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Abstract

The investigation of network dynamics is a major issue in systems and synthetic biology. One of
the essential steps in a dynamics investigation is the parameter estimation in the model that expresses
biological phenomena. Indeed, various techniques for parameter optimization have been devised and
implemented in both free and commercial software. While the computational time for parameter
estimation has been greatly reduced, due to improvements in calculation algorithms and the advent
of high performance computers, the accuracy of parameter estimation has not been addressed.

We previously proposed an approach for accurate parameter optimization by using Differential
Elimination, which is an algebraic approach for rewriting a system of differential equations into
another equivalent system. The equivalent system has the same solution as the original system, and it
includes high-order derivatives, which contain information about the form of the observed time-series
data. The introduction of an equivalent system into the numerical parameter optimizing procedure
resulted in the drastic improvement of the estimation accuracy, since our approach evaluates the
difference of not only the values but also the forms between the measured and estimated data, while
the classical numerical approach evaluates only the value difference. In this report, we describe
the detailed procedure of our approach for accurate parameter estimation in dynamic systems. The
ability of our approach is illustrated in terms of the parameter estimation accuracy, in comparison
with classical methods.

1 Introduction

The investigation of network dynamics is a major issue in systems and synthetic biology[1]. In general,
a network model for describing the kinetics of constituent molecules is first constructed with reference
to the biological knowledge, and then the model is mathematically expressed by differential equations,
based on the chemical reactions underlying the kinetics. Finally, the kinetic parameters in the model are
estimated by various parameter optimization techniques[2], from the time-series data measured for the
constituent molecules. While the computational time for parameter estimation has been greatly reduced,
due to the improvements in calculation algorithms and the advent of high performance computers, the
accurate numerical estimation of parameter values for a given model remains a limiting step. Indeed,
the parameter values estimated by various optimization techniques are frequently quite variable, due to
the conditions for parameter estimation, such as the initial values. In particular, we cannot always obtain
the data measured for all of the constituent molecules, due to limitations of measurement techniques and
ethical constraints. In this case, one of the issues we should resolve is that the parameters are estimated
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from the data for only some of the constituent molecules. Unfortunately, it is quite difficult to estimate
the parameters in such a network model including unmeasured variables.

Differential elimination was applied[3] to improve the parameter estimation methods, especially in
the model dynamics including unmonitored variables. The idea consisted of computing differential equa-
tions from the input system, from which the unmonitored variables were eliminated. These differential
equations could then be used to guess the initial values for the Newton-type numerical parameter op-
timization scheme. The overall method was implemented over the BLAD libraries[4]. Differential
elimination theory is a branch of the differential algebra of Ritt and Kolchin[5, 6]. Its basis was de-
veloped by Ritt, who founded the theory of characteristic sets. Ritt’s ideas were subsequently developed
by Seidenberg [7], Wu[8], Boulier et al.[9, 10] and many other researchers. The Rosenfeld-Grébner
algorithm[9, 10] is the first complete algorithm for differential elimination ever implemented. It re-
lies on Ritt and Seidenberg’s ideas, on the Rosenfeld Lemma, which reduces differential problems to
non-differential polynomial ones, and on the Grobner bases theory for solving non-differential poly-
nomial systems (although recent implementations completely avoid Grobner bases computations). The
Rosenfeld-Grobner algorithm was implemented in 1996 in the diffalg package of the MAPLE computer
algebra software. Starting from MAPLE 14, it should be replaced by the MAPLE Differential Algebra
package, which relies on the BLAD libraries[11].

Recently, we proposed a new procedure for optimizing the parameters, by using differential elimi-
nation. Our procedure partially utilizes a technique from a previous study[12, 13], regarding the intro-
duction of differential elimination into parameter optimization in a network. Instead of using differential
elimination for estimating the initial values for the following parameter optimization, the equations de-
rived by differential elimination are directly introduced as the constraints into the objective function for
the parameter optimization[14, 15, 16, 17]. Here, we will describe the detailed procedure of our ap-
proach, by using a simple model represented as non-linear differential equations. We also discuss the
merits and pitfalls of our procedure, in terms of its extension to more realistic and complex models.

2 Procedure

2.1 Overview of Present Procedure

The key point of this study is the introduction of new constraints obtained by differential elimination
into the objective function, to improve the parameter accuracy. This section outlines our new procedure
for estimating the parameters, using constraints built from differential elimination, and compared it with
the classical constraints based on the total relative error. For clarity, the method is described using an
academic example.

We first present the example. We then show how to build our new constraints using differential
elimination, and how to optimize the evaluation of those new constraints over numeric values. Subse-
quently, we present our genetic algorithm for estimating the parameter values, and finish with the results.
All Maple commands used for computing the expressions described in the following subsections are
provided in appendix A.

