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FIGURE 1. Reprogramming factors also induce non-pluripotent cells. a-d, Nanog-GFP™, DsRed™ iPS cell colony (green), and Nanog-GFP~, DsRed™ non-
pluripotent pseudo cells (red); and phase-contrast (a), Nanog promoter-driven GFP expression (b), retroviral DsRed expression (c), and merged image (d). e and
f, tail-tip fibroblasts-derived cardiomyocyte-like cells following four RTF infection. These cells can be seen pulsing in supplemental Movies S1 and S2. g and h,
morphology of MEF-derived rounded blood-like cells following four TF infection. h, is a high magnification of g. j, flow cytometric analysis of blood-like cells.

Expression levels were analyzed using the antibodies indicated.

specific embryonic antigen-1 (SSEA-1); finally, the retroviruses
used for RTF introduction are silenced, whereas endogenous
gene expression of pluripotency-associated molecules, such as
Oct3/4 and Nanog, are activated. At this time, reactivation of an
X chromosome is also seen.

On the other hand, the more detailed mechanisms underly-
ing the induction of pluripotency are largely unknown. There
are some clues, such as the involvement of cell-cell contact
during the generation of iPS cells, observed during time-lapse
analysis, and it is also suggested that a certain probabilistic
action has been influenced during iP$S cell generation (6, 7). In
addition, although it is clear that the demethylation of DNA and
changes in histone modifications occur in the regulatory
regions of pluripotency-associated genes, such as Oct3/4 and
Nanog, it is not known when these events take place (8). Fur-
thermore, it was reported recently that the four RTFs mediated
the induction of other cell types, in addition to iPS cells, includ-
ing epiblast stem cells and cardiomyocytes (9, 10). Therefore,
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understanding the mechanism initiated in response to the intro-
duction of the four RTFs is important, not only for the efficient
induction of iPS cells but also for controlling other cell fates.

In this study, we focused on the ratio of the four RTFs. To
analyze the different ratios for each factor, tagged vectors were
generated and used to sort the transfected RTFs on the basis of
their expression levels by FACS analysis. Using this sorting
method, the efficiency of iPS cell generation was compared with
the expression level of each of the four RTFs, and the optimal
ratio of the four factors was identified as follows: Oct3/4-high,
Sox2-low, Kif4-high, and c-Myc-high. Under these conditions,
iPS cell generation efficiency was 88 times greater than the
worst effective ratio (Oct3/4-low, Sox2-high, KIf4-low, and
¢-Myc-low). Finally, the molecular signature for sorting the
high efficiency reprogramming conditions from low efficiency
conditions was identified by comparing the gene expression
profiles of mouse embryonic fibroblasts (MEFs) at 2 days after
the RTFs infection.
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FIGURE 2. Somatic cell reprogramming using different ratios of Oct3/4, Sox2, and KIf4. g, retrovirus vectors with cell surface antigens. b, flow cytometric
analysis of the introduced factors together with the sorting gates used. ¢ and d, number of Nanog-GFP™ colonies after sorting on day 17 of culture. MEFs were
sorted using relative gene expression levels, as indicated on the horizontal axis. Dots represent the numbers of each experiment and bar means median. The
numbers on the graph (c) were recalculated based on the expression level of each factor in d. Dots represent the numbers of each experiment and the bar means

median. *, p = 1.14E-06. H, high; L, low.

EXPERIMENTAL PROCEDURES

Mice—The Nanog-GFP-IRES-puro transgenic mouse strain
(RBRC02290) has been described previously (8, 11). C57BL/6
mice were purchased from Japan SLC (Shizuoka, Japan). Ani-
mal care was performed in accordance with the guidelines
established by Keio University for animal and recombinant
DNA experimentation. Nanog-GFP MEFs were generated by
crossing the transgenic mice with C57BL/6 mice.

