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Differentiation of Cancer Stem Cells

Taro Yamashita, Masao Honda and Shuichi Kaneko
Department of Gastroenterology,
Kanazawa University Hospital Kanazawa, Ishikawa,

Japan

1. Introduction

Tumors originally develop from normal cells that acquire the ability to grow aberrantly and
metastasize to distant organs (Hanahan and Weinberg, 2000). These malignant
transformations are considered to be induced by the accumulation of multiple
genetic/epigenetic changes (Yamashita et al., 2008b). Although considered monoclonal in
origin, cancer is composed of heterogeneous cell populations. This heterogeneity is
traditionally explained by the clonal evolution of cancer cells through a series of stochastic
genetic events (clonal evolution model) (Fialkow, 1976; Nowell, 1976). In contrast, cancer
cells and stem cells have similar capabilities with respect to self-renewal, limitless division,
and the generation of heterogeneous cell populations. Recent evidence suggests that tumor
cells possess stem cell features (cancer stem cells) to self-renew and give rise to relatively
differentiated cells through asymmetric division, thereby forming heterogeneous populations
(cancer stem cell model) (Clarke et al., 2006; Jordan et al., 2006). Accumulating evidence
supports the notion that cancer stem cells can generate tumors more efficiently in
immunodeficient mice than non-cancer stem cells in hematological malignancies and in
various solid tumors (Al-Hajj et al., 2003; Bonnet and Dick, 1997; O'Brien et al., 2007; Ricci-
Vitiani et al., 2007; Singh et al., 2004).

Cancer stem cells are considered to be resistant to chemotherapy and radiotherapy, which
might be associated with the recurrence of the tumor after treatment (Boman and Huang,
2008; Dean et al., 2005; Diehn et al., 2009; Zou, 2008). These findings have led to the proposal
of “destemming” cancer stem cells (Hill and Perris, 2007) in order to induce their
differentiation into non-cancer stem cells or to eradicate cancer stem cells by inhibiting the
signaling pathways responsible for their self-renewal. Recent studies have supported this
proposal and suggest the utility of several factors to induce the differentiation of cancer
stem cells and facilitate tumor eradication; however, it is still debatable whether the simple
differentiation of cancer stem cells effectively eradicates tumors. Here, we summarize
current knowledge on the differentiation of cancer stem cells and discuss the utility and
limitation of differentiation therapy to eliminate cancer.

2. Cancer stem cell system

The consensus definition of a cancer stem cell is a cell within a tumor that possesses the
capacity to self-renew and to generate the heterogeneous lineages of cancer cells that
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comprise the tumor, as proposed by the AACR workshop in 2006 (Clarke et al., 2006). Thus,
cancer stem cells can only be defined experimentally and their self-renewal ability is
generally evaluated by the capacity of serially transplanted cells in immunodeficient mice. A
cancer stem cell may give rise to one or two daughter cells that have essentially the same
ability to replicate and generate differentiated non-cancer stem cells (Fig. 1 upper and lower
left panels).

Cancer Stem Cell Non-Cancer Stem Cell

Q differentiation program |
self-renewal program

Symmetric Division Asymmetric Division

Fig. 1. Symmetric/asymmetric division of a cancer stem cell

Asymmetric cell division could be defined by the generation of one cancer stem cell and one
progenitor cell with the loss of self-renewal capacity (Fig. 1 lower right panel). If both
progenitors derived from a cancer stem cell lose the capacity of self-renewal by the
induction of differentiation, the cancer stem cell population would be depleted and the
tumor would subsequently shrink, according to the conventional cancer stem cell model.

2.1 Signaling pathways responsible for the self-renewal of cancer stem cells

A growing body of evidence suggests the similarities of normal stem cells and cancer stem
cells in terms of their self-renewal and differentiation programs. Indeed, the self-renewal
and differentiation programs in cancer stem cells are considered to be regulated by several
signaling pathways that are activated in normal stem cells (Lobo et al., 2007). These
signaling pathways seem to be activated during the process of normal organogenesis as well
as carcinogenesis in a tissue-dependent manner (Pardal et al., 2003). Therefore, underscoring
the significance of these signaling pathways on self-renewal and differentiation is critical for
the development of treatment strategies specifically targeting cancer stem cells.
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2.1.1 Wnt/B-catenin signaling

Wnt/B-catenin signaling has been studied primarily in developing embryos and was
demonstrated to modulate cell proliferation, migration, and differentiation in a cellular
context-dependent manner (Decaens et al., 2008; Giles et al., 2003; Moon et al., 2004; Ober et
al.,, 2006). Wnt signaling is involved in the decision of stem cells to self-renew or
differentiate during organogenesis, involving, for example, skin, intestine, bone marrow,
kidney, and liver development (Moon et al., 2004; Thompson and Monga, 2007). Moreover,
mutations of genes involved in Wnt/B-catenin signaling have been reported in a wide
variety of human cancers including colorectal cancer, gastric cancer, skin cancer, ovarian
cancer, liver cancer, and leukemia (Giles et al., 2003; Merle et al., 2005; Takebe et al., 2010;
Tan et al., 2008; Vermeulen et al., 2010; Woodward et al., 2007; Zhao et al., 2007).