2.2 Example

Differential algebra aims at studying differential equations from a purely algebraic point of view[5, 6].
Differential elimination theory is a sub theory of differential algebra, based on Rosenfeld-Grobner[9].
Differential elimination rewrites the inputted system of differential equations to another equivalent sys-
tem, according to (order of terms). Here, we provide an example of differential elimination, as shown
below, according to Boulier[12].
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(Michaelis-Menten exchange)
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Figure 1: Schematic representation of the model

The model is composed of two state variables, x; and x,. We assumed that the time-series data for one
of the variable, x;, are obtained.
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Figure 2: Reference curve

According to the kinetics of the model (Eqn. (1)), a reference curve of one variable, x;, was generated
for 0 < < 1.5 with intervals of 0.05, under the following conditions: x;(0) = 50.0,x,(0) = 0.0,Ve =
101.0,k12 = 0.5,k2; = 3.0 and k, = 7.0.

Assume a model of two variables, x; and x,, as schematically depicted in Fig. 1, with the corre-
sponding system of differential equations expressed as follows:

. Vex
{ X1 = —kioxy +ka1xy — 74

Xo = kiox1 — ko1x2

M

where k12, k21, k, and V, are some constants. Two molecules are assumed to bind according to Michaelis-
Menten kinetics.
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Here we assume that the time-series of only one variable, x;, can be observed. x; is assumed to be
non-observed; however, we assumed that x2(0) = O was known. According to the model in Fig. 1, a
reference curve of one variable, x|, was generated in Fig. 2. Among the parameters in the model, the
values of three parameters, k12, k21, and V,, were estimated, and the values of the remaining parameters
were set to the same values as those used in the generation of the reference curve of Fig. 2.

2.3 Differential Elimination

The differential elimination then produces the following two equations equivalent to the above system.

{ X1 (ka1 +x1) +ko1x3 + (kiz + Ve)x1 — kai (ke +x1)x2 = 0 @

%1 (1 + k)2 + (kag + ko1 )% (X1 + ko) ? + Vexrke + ko1 Vexy (x1 + k) = 0

As a consequence, the latter two equations should be zero for any solution of (1). The latter to
equations, respectfully, called Cy, and Cy; in the following, will be used to define our error estimation,
based on the evaluation of |Cy |+ |Ca/.

System (2) can be computed in Maple 14, using the following commands:

> with(DifferentialAlgebra):

> sys := [
> x1[t] - ( -ki12*x1 + k21*x2 - Vexxl/(ke+x1)),
> x2[t] - ( k12%x1 - k21%x2)
> 1;
Ve x1
sys := [x1[t] + k12 x1 - k21 %2 + —-—-—~—- , x2[t] - k12 x1 + k21 x2]
ke + x1

> R := DifferentialRing(blocks=[x2,x1,k12(),k21(),Ve(),ke()], derivations=[t]);
R := differential_ring

> Ids := RosenfeldGroebner( numer(sys), denom(sys), R,

> basefield=field(generators=[k12,k21,Ve,kel));
Ids := [regular_differential_chain]

> eqgs := Equations(Ids[1]);

egqs := [

2
k21 x2 x1 + k21 x2 ke - x1[t] x1 - x1[t] ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2
xi[t, t] x1 + 2 x1[t, t] x1 ke + x1[t, t] ke + x1[t] x1 k12

2 2
+ x1[t] x1 k21 + 2 x1[t] x1 k12 ke + 2 x1[t] x1 k21 ke + x1[t] k12 ke

2 2
+ x1[t] k21 ke + x1[t] Ve ke + x1 k21 Ve + x1 k21 Ve kel
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2.4 Simplification

In general, the problem of reducing the evaluation complexity (additions, multiplications) is difficult
and requires a large number of computer operations (a.k.a. a high algorithmic complexity). Moreover,
the evaluation complexity of the Rosenfeld-Grobner output tends to be exponential in the evaluation
complexity of the input, especially when using elimination rankings, as in this case. Consequently, before
directly applying techniques such as factorization, Horner schemes, common sub expression detection,
etc. for reducing the evaluation complexity, we try to use the knowledge we already have on the initial
ODE system.

We now describe a preprocessing step that facilitates the evaluation of Cpg = |Ci 4|+ [Cayl.

The expressions of Cy, and C; given in (2) are not the expressions originally computed by the
Rosenfeld-Grébner algorithm. Indeed, the Rosenfeld-Grobner algorithm outputs expanded expressions.

Thus, using the Rosenfeld-Grobner outputs, one has to evaluate the following expression, Cpg:

Coe = |—kaixoke — kp1xoxy + Xike -+ X121 + kioxike + kioxt + Voxy | 3)
+ lkZIkeVexl + 2kokiox1X1 + 2k 1 koX 131 4 2k X1X1 +k12)€1k§
+k.Voxy +k12x%x'1 +k21kzx'1 +k21x%x'1 +k21x%Ve —{—)51/(3 +X'1x%l

requiring 18 additions + 46 multiplications (+2 function evaluations for the absolute value). These oper-
ations represent the evaluation complexity of the expression Cpg.