Plasmids—Retroviral plasmids for iPS cell induction have
been described previously (11). The following 2A sequence was
used: 5'-aaaattgtcgetectgtcaaacaaactcttaactttgatttactcaaactgg-
ctggggatgtagaaagcaatccaggteca-3’ (12). The surface tagging
antigens were obtained from pMXs-IRES-rat CD2, pMX-IRES-
human CD8, and pMACS-human LNGFR (Miltenyi Biotech).
Human CD25 was cloned by PCR with the following primers:
5'-GCCACCATGGATTCATACCTGCTGATG-3' and 5'-
GTCGACCTAGATTGTTCTTCTACTCTT-3'. The con-
structs, pMXs-IRES-rat CD2 and pMX-IRES-human CDS,
were donated by Dr. Masato Kubo and Dr. Takashi Saito,
respectively (13, 14). For the epigenetic modifiers, Setdb2,
Smyd3, and Whsclll variants I and 2 were cloned by PCR,
inserted into the pGEM-T-easy plasmid (Promega) and con-
verted to pMXs via the BamHI and Xhol sites. The PCR primers
used were as follows: Setdb2, forward, 5'-GGATCCGCCACC-

AN

OCTOBER 19, 2012+VOLUME 287 -NUMBER 43

ATGGAAGAAAAAAATGGTGATGCA-3'; Setdb2, reverse,
5 -CTCGAGTTATATTAATTTTTTCCGACACTT-3'; Smyd3,
forward, 5'-GGATCCGCCACCATGGAGGCACTGAAGGT-
GGAAAAG-3'; Smyd3, reverse, 5'-CTCGAGTTAGGAGGC-
TCGTATGTTGGCATC-3"; Whsclll variant 1, forward,
5'-GGATCCGCCACCATGGATTTCTCTTTCTCTTTCAT-
G-3'; Whsclll variant 1, reverse, 5'-CTCGAGTCAGTCCAC-
AGTTTCCTCTTTCGC-3'; and Whsclll variant 2, forward,
5'-GGATCCGCCACCATGGATTTCTCTTTCTCTTTCATG-
3's Whsclll variant 2, reverse, 5'-GTCGACTCACTCC-
TTTACTTCTTCTCCACT-3'.

Reprogramming of MEFs Using Tagged Vectors—Oct3/4—
2A-hCD8, Sox2-2A-rCD2, and Klf4-2A-hCD271 with, or
without, c-Myc-24-hCD25 were introduced into MEFs by ret-
roviruses according to the previously described method for iPS
cell induction (15). Two days after infection, MEFs were col-
lected by incubation in 0.05% trypsin EDTA for 5 min. After
washing, the cells were incubated with an anti-FcyR antibody
(2.4G2) (eBioscience) at 4 °C for 30 min, and then incubated
with a fluorescein isothiocyanate-conjugated anti-rat CD2
monoclonal antibody (OX-34; BioLegend), a phycoerythrin-
conjugated anti-human CD271 monoclonal antibody (C40~—
1457; BD Biosciences), and an allophycocyanin (APC)-conju-
gated anti-human CD8 monoclonal antibody (RPA-T8;
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FIGURE 3. Somatic cell reprogramming using different ratios of Oct3/4, Sox2, KIf4, and c-Myc. a and b, number of Nanog-GFP™ colonies after sorting on day
21 of culture. MEFs were sorted using relative gene expression levels, as indicated on the horizontal axis. Dots represent the numbers of each experiment and
the bar means median. The numbers on graph (a) were recalculated based on the expression level of each factor in b. Dots represent the numbers of each
experiment and the bar means median. ¥, p = 2.69E-04; **, p = 8.96E-06; ***, p = 3.20E-03; ****, p = 8.96.98E-04. H, high; L, low.

BioLegend) for 30 min at 4 °C. For the four factor reprogram-
ming, a phycoerythrin-Cy7-conjugated anti-human CD25
monoclonal antibody (M-A251) was also added. After washing,
samples were sorted using a FACSVantage SE cytometer (BD
Biosciences). Sorted cells were cultured on STO cells at a den-
sity of 30,000 cells (without c-Myc) or 4,000 cells (with c-Myc)
per well in six-well plates. The numbers of Nanog-GFP positive
(Nanog-GFP") colonies were counted on days 17 or 21. Data
are presented as the each dot. The median numbers are also
presented as a bar. Statistical significance for difference of the
medians was determined by exact Wilcoxon test using the R
exactRankTests package.

Analysis of Chemokines for Reprogramming—MEFs carrying
the four introduced reprogramming factors were reseeded on
STO feeders 4 days after infection at a density of 4,500 cells/well
in six-well plates. At that time, 100 ng/ml of each chemokine
was added every 2 days to the culture until day 17. The medium
was changed every second day. On day 7 after infection puro-
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mycin was added to the culture. Colony numbers were counted
at day 23.

Statistical Analysis of Reprogramming Efficiency According to
the Ratio of Reprogramming Factors—The Mann-Whitney U
test was performed to compare differences in distribution for
the number of positive colonies under the different reprogram-
ming conditions.