Wnt signaling is mediated through a core set of proteins to activate the transcriptional
programs responsible for cell proliferation and development (Fig. 2). In the absence of Wnt
proteins, B-catenin is phosphorylated and degraded by the Axin-APC-GSK3p complex.
Once Wnt proteins bind to their receptor, Frizzled, the degradation complex is inactivated to
stabilize B-catenin, which leads to its accumulation in the nucleus and interaction with T-cell
factor (TCF) to activate the transcription of target genes (Moon et al., 2004).

Fig. 2. Wnt/ B-catenin signaling. APC, adenomatous polyposis coli; p-cat, B-catenin; DSH,
Dishevelled; Frz, Frizzled; GSK3, glycogen synthase kinase 3; TCF, T-cell factor

Recent studies have demonstrated that Wnt/B-catenin signaling also plays a role in the
maintenance of cancer stem cells, including colorectal cancer (Vermeulen et al., 2010), breast
cancer (Li et al., 2003; Woodward et al., 2007), and liver cancer (Yang et al., 2008). We have
recently demonstrated that Wnt/B-catenin signaling augments self-renewal and inhibits the
differentiation of liver cancer stem cells by the expression of the stem cell marker EpCAM,
which results in the enrichment of the tumor-initiating cell population (Yamashita et al.,
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2008a; Yamashita et al., 2009). We have further demonstrated that small molecules, which
specifically inhibit the transcriptional activity of the TCF/B-catenin complex, can suppress
the cell proliferation of EpCAM-positive liver cancer cell lines, suggesting the utility of these
compounds for the eradication of cancers via the inactivation of Wnt/B-catenin signaling
(Yamashita et al., 2007).

2.1.2 Hedgehog signaling

The Hedgehog signaling pathway was initially identified as a regulator of segmental
patterning in Drosophila (Nusslein-Volhard and Wieschaus, 1980). Hedgehog signaling is
activated in developing embryos, especially in the skeleton and neural tube, and regulates
the cell proliferation, migration, and differentiation of stem cells (Varjosalo and Taipale,
2008). Several types of cancers are reported to have an activated hedgehog signaling
pathway, including glioma (Clement et al., 2007), prostate cancer (Sanchez et al., 2005),
breast cancer (Liu et al., 2006), pancreatic cancer (Li et al.,, 2007), and hematological
malignancies (Zhao et al., 2009).

Hedgehog signaling is regulated by several proteins, including ligands (Sonic Hedgehog,
Desert Hedgehog, and Indian Hedgehog), the Patched (Ptch) receptor, the Smoothened
(Smo) transmembrane protein, and the zinc finger transcription factor Gli (Merchant and
Matsui, 2010) (Fig. 3). In the absence of ligands, Ptch represses the activity of Smo and the
Gli-mediated transcriptional program is constitutively suppressed (Gli- suppressed). Once
ligands bind to Ptch, the repression of Smo is released and the Gli-mediated transcriptional
program is activated (Gli-activated).

Fig. 3. Hedgehog signaling. Gli-C, Gli complex; Gli-A, Gli-activated; Hh, Hedgehog; Ptch,
Patched; Smo, Smoothened

Accumulating evidence suggests that Hedgehog signaling regulates the self-renewal of
cancer stem cells in several types of cancer, including glioblastoma and leukemia (Clement
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et al, 2007; Zhao et al, 2009). Accordingly, Hedgehog signaling inhibitors have been
clinically tested and might be beneficial for patients with advanced medulloblastoma or
basal cell carcinoma, although Smo mutations in cancer cells confer resistance against such
inhibitors (Rudin et al., 2009; Von Hoff et al., 2009; Yauch et al., 2009).

2.1.3 Notch signaling

Notch signaling has a pivotal role in regulating cell-to-cell communication during
embryogenesis (Artavanis-Tsakonas et al., 1999), and is known to regulate stem cell fate in
various organs (Androutsellis-Theotokis et al., 2006; Fre et al., 2005). Mammalian Notch
ligands consist of the two structurally distinct families Delta-like ligands (DLLs) and Jagged
ligands (JAGs), and these ligands are bound to the cell membrane (Fig. 4). The activation of
Notch signaling is initiated by the binding of these membrane-bound ligands to Notch
receptors, which results in the release of the Notch intracellular domain into the cytoplasm
and nucleus by the y-secretase complex to activate the Notch-specific transcriptional program.