Since the expressions of C ; and C, ; were computed from an ODE system involving the denominator
k. +x;, from a Michaelis-Menten factor, the expression k, +x; can be likely be factorized. By introducing
anew variable, d, = k, +x1, and applying the substitution k, — d, — x) in the previous expression of Cpg,
one gets

Cpe = |—kuxpd, +x1de +kioxide + Vexy| )
+ ko1 Vexide + kinx1d? + Voxrd, — Voxixy + oy %1 d? + %1 d?

requiring 9 additions + 21 multiplications.

Please note that the last expression of Cpg does not involve k, anymore, which shows that the variable
k. only appears in Cpg in the term k, + x.

This trick with the denominators has divided the number of operations by 2. On more complex
systems, the benefit can be much greater. It is worth noting that the trick works quite similarly if several
denominators are involved and if each denominator linearly involves a parameter that is not involved in
the other denominators. More precisely, if one has n denominators of the form k; + f;, and if k; is not
involved in any f;, then one performs »n substitutions k; — f; —d;.

Further computations using a Horner scheme can now be accomplished. For example, applying a
recursive Horner scheme with decreasing priority on the variables d,,x1,x2,X1, %] yields:

Coe = |Vex1 — (kaixay — X1 — kipx1 )de| *)
-+ I—Vex'lx] -+ (kzlve)q +V.x1 + (X1 + (k12 +k21)x'1)de)de{
requiring 9 additions + 12 multiplications.

To finish, further simplification can be achieved using the optimize command of the optimize package
in the Computer Algebra software Maple. This last command tries to recognize common expressions in
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order to compute common subexpressions only once. This command is not very costly, since it is based
on easy heuristics. In our case, it yields the sequence of commands:

11 = |Vex1 — (kaixo — X1 — kiox1)de|, (6)
t8 = Vi,
t19 = |—t8x1+ (ko1 Vexy + 18 + (X1 + (k12 + ko1)x1)de)de|

Cpg = t7+1¢19

requring 9 additions + 11 multiplications + 4 assignments. Note that the last gain here is only 1 multipli-
cation, but can be higher on larger systems.

All previous operations can be automated in Maple (see appendix A for the complete set of Maple
commands); the C command of the optimize package yields the C code as

t7 = fabs(Vexxl—(k21%x2—x1t—k12xx1)*xde);

t8 Vexx1t;

t19 = fabs(—t8xx1+(k21«Vexx1+t8+(x1tt+(kl2+k21)*xx1t)*xde)*xde);
E = t7+t19;.

2.5 Introduction of Constraints

The objective function for parameter optimization in this study is composed of two terms: one is the
standard error function between the estimated and monitored data, and the other is the constraints ob-
tained by differential elimination. The error function is defined as follows: Suppose x7, is the time-series
data at time ¢ of x;, simulated by using the estimated parameter values and the model equations by inte-
gration, and x", represents the monitored data at time ¢. The sum of the absolute values of the relative
error between x7, and x;; gives the averaged relative error over the numbers of monitored variables and
time points, £, as a standard error function, i.e.,

1 N T
E=-=3)

i=1t=1

xﬁt - x:nt
T (7

where N and T are the numbers of monitored variables and time points, respectively.

Next we define the DE constraints obtained by the differential elimination and simplification proce-
dure. The simplified equivalent system (Eqn. (6)) is composed of xi, its derivatives (x; and X1), x, and
the parameters (k12, k21, V. and k,). Note that x, in Eqn. (6) can be estimated by x), the parameters, and
x2(0). The derivatives of variable x; can be estimated numerically by the following procedure. First, we
obtain two equations by a Taylor expansion of x; (),

W2 n
xi(t+h) = (1) +hx (1) + 520 (1) + =2 (1) + - ®)
/ hz 1 h3 "
xl(f—h):xl(f)—hxl(T)Jr*z“xl(f)—gxl @)+ ®)
Second, we subtract Eqn. (9) from (8),
X1 (t -|—h) — X1 (t - h) = 2hx’1 (t) + %h3x'1”(t) +-- (10)

2hx)(t) =x1(t+h)—xi(t —h) — %;ﬁx'{'(;) SE

x1(t+h)—xi(t—h) K
X (t) = 7 - gx'{'(t)Jr-'--
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Finally, we obtain following approximation, under the assumption of 0 < 7 < 1,

; :xl(t+h)—x1(t—h)

X, (1) > +0(h?). (11)

We are able to obtain higher-order derivatives from lower-order derivatives in same way, as mentioned
above. For instance, we can estimate second order derivatives of x; by using following equation,

X (1) = "jl(”h);l(’“h) +0(h?). (12)

The value of the simplified equivalent system (Eqn. (6)) can be calculated by the substitution of the
observed xi, its numerically the estimated derivatives, estimated x,, and the parameter values estimated
by the numerical parameter optimizing procedure. In general, Differential Elimination rewrites the orig-
inal system of differential equations into an equivalent system, which means both systems have the same
solutions. This clearly shows that the evaluated values of the equivalent system will be zero with exactly
estimated parameter sets, time-series data without noise, and derivatives. Thus, the equivalent system
can be regarded as a kind of objective function that expresses the difference between the monitored and
estimated data. In this study, we express DE Constraint (Cpg), as the average of the linear combination
of the equation in the equivalent system over the number of equations and time points, as follows:

1
LT

L T
Y Y lc (13)

I=1t=1

Cpg =

where L and 7 are the numbers of equivalent equations and time points, respectively. Finally, we in-
troduce Cpg Cpg, which is simplified as Cpg, into the objective function, F, in combination with E,
as:

F=0€E+(1—0€)CDE (14)

where o.(0 < a0 < 1) is the weight of the two functions. As a result, our computational task is to find
a set of parameter values that minimize F. When we apply the simplification procedure (see 2.4), then
leéDE is used instead of Cpg.