Microarray Data Analysis—Expression profiles of MEFs at 2
days after the RTF infection were analyzed using the whole
mouse genome 44K3D-Gene Mouse Oligo chip 24K (Agilent
Technologies, Santa Clara, CA). Fluorescence intensities were
detected using the Scan-Array Life Scanner (PerkinElmer Life
Science) and photomultiplier tube levels were adjusted to
achieve 0.1-0.5% pixel saturation. Each TIFF image was ana-
lyzed with GenePix Pro software version 6.0 (Molecular
Devices, Sunnyvale, CA). The data were filtered to remove low-
confidence measurements and normalized globally per array
such that the median signal intensity was set at 50.
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FIGURE 4. Microarray analysis of the high and low efficiency conditions for reprogramming. g, array heat map of signature genes from low and high
efficiency conditions. b, number of signature genes that were up- or down-regulated in the high and low efficiency conditions compared with parental MEFs.
¢, number of signature genes that were up- or down-regulated compared with ES cells. The names of the genes in MEFs and ES cells are listed in supplemental

Tables S1 and S2, respectively.

All 43,379 probes were collapsed into 21,609 genes with
Entrez gene identifier (ID) by taking the maximum intensity
among probe sets corresponding to the same gene ID. The
standard Student’s ¢ test was performed for each comparison
and the false discovery rate was estimated using the Benjamini-
Hochberg procedure to obtain differentially expressed genes as
asignature. In this study, a false discovery rate <5% was used as
a threshold. To characterize the molecular backgrounds of the
signature genes, enrichment analysis for canonical pathways
and Gene Ontology biological processes (c2-cp and c5-bp gene
sets in MSigDB version 3.0 (16)) was performed using the GO
Term Finder (17).

RESULTS

The Four RTFs Do Not Always Induce Pluripotency in
Somatic Cells—Somatic cell reprogramming is brought about
by the four RTFs, Oct3/4, Sox2, Kif4, and c-Myc. Initially, these
transcription factors were introduced into somatic cells by ret-
roviral vectors; however, because these viral vectors are usually,
but not always completely, inactivated toward the end of the
reprogramming process, silencing of the retrovirus promoter
was recognized as one of the reprogramming criteria (8). For
the current study, the four RTFs were introduced into MEFs
carrying green fluorescent protein (GFP) under the control of
the Nanog promoter. To monitor silencing, a DsRed vector was
also introduced. After induction of the four RTFs, Nanog-GFP™
and DsRed negative (DsRed ™) iPS candidate cells were observed
(Fig. 1a), as well as Nanog-GFP™ and DsRed™ pseudo-pluripo-
tent iPS cells (Fig. 1b). These data indicated that the RTFs did
not achieve pluripotency in all somatic cells.

Moreover, occasionally non-iPS cells with specific features
were also seen after induction of the four RTFs; for example,
Fig. 1 shows spontaneously beating cardiomyocyte-like cells
generated from adult tail-tip fibroblasts (Fig. 1, e and f and

RGNS
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supplemental Movies S1 and $2). In addition, morphologically
rounded, blood-like cells were also observed (Fig. 1, g and A).
When these blood-like cells were collected by pipetting and
stained for cell surface markers, they were found to be positive
for the pan-hematopoietic marker, CD45 (Fig. 1i). Analysis of
lineage markers revealed that these blood-like cells contained
macrophages (Mac-1), granulocytes (Gr-1), and erythroid cells
(Ter119) (Fig. 1i). However, B (B220) and T (CD3) lymphoid
cells were not detected (Fig. 1i). The so-called “transdifferen-
tiation” of these two lineages by the factors used in somatic cell
reprogramming has also been reported by other groups (10, 18).
These data indicated that the four RTFs do not only induce the
pluripotent state but are also capable of producing terminally
differentiated cells.