\ y-secretase complex

Fig. 4. Notch signaling. DLL, Delta-like ligand; JAG, Jagged; NICD, Notch intracellular
domain

Notch signaling has been implicated in various types of cancers, including solid tumors and
leukemia (Pannuti et al., 2010). A growing number of recent studies has demonstrated that
the activation of the Notch signaling pathway can drive tumor growth via the expansion of
the cancer stem cell population (Korkaya and Wicha, 2009; Peacock and Watkins, 2008;
Wilson and Radtke, 2006). Indeed, the Notch signaling pathway has been demonstrated to
be active in cancer stem cells and to play a critical role in the self-renewal of cancer stem
cells (Fan and Eberhart, 2008; Fan et al., 2010; Wang et al., 2009). Thus, Notch signaling is
considered to be a good target for pharmacological inhibition to eradicate cancer stem cells,
and the effect of Notch inhibitors against Notch, including y-secretase inhibitors or
monoclonal antibodies, have been extensively evaluated (Pannuti et al., 2010).

2.2 Signaling pathways responsible for cancer stem cell differentiation
Although self-renewal pathways are considered to be critical targets for the eradication of
cancer stem cells, it is still debatable if differentiation pathways are equally effective for their
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eradication. Several recent studies have provided evidence of the utility and limitation of
the cancer stem cell differentiation strategy by modulating the signaling pathways
responsible for the differentiation of normal stem/progenitor cells.

2.2.1 Bone morphogenic protein signaling

Bone morphogenic protein (BMP) signaling is known to be activated during embryogenesis
and to play a pivotal role in the differentiation of neural and intestinal stem cells (Varga and
Wrana, 2005). BMPs belong to a subgroup of the transforming growth factor-f superfamily
and activate signaling through the BMP-receptor (BMPR)-mediated phosphorylation of
Smad proteins. Interestingly, recent studies have suggested the utility of BMPs to induce the
differentiation of brain cancer stem cells and facilitate brain tumor eradication (Lee et al.,
2008; Piccirillo et al., 2006). More recently, colorectal cancer stem cells have been shown to
lack the expression of BMP4, and the administration of BMP4 enhanced the terminal
differentiation, apoptosis, and chemosensitization of colorectal cancer stem cells (Lombardo
et al., 2011). Interestingly, the effects of BMP4 on the differentiation of colorectal cancer stem
cells appeared to be independent of the phosphorylation status of Smad, suggesting the
importance of non-canonical signaling pathways activated by BMP4 for the differentiation
of these cells.

2.2.2 Oncostatin M signaling

Oncostatin M (OSM) is a pleiotropic cytokine that belongs to the IL-6 family, which includes
IL-6, IL-11, and leukemia inhibitory factor (LIF). These cytokines share the gp130 receptor
subunit as a common signal transducer, and activate Janus tyrosine kinases and the signal
transducer and activator of transcription 3 (STAT3) pathways. However, gpl30 forms a
heterodimer with a unique partner, for example, the IL6 receptor, LIF receptor, or OSM
receptor (OSMR); thus, each cytokine uniquely induces a certain signaling pathway
(Heinrich et al., 2003), and OSM is known to exploit distinct signaling in an OSMR-specific
manner (Kinoshita and Miyajima, 2002). Of note, OSM is known to activate the hepatocytic
differentiation program in hepatoblasts in an OSMR-specific manner (Kamiya et al., 1999;
Kinoshita and Miyajima, 2002).

We recently identified that OSMR is expressed in a subset of liver cancer stem cells
(Yamashita et al., 2010). Interestingly, OSMR-positive hepatocellular carcinoma (HCC) was
characterized by the abundant expression of stem cell markers and poorly differentiated
morphology, suggesting that OSMR is more likely to be expressed in HCC with
stem/ progenitor cell features (Yamashita et al., 2008a). Of note, the OSM-OSMR signaling
pathway was maintained in these HCCs, and OSM induced hepatocytic differentiation in
liver cancer stem cells (Fig. 5).

Unexpectedly, we identified that the hepatocytic differentiation of liver cancer stem cells by
OSM resulted in enhanced cell proliferation in vitro and modest anti-tumor activity in vivo
when administered alone. However, we have further demonstrated that OSM-mediated
hepatocytic differentiation of liver cancer stem cells effectively suppresses HCC growth
when combined with conventional chemotherapy. It is possible that OSM may boost the
anti-tumor activity of 5-FU by “exhausting dormant cancer stem cells” through hepatocytic
differentiation and active cell division (Fig.6). A similar chemosensitization effect was
observed in colorectal cancer stem cells differentiated by BMP4 administration (Lombardo
et al., 2011).
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Fig. 5. Signaling pathways responsible for the self-renewal and differentiation of liver cancer
stem cells. CSC, cancer stem cell; OSM, oncostatin M
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Fig. 6. Effect of oncostatin M (OSM) on exhausting dormant liver cancer stem cells

3. Limitation of cancer stem cell differentiation

As described above, some of the signaling pathways for the differentiation of normal stem
cells may be maintained in cancer stem cells. To induce the differentiation of cancer stem
cells by specific ligands, the expression of the corresponding receptors bound to ligands is
clearly required, suggesting the importance of clarifying the mechanisms for receptor
expression regulation. Interestingly, BMPRs and OSMR were detected in colorectal and liver
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