The weighting factor o in the objective function F is estimated from the slope of the Pareto-optimal
solutions. First, we obtained some parameter sets (in the case study, we obtained 200 kinds of parameter
sets) by the compute_parameter_set function, under the conditions of 8 = 1.0 and the tentative value of
o ta = 1 (this means we used the classical objective function, i.e. ¥ = E). Second, we selected the
Pareto-optimal solutions from the list of estimated parameter sets, by the select_pareto_optimal_solutions
function. By fitting the linear function C = aE + b to the selected the Pareto-optimal solutions, we ob-
tained the slope of Pareto-optimal solutions, a. Finally, we estimated the value of o from the slope a.
The detailed algorithms for estimating the value of o are shown in Algorithm 1 and 2. Fig. 3 represents
a part of the estimated parameter sets in the case study (the detailed algorithms for the parameter opti-
mization we used for the case study are shown in 2.6), the Pareto-optimal solutions, and the fitted line
for the Pareto-optimal solutions. We obtained the slope a = 20.7653 for the case study, and the value of
o was estimated as o0 = 0.95406.
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Figure 3: Slope of Pareto-optimal solutions

The empty squares ([]) indicate the set of evaluated values, E and Cpg. The filled squares (M) show the
Pareto-optimal solutions, and the line represents the fitted line for Pareto-optimal solutions.

Algorithm 1 Estimate value of weighting factor o

Function : estimate_alpha(d, n, ta)

Input : error tolerance &, number of trials n, and tentative value of o za
Return : estimated value of weighting factor o

RES « compute_parameter_set(ta, 0)
P — select_pareto_optimal_solutions(RES)
EV —¢
CV «—0
n size of P
fori=0tondo
EV « EV union E(R;)
CV « CV union C(R;)
end for
fit CV; = —aEV;+ b from EV and CV by using least square method
: return a/(a+1)

R AR A O e

—
_—
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Algorithm 2 Select Pareto-optimal solutions
Function : select_pareto_optimal_solutions(R)
Input : R set of estimated parameters
Return : Pareto-optimal solutions (P)

P—9¢
EV «— ¢
CV—0¢
n size of R
fori=0tondo
EV «— EV union E(R;)
CV « CV union C(R;)
end for
fori=0tondo
10  Flag!p = true
11:  for j=0tondo
12: if I(EV; <EV; and CV; < CV;) then

R A

13: [p < false
14: end if

15:  end for

16:  if [p then

17: P « P union R;
18:  endif

19: end for

20: return P

2.6 Optimization Algorithm

Our approach can be applied to many kinds of parameter optimizing procedures, such as the Gradient-
based method and the evolutionary optimizing method, including the Modified Powell method[18, 19],
Genetic Algorithms[20, 21], and Particle Swarm Optimization[22, 23], by modifying the objective func-
tion (cost function) only[16].

Here, we applied our approach to Real-coded Genetic Algorithms[24, 25, 26], to demonstrate its
ability. The detailed algorithms used to analyze the case study (Fig. 1 and 2) are shown in Algorithm 3
to 5.

Let us explain the differences between our procedure and the classical constraint E. First of all, by
using o0 = 1, one obtains a classical genetic algorithm using the relative error E, since we have F = E
when o = 1. Second, when using & < 1, each parameter set k returned by the compute_parameter_sets
satisfies E(k) < 8, as in the classical procedure. However, the manner in which the population evolves
(in the compute_next_generation) depends on the function F. To summarize, the objective function F is
only used to direct the evolution of the population, by not using the objective function F' to select the final
candidates, and thus it makes sense to compare the parameter sets computed in the classical procedure
and in our procedure.