Optimal Ratio of the Four RTFs for Somatic Cell
Reprogramming—Because the reprogramming factors can also
induce other cell types as well as pluripotent cells, it should be
possible to fine-tune the RTFs to produce only fully pluripotent
cells. Therefore, we speculated that there would be an optimal
ratio of the four RTFs for efficient pluripotent cell generation.
To investigate the importance of the relative expression levels
of each of the RTFs in somatic cell reprogramming, Sox2, Kif4,
and Oct3/4 were tagged with different rat and human cell sur-
face antigens using a 24 sequence (Fig. 2a). After infection of
MEFs with each of these constructs, flow cytometry with spe-
cific antibodies was used to sort the cells according to the
expression levels of the exogenous genes (Fig. 2b). Using this
strategy, the MEFs were grouped based on the ratios of the
three factors, and Nanog-GFP" colonies were counted on day
17 after infection. The effects of the expression of each of the
three factors are shown in Fig. 2¢, and the results indicated that
the greatest numbers of Nanog-GFP™ colonies were obtained
with high levels of Oct3/4. The most effective ratio of the three
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FIGURE 5. Pathway analysis of microarray data. Microarray data of MEFs at 2 days after the RTF infection under high (Oct3/4-high, Sox2-low) and low
(Oct3/4-low, Sox2-high) efficiency conditions were compared with MEFs and ES cells, and the up- and down-regulated pathways between each cell type are
shown. Up-regulated pathways are shown in red and down-regulated pathways are shown in blue.

factors (Oct3/4-high, Sox2-low, and KIf4-high) was seven times
more efficient than for the worst effective ratio (Oct3/4-low,
Sox2-high, and Kif4-low).

In addition to these three RTFs, the effect of c-Myc was also
analyzed. A human CD25-tagged c-Myc vector was generated
and used to monitor the relative expression of all four RTFs
(supplemental Fig. S1). The expression levels of each of the
factors were confirmed by RT-PCR (supplemental Figs. S2 and
S$3). The results are shown in Fig. 3. The addition of c-Myc did
not affect the ratios of the other three factors. High expression
of Oct3/4, Kif4, and c-Myc favored the induction of pluripo-
tency, whereas low expression of Sox2 was better for repro-
gramming. Similar to induction with three RTFs, the most
effective ratio of the four factors (Oct3/4-high, Sox2-low, Kif4-
high, and c-Myc-high) was 50 times more efficient than for the
worst effective ratio (Oct3/4-low, Sox2-high, Kif4-low, and
¢-Myc-high). Regardless of the efficiency, generated iPS cells
showed similar gene expression patterns to ES cells and have a
potential to differentiate to all three germ layers (supplemental
Figs. S4 and S5).

Microarray Analysis of High (Oct3/4-high and Sox2-low) and
Low (Oct3/4-low and Sox2-high) Efficiency Reprogramming

36278 JOURNAL OF BIOLOGICAL CHEMISTRY

Conditions—We searched for the most effective combination
of the four RTFs using the relationship between Nanog-GFP™
colony numbers and the reprogramming factor ratio. Among
the four factors, the Oct3/4 and Sox2 expression ratios corre-
lated significantly with positive colony numbers. In cells with
high levels of Oct3/4 and low levels of Sox2, ~16.2 times greater
numbers of positive colonies were found when all four factors
were introduced (supplemental Fig. S6a). A similar result was
also found when only three factors were used (supplemental
Fig. S6b) even if the statistically dominant factor was only
Oct3/4. To determine the molecular basis underlying these
ratios and indeed, somatic cell reprogramming, microarray
analysis was performed using the high (Oct3/4-high and Sox2-
low) and the low (Oct3/4-low and Sox2-high) reprogramming
conditions.

The signature genes were identified using bioinformatics cal-
culations (Fig. 4a). First, the signature genes in MEFs at 2 days
after the RTF infections were compared with those of the
parental MEFs and with pluripotent embryonic stem (ES) cells.
When compared with MEFs, ~1,000 genes were up-regulated
and 4,000 genes were down-regulated under both high and low
efficiency conditions. Whereas about half the up-regulated
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FIGURE 6. The effect of chemokines and epigenetic modifiers on somatic cell reprogramming. a, MEFs were infected with the four RTFs and the chemo-
kines indicated were added from days 4 to 17 of the culture. The numbers of Nanog-GFP* colonies on day 23 of culture are indicated. b and ¢, MEFs were
infected with the epigenetic factors indicated, together with four (b) or three (c) of the RTFs. The numbers of Nanog-GFP™ colonies at 17 days after infection are

shown.

