChemAxon JKlustor 1libMCS."” The total number of constituent compounds in each cluster is denoted in
the third column, and the number of compounds sharing the corresponding common structures is also denoted in parentheses. In the fourth
column, the average densities of heavy atoms in the common structures over the structures of all compounds are denoted. In the fifth
column, the histograms of the ICsy values of the constituent compounds are depicted: the vertical and horizontal axes are the frequency of
the compounds and the —log(ICso) values, respectively. In addition, the differences between each histogram of ICso values for the respective
clusters and that for the total active compounds (B) were tested by Fisher’s exact test. The significance of the differences between the
histograms is indicated at the cluster number in the first column: 5%, “**’; and 10%, “*’. ’
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Table 1. Tanimoto Coefficients between Maximum Common

Structures in Respective Active Compound Clusters

cluster

no. 2 3 4 5 6 7 8 9 10
] -

2 0357 -

3 0243 0254 —

4 0261 0304 0244 -—

5 0179 0.197 0.199 0202 -

6 0.160 0.166 0.226 0232 0.686 —

7 0.187 0.193 0.192 0.123 0.132 0.124 —

8 0.137 0224 0.176 0.152 0.126 0.150 0.073 —

9 0254 0271 0.234 0229 0213 0.198 0.151 0.157 -

10 0213 0.165 0.228 0.274 0222 0.246 0.142 0.095 0.246 —

pairs of variables in the clustering, The clustering technique
in the present study is therefore suitable for keeping the
inferred relationships between variables. The other reason
is that the Newman method can automatically determine the
number of clusters in terms of the network structure. In
contrast, the number of clusters is determined by setting a
threshold, as in hierarchical clustering, or the cluster number
is done before the clustering, as in a self-organization map
(SOM).

In summary, the PCA provides a coarse-grinning relation-
ship between compounds from the macroscopic resources,
and the fingerprint approach provides a fine relationship
between limited ensembles of compounds. With these
situations in mind, our procedure provides a medium
relationship between compounds, to enrich the selection of
molecules with a desired activity. Thus, it bridges the gap
between the two methods, by finding the groups of common
structures in the step after the first screening, during the
process of the lead optimization.

3.5. Merits and Pitfalls of the Present Method. One of
the merits of the present method is that it simply detects the
structural similarity relationships between active compounds.
Indeed, only one parameter, the significance probability in
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Figure 6. Distribution of members of network clusters in principle
component space. The 266 active compounds in the network of
Figure 3, which were characterized by the same number of
descriptors (158 descriptors) as in the present analysis, were
subjected to the PCA. The inertias of the first and second principal
components (PC1 and PC2 in the figure) were 0.309 and 0.198,
respectively. The constituent compounds of the 10 clusters in Figure
4 are indicated by the following symbols: cluster 1, 0; 2, O; 3, A;
4,+;5,x;6,<;7, 1, 8, @, 9, A; and 10, @.
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the path consistency algorithm, is set in the network analyses.
Thus, the present method is highly automatic and visual, to
help reveal a rational synthesis route of chemical compounds
for new drug discovery.

One of the key points of our method is the application of
network inference, based on the graphical model, to the
chemical compounds. Among the similar chemical structures,
the present network inference detects the ‘well-balanced’
similarity, by using the partial correlation coefficient. In
general, the graphical model distinguishes between real
correlation and pseudocorrelation, based on the calculation
of a partial correlation coefficient that realizes the concept
of conditional independence.'®> The merit of this graphical
model is that it only establishes the connection between the
compounds with common structures and not between those
lacking common structures. This discriminative ability is
useful for classifying a large number of active compounds
into various groups with different common structures in a
rational manner.

In the present analysis, one large network was inferred,
and 10 clusters emerged. The numbers of networks and
clusters naturally depend on the user-defined descriptors and
one parameter in the network inference. In the present
analysis, the chemical compounds were characterized by as
many secondary structure descriptors as possible. In general,
the kinds of descriptors in the analysis may be changed,
according to the analyzed data and the analysis aim.
Fortunately, the quantification of chemical compounds by
descriptors can be easily and quickly performed, due to recent
advances in high-performance computing. Although the
heuristic choice of descriptors is important to characterize
the compound set, the descriptor optimization responsible
for the compound set can be included as a preprocessing
step in the present work. Furthermore, the size of the network
and the following cluster numbers can be controlled by the
user-defined significance probability in the network inference.
For example, if one chooses a more significant probability
than that of the present study, then a smaller network and
fewer clusters will be obtained, in which more similar
common structures will be found. In addition, the compu-
tational time for the present data in the two network analyses
was about 5 s, using a personal computer (one CPU with a
2.4 GHz Pentium IV processor and 1GB of memory, under
the Linux system). At any rate, the easy manipulation of the
data, using only one user-defined parameter, may promote
the use of the present method in applications to discriminate
between various active compounds in drug discovery.

4. CONCLUSIONS

We have proposed a novel method to group active
chemical compounds, by first screening with a combination
of two network analysis methods. The scrutinization of active
inhibitors of factor Xa by our method revealed reasonable
grouping in terms of chemical structure and significant
differences between each group in terms of activity. The
present results illustrate the possibility that our method will
bridge the gap between the compound activity test by the
first screening and the following synthesis of lead derivatives.
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