2.7 Results

To evaluate the ability of our procedure, we performed a simulation study by using the objective function
with and without the newly developed DE constraints, by estimating the kinetic parameters in Eqn. (1).
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Algorithm 3 Modify the parameter set K by computing the next generation
Function compute_next_generation(a., K)
Input : the weighting factor o, a parameter set K

1: nsize of K

2: denote K = {ki,...,kn}

compute 1 < s < n such that k; is the one best element according to the F function (i.e. F(ks) is the
minimum of F(k;),...,F(K,))

pick a random number r such that 1 < r < n, and r is different from s

mix k; and k- and compute a new set k' = {Kj,...,k,}

K’ — K’ union {k}

modify k by replacing k; and &, by the two best elements of K’ according to the F function

w

AU

Algorithm 4 Optimization process

Function : compute_one_parameter_set(o, &, pop, gen)

Input : the weighting factor «, the error tolerance delta for function F, the population size of GA pop,
the maximum generation counts gen

Return : a set containing zero or one parameter set

create a set K containing pop random parameter sets
: fori=11to gendo
compute_next_generation(al pha, K)
if an element & in K satisfies E (k) < § then
return k
end if
end for
return ¢

A A A S e

Algorithm 5 generate a list of estimated parameter sets

Function : compute_parameter_sets(a, &, pop, gen, trials)

Input : the weighting factor a, the error tolerance o for function F, the population size of GA pop, the
maximum generation counts gen, the trial number trials

Return : a list of parameter sets

1: RES+— ¢

2: for i =1 to trials do

3:  RES «+ RES union compute_one_parameter._set(al pha, delta, pop, gen)
4: end for

5: return RES
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Figure 4: Comparison of parameter value clouds estimated by the classical or our proposed procedure,
(A) with and (B) without DE constraints

The given values are as follows: x,(0) = 0.0 and k, = 7.0. The black circles indicate the correct parameter
set.
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Here, we assume that the time-series of only one variable, x;, can be observed. According to the model,
the reference curve of one variable, x|, was generated in Fig. 2. Among the parameters in the model, the
values of three parameters, k12, k21, and V,, were estimated, and the values of the remaining parameters
were set to the same values as those used in the generation of the reference curve.

The introduction of DE constraints into the objective function was quite effective, in the comparison
with the distributions of the parameter values estimated with and without DE constraints (see Fig. 4).
Indeed, the distribution of the estimated ki, and k;; values was highly concentrated around the correct
values by the estimation with the introduction (Fig. 4 (A)), while the estimated parameters were widely
distributed by the estimation without the introduction of DE constraints (Fig. 4 (B)).

3 Discussion

The accuracy of parameter estimation was clearly improved by the introduction of DE constraints into
the objective function of the numerical parameter optimizing method. Indeed, the parameter value sets
estimated with the introduction of DE constraints into the objective function were sharply distributed near
the correct values, in contrast to the wide distribution without the introduction. In general, the derivatives
included the information on the curve form of the observed time-series data, such as slope, extremal point
and inflection point. This indicates that the new objective function we proposed estimates the difference
of not only the values but also the forms between the measured and estimated data, while the classical
objective function estimates only the value difference. Note that the DE constraint is rationally reduced
from the original system of differential equations for a given model, in a mathematical sense. Thus, our
approach is expected to become a general approach for parameter optimization to improve the parameter
accuracy.

As expected, the new objective function requires more computational time, in comparison with an
objective function with only a standard error function, due to the increase of the function in the DE
constraints. In equivalent systems derived by Differential Elimination, the number of terms and operators
frequently increases, and this may make the application of our procedure to a complex or large system
difficult, without simplification of the equivalent system. To overcome the difficulty in the complex
system, we applied simplification by symbolic computation (see 2.4). For instance, we could estimate
the kinetic parameters in the negative feed-back oscillator model[27, 28, 29] by using the simplification
procedure[17], while the estimation without the simplification failed, due to the immense computational
time.

Another possible way to overcome the difficulty in complex models is to approximate the DE con-
straint. In the DE constraint, the terms with a higher order of derivatives in the differential equations
generally appeared in the equivalent system. The magnitudes of the estimated values of the higher order
derivatives were relatively smaller than those of the lower order derivatives. Although our procedure was
useful, even for noisy data in a simple model[15], the estimated values of the higher order derivatives for
noisy data may become large in this case. However, some techniques are frequently used for smoothing
noisy data, and after smoothing, the values of the higher order derivatives may be smaller. If the terms
with higher order derivatives can be neglected in the estimation, then the computational time may be
reduced. Further studies to improve the computational time by approximation of the DE constraint will
be reported in the near future.

A Implementation of Simplification

The following commands use the new Differential Algebra package, and thus require Maple 14 to work.
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N/ Maple 14 (X86 64 LINUX)
NI |/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2010
\ MAPLE / All rights reserved. Maple is a trademark of
| > Waterloo Maple Inc.

| Type 7 for help.

libname := "/home/calforme/lemaire/Triade/src/1lib", "/usr/local/maplel4/lib"
> with(DifferentialAlgebra):
> with(CodeGeneration) :
> with(codegen):
> sys := [
> x1[t] - ( -k12¥x1 + k21%x2 - Vexx1/(ke+x1)),
> x2[t] - ( k12*x1 - k21%x2)
> 1;
Ve x1
sys := [x1[t] + k12 x1 - k21 x2 + --——--- , x2[t] - k12 x1 + k21 x2]
ke + x1

> R := DifferentialRing(blocks=[x2,x1,k12(),k21(),Ve(),ke()], derivations=[t]);