genes were common to both the high and low reprogramming
conditions, more than 80% of the down-regulated genes
were common to both (Fig. 40 and supplemental Table S1). On
the other hand, when compared with ES cells, more than 70% of
the up-regulated genes and 80% of the down-regulated genes
were common to both cell types under both sets of conditions
(Fig. 4c and supplemental Table S2). These data indicated that
the expression of many signature genes in MEFs at 2 days after
the RTFs infection was altered under both high (Oct3/4-high
and Sox2-low) and low (Oct3/4-low and Sox2-high) reprogram-
ming conditions when compared with MEF and ES cells.
Molecular Signature for Sorting the High (Oct3/4-high and
Sox2-low) Low (Oct3/4-low and Sox2-high) Efficiency Repro-
gramming Conditions—To determine the difference between
the high (Oct3/4-high and Sox2-low) and low (Oct3/4-low and
Sox2-high) efficiency conditions, the microarray data for these
two conditions were compared. GO analysis showed that under
the high efficiency condition, positive regulation of MAP kinase
activity was down-regulated (supplemental Fig. S7) in iPS cells,
which is significant because it is known that inhibition of the
MAP kinase pathway is important for pluripotency (19). Fur-

OCTOBER 19, 2012+VOLUME 287 -NUMBER 43

thermore, pathway analysis of the microarray data revealed that
certain pathways were up-regulated preferentially under the
high condition, compared with the low condition (Fig. 5).
Under the high efficiency condition, we focused on enrichment
of the GPCR pathways, and in particular, the chemokine mem-
bers of the GPCR superfamily. To analyze the involvement of
chemokines during somatic cell reprogramming, the effect of
several chemokines on the generation of iPS cells was exam-
ined. Of these, the addition of CCL2 achieved a 12.3 times
greater reprogramming efficiency than in untreated cells (Fig.
6a). These results suggested that the microarray data contained
clues for the optimization of pluripotency induction.

To understand the mechanism further, transcription factors
and epigenetic modifiers were analyzed as these factors direct
cell fate and alter the regulation of multiple genes. Although
under the low efficiency condition only nine TFs were up-reg-
ulated, 60 TFs were up-regulated under the high efficiency con-
dition (supplemental Fig. S84 and Table 1). Furthermore, when
the epigenetic modifiers were investigated, only one gene was
up-regulated under the low efficiency condition and four under
the high condition (supplemental Fig. S8b and Table 2). These
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TABLE 1

Transcription factors up-regulated under high and low efficiency con-
ditions

Symbol Description
High efficiency
condition

POUSF1 POU class 5 homeobox 1

HOXC4 Homeobox C4

IRX4 Iroquois homeobox 4

NEUROG1  Neurogenin 1

BARHL1 BarH-like homeobox 1

FOXN1 Forkhead box N1

KLF17 Kruppel-like factor 17

NR5A1 Nuclear receptor subfamily 5, group A, member 1

ZNF43 Zinc finger protein 43

POU4F1 POU class 4 homeobox 1

RFX4 Regulatory factor X, 4 (influences HLA class II expression)

ESRRG Estrogen-related receptor gamma

FOXH1 Forkhead box H1

SOX15 SRY (sex determining region Y)-box 15

LHX1 LIM homeobox 1

TOPORS Topoisomerase | binding, arginine/serine-rich

HNF4A Hepatocyte nuclear factor 4, «

NKX61 NK6 homeobox 1

PROP1 PROP paired-like homeobox 1

CAMTAL Calmodulin binding transcription activator 1

ARID5B AT-rich interactive domain 5B (MRF1-like)

SOX17 SRY (sex determining region Y)-box 17

FOXQ1 forkhead box Q1

MAF v-maf musculoaponeurotic fibrosarcoma oncogene
homolog (avian)

TCF2 HNF1 homeobox B

FEV FEV (ETS oncogene family)

HES2 Hairy and enhancer of split 2 (Drosophila)

PITX3 Paired-like homeodomain 3

HOXA3 Homeobox A3

HNF4G Hepatocyte nuclear factor 4, 'y

TCF7L2 Transcription factor 7-like2 (T-cell specific, HMG-box)

TP73 Tumor protein p73

NR3C2 Nuclear receptor subfamily 3, group C, member 2

HSF1 Heat shock transcription factor 1

GLI1 GLI family zinc finger 1

SOX1 SRY (sex determining region Y)-box 1

ZNF124 Zinc finger protein 124

CDK2 Cyclin-dependent kinase 2

FOXE3 Forkhead box E3

RBPJ Recombination signal-binding protein for
immunoglobulin k] region

CREBBP CREB-binding protein

HOXB9 Homeobox B9

FOXL2 Forkhead box L2

FOXF2 Forkhead box F2

NCX T-cell leukemia homeobox 2

TEDP2 Transcription factor Dp-2 (E2F dimerization partner 2)

ATBF1 Zinc finger homeobox 3

NR1I3 Nuclear receptor subfamily 1