R := differential_ring
> Ids := RosenfeldGroebner( numer(sys), denom(sys), R,
> basefield=field(generators=[k12,k21,Ve,kel));

Ids := [regular_differential_chain]

> eqs := Equations(Ids[1]);
egqs :=

2
k21 x2 x1 + k21 x2 ke - x1[t] x1 - x1[t] ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2
x1[t, t] x1 + 2 x1[t, t] x1 ke + x1[t, t] ke + x1[t] x1 k12

2 2
+ x1[t] x1 k21 + 2 x1[t] x1 k12 ke + 2 x1[t] x1 k21 ke + x1[t] k12 ke

2 2
+ x1[t] k21 ke + x1[t] Ve ke + x1 k21 Ve + x1 k21 Ve kel

# One performs some necessary renaming
> eqgs := subs(x1[t,t]=xitt, x1[tl=x1t, x1[l=x1, x2[t]=x2t, x2{]=x2, eqs);
2
eqs := [k21 x2 x1 + k21 x2 ke - xl1t x1 - x1t ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2 2
xitt x1 + 2 x1tt x1 ke + x1tt ke + x1t x1 k12 + xi1t x1 k21

2 2
+ 2 x1t x1 k12 ke + 2 x1t x1 k21 ke + x1t k12 ke + x1t k21 ke

2
+ x1t Ve ke + x1 k21 Ve + x1 k21 Ve kel

> toTransform := [ result = abs(eqs[1]) + abs(eqs[2]) J;
toTransform := [result =
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| ~k21 x2 x1 - k21 x2 ke + x1t x1 + x1t ke + k12 x1 + k12 x1 ke + Ve x1 |

2 2 2 2
+ | xitt x1 + 2 x1tt x1 ke + x1tt ke + x1t x1 k12 + xit x1 k21

2 2
+ 2 x1t x1 k12 ke + 2 x1t x1 k21 ke + x1t k12 ke + x1t k21 ke

2
+ x1t Ve ke + x1 k21 Ve + x1 k21 Ve ke |]

> cost(toTransform);
18 additions + 2 functions + 46 multiplications + assignments

# One guesses that the denominator ke+xl appears in many places.

# To make it appear, one introduces de = ke + x1

# and performs the substitution ke -> de - x1

> toTransform2 := subs(ke = de - x1, toTransform):

> toTransform2 := simplify(toTransform2);

toTransform2 := [result = | -k21 x2 de + x1t de + k12 x1 de + Ve x1 | + |
2 2 2

x1tt de + x1t k12 de + x1t k21 de + x1t Ve de - x1t Ve x1 + x1 k21 Ve de

1

> cost(toTransform?2);
9 additions + 2 functions + 21 multiplications + assignments

> eqs2 := subs(ke = de - x1, egs):
> eqgs2 := simplify(eqs2);
eqs2 := [k21 x2 de - x1t de - k12 x1 de - Ve x1,

2 2 2
xitt de + x1t k12 de + xl1t k21 de + xl1t Ve de - x1t Ve x1 + x1 k21 Ve de

# One remarks that ke does not appear anymore.

# Using horner and optimization.

> eqs3 := convert(egs2, horner, [de,x1,x2,x1t,xl1tt]);
eqs3 := [-Ve x1 + (k21 x2 - x1t - k12 x1) de,

-x1t Ve x1 + (x1 k21 Ve + x1t Ve + (xitt + (k12 + k21) x1t) de) del

> toTransform := [ result = abs(egs3[1]) + abs(eqs3[2]) 1;
toTransform := [result = | Ve x1 - (k21 x2 - x1t - k12 x1) de |

+ | -x1t Ve x1 + (x1 k21 Ve + x1t Ve + (x1tt + (k12 + k21) x1t) de) de |]

> cost( toTransform);
9 additions + 2 functions + 12 multiplications + assignments

> out := optimize( toTransform );
out := t7 = | Ve x1 - (k21 x2 - x1t - k12 x1) de |, t8 = x1t Ve,
£19 = | -t8 x1 + (x1 k21 Ve + t8 + (x1tt + (k12 + k21) x1t) de) de |,

result = t7 + t19
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> cost([out]);

2 functions + 11 multiplications + 9 additions + 4 assignments

# One generates the C code
>C( [ out 1);

t7 = fabs(Vexx1l-(k21%x2-x1t-k12*x1)*de);

t8 = xit+*Ve;

t19 = fabs(-t8*x1+(x1*k21*Ve+t8+ (x1tt+(k12+k21)*x1t)*de) *de) ;
result = t7+t19;

> quit
memory used=32.7MB, alloc=28.4MB, time=0.18
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Discrete Nature of EpCAM™ and CD90™ Cancer Stem
Cells in Human Hepatocellular Carcinoma
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Eishiro Mizukoshi," Hiroko Ikeda,' Yoh Zen,' Hiroyuki Takamura,' Xin Wei Wang,” and Shuichi Kaneko'

Recent evidence suggests that hepatocellular carcinoma (HCC) is organized by a subset of
cells with stem cell features (cancer stem cells; CSCs). CSCs are considered a pivotal target
for the eradication of cancer, and liver CSCs have been identified by the use of various
stem cell markers. However, little information is known about the expression patterns and
characteristics of marker-positive CSCs, hampering the development of personalized CSC-
targeted therapy. Here, we show that CSC markers EpCAM and CD90 are independently
expressed in liver cancer. In primary HCC, EpCAM™ and CD90™ cells resided distinc-
tively, and gene-expression analysis of sorted cells suggested that EpCAM ™ cells had fea-
tures of epithelial cells, whereas CD90" cells had those of vascular endothelial cells.
Clinicopathological analysis indicated that the presence of EpCAM™ cells was associated
with poorly differentiated morphology and high serum alpha-fetoprotein (AFP), whereas
the presence of CD90™ cells was associated with a high incidence of distant organ metasta-
sis. Serial xenotransplantation of EpCAM™/CD90™ cells from primary HCCs in immune-
deficient mice revealed rapid growth of EpCAM™ cells in the subcutaneous lesion and a
highly metastatic capacity of CD90" cells in the lung. In cell lines, CD90™ cells showed
abundant expression of c¢-Kit and iz vitro chemosensitivity to imatinib mesylate. Further-
more, CD90" cells enhanced the motility of EpCAM™ cells when cocultured in vitro
through the activation of transforming growth factor beta (TGF-f) signaling, whereas
imatinib mesylate suppressed TGFBI expression in CD90" cells as well as CD90"
cell-induced motility of EpCAM™ cells. Conclusion: Our data suggest the discrete nature
and potential interaction of EpCAM™ and CD90" CSCs with specific gene-expression
patterns and chemosensitivity to molecular targeted therapy. The presence of distinct
CSCs may determine the clinical outcome of HCC. (Heparorocy 2012;00:000-000)

noma (HCC), is a leading cause of cancer death
worldwide.! Recent studies have shown the existence

he cancer stem cell (CSC) hypothesis, which

suggests that a subset of cells bearing stem-

cell-like features is indispensable for tumor
development, has recently been put forward
subsequent to advances in molecular and stem cell
biology. Liver cancer, including hepatocellular carci-

of CSCs in liver cancer cell lines and primary HCC
specimens using various stem cell markers.”” Inde-
pendently, we have identified novel HCC subtypes
defined by the hepatic stem/progenitor cell markers,

Abbreviations: 5-FU, fluorouracil; Abs, antibodies; AFE alpha-fetoprotein; CK-19,. cytokeratin-19; CSC, cancer stem cell; DNs, dysplastic nodules; EMT,
epithelial mesenchymal transition; EpCAM; epithelial cell adhesion molecule; FACS, fluorescent-activated cell sortings HBY, hepatitis B virus; HCC, hepatocellular
carcinoma; HCV, hepatitis C virus; HSCs, hepatic stem cells; IE immunofluorescence; IHC, immunohistochemistry; IR, immunoreactivity; MDS, multidimensional
scalings NBNC, non-8, non-C hepatitiss NODISCID, nonobese diabetic, severe combined immunodeficient; NT, nontumor; OV-1, ovalbumin 1; gqPCR,
quantitative real-time polymerase chain reaction; SC, subcutaneous; Smad3, Mothers against decapentaplegic homolog 3; TECs, tumor epithelial cells; TGF-f3,
transforming growth factor beta; TIN, tumorlnontumor; VECS, vascular endothelial cells VM, vasculogenic mimicry; VEGFR, vascular endothelial growth factor
receptor.
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epithelial cell adhesion molecule (EpCAM) and alpha-
fetoprotein (AFP), which correlate with distinct gene-
expression signatures and prognosis.8’9 EpCAI\/I+
HCC cells isolated from primary HCC and cell lines
show CSC features, including tumorigenicity, invasive-
ness, and resistance to fluorouracil (5-FU).'° Similarly,
other groups have shown that CD133", CD90", and
CD13" HCC cells are also CSCs, and that EpCAM,
CD90, and CD133 are the only markers confirmed to
enrich CSCs from primary HCCs thus far.>>1°
Although EpCAM™, CD90", and CD133™ cells
show CSC features, such as high tumorigenicity, an
invasive nature, and resistance to chemo- and radiation
therapy, it remains unclear whether these cells repre-
sent an identical HCC population and whether they
share similar or distinct characteristics. In this study,
we used fluorescent-activated cell sorting (FACS),
microarray, and immunohistochemistry (IHC) techni-
ques to investigate the expression patterns of the repre-
sentative liver CSC markers CD133, CD90, and
EpCAM in a total of 340 HCC cases and 7 cases of
mesenchymal liver tumors. We further explored gene-
and protein-expression patterns as well as tumorigenic
capacity of sorted cells isolated from 15 primary
HCCs and 7 liver cancer cell lines in an attempt to
identify the molecular portraits of each cell type.

Materials and Methods

Clinical Specimens. HCC samples were obtained
with informed consent from patients who had under-
gone radical resection at the Liver Center in Kanazawa
University Hospital (Kanazawa, Japan), and tissue
acquisition procedures were approved by the ethics
committee of Kanazawa University. A total of 102
formalin-fixed and paraffin-embedded HCC samples,
obtained from 2001 to 2007, were used for IHC analy-
ses. Fifteen fresh HCC samples were obtained between
2008 and 2012 from surgically resected specimens and
an autopsy specimen and were used immediately to
prepare single-cell suspensions and xenotransplantation
(Table 1). Seven hepatic stromal tumors (three
cavernous hemangioma, two hemangioendothelioma,

and two angiomyolipoma) were formalin fixed and
paraffin embedded and used for IHC analyses.

HEPATOLOGY, Month 2012

Table 1. Clinicopathological Characteristics of HCC Cases
Used for Xenotransplantation

Age/ Tumor Histological AFP pep

b] Sex Etiology Size (cm) Grade {ng/mL) (1u/mL)
P1 77/M  Alcohol 12.0 Moderate 198 322
P2 61/F NBNC 11.0 Moderate 12 3,291
P3 66/M NBNC 2.2 Moderate 13 45
P4 65/M HCV 42 Poor 13,700 25977
P5 52/M HBV 6.0 Moderate 29,830 1,177
P6 60/M HCV 2.7 Poor 249 185
P7 T79/F HBV 4.0 Poor 46,410 384
P8 77/F NBNC 5.5 Moderate 17,590 562
P9 71/M  Alcohol 7.0 Poor 3,814 607
P10 51/M HBV 2.2 Well <10 21
P11 71/M  Alcohol 2.1 Well <10 11
P12 60/M HBV 10.8 Poor 323 2,359
P13 66/M HCV 2.8 Moderate 11 29
P14 71/M HCV 7.2 Moderate 235,700 375,080
P15  75/M HBV 5.5 Poor <10 97

Abbreviation: DCP, des-gamma-carboxy prothrombin.

Additional details of experimental procedures are
available in the Supporting Information.

Results

EpCAM, CDI133, and CD90 Expression in
HCC. We first evaluated the frequencies of three rep-
resentative CSC markers (EpCAM™, CD90", and
CD133™ cells) in 12 fresh primary HCC cases surgi-
cally resected by FACS (representative data shown in
Fig. 1A). Clinicopathological characteristics of primary
HCC cases are shown in Table 1. We noted that
frequency of EpCAM™, CD90", and CD133™ cells
varied between individuals. Abundant CD90™ (7.0%),
but almost no EpCAM™, cells (0.06%, comparable to
the isotype control) were detected in P2, whereas few
CD90"  (0.6%), but abundant EpCAM™, cells
(17.5%) were detected in P4. Very small populations
of EpCAM™ (0.09%), CD90™ (0.04%), and CD133*
cells (0.05%) were found in P12, but they were almost
nonexistent in P8, except for CD90™ cells (0.08%)
(Fig. 1A). We further evaluated the expression of
EpCAM, CD90, and CD133 in xenografts obtained
from surgically resected samples (P13 and P15) and an
autopsy sample (P14). As a whole, compared to the
isotype control, 7 of 15 HCCs contained definite
EpCAM™ cells (46.7%), whereas only 3 HCCs
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Fig. 1. Gene-expression profiles of CSC marker-positive HCCs. (A) FACS analysis of primary HCCs stained with fluorescent-labeled Abs against
EpCAM, CD90, or CD133. (B) Multidimensional scaling analysis of 172 HCC cases characterized by the expression patterns of EpCAM, CD133,
and CD90. Red, EpCAM™ CD90~ CD133~ (n = 34); orange, EpCAM™ CD90~ CD133™ (n = 10); light blue, EpCAM™ CD90™" CD133™ (n =
49); blue, EpCAM™ CD90™ CD133™ (n = 79). HCC specimens were clustered in specific groups with statistical significance (P < 0.001). (C)
Expression pattemns of well-known hepatic stem/progenitor markers in each HCC subtype, as analyzed by microarray. Red bar, EpCAM™; orange
bar, CD133™; light blue bar, CD90™; blue bar, EpCAM™ CD90~ CD133. (D) Hierarchical cluster analysis based on 1,561 EpCAM/CD90/
CD133-coregulated genes in 172 HCC cases. Each cell in the matrix represents the expression level of a gene in an individual sample. Red and
green cells depict high and low expression levels, respectively, as indicated by the scale bar. (E) Pathway analysis of EpCAM/CD90/CD133-
coregulated genes. Canonical signaling pathways activated in cluster A (red bar), cluster B (orange bar), or cluster C (light blue bar) with
statistical significance (P < 0.01) are shown. (F) Expression patterns of representative genes differentially expressed in EpCAM/CD90/CD133
HCC subtypes. Red bar, EpCAM™; orange bar, CD133™; light blue bar, CD90™; blue bar, EpCAM™ CD133™ CD90™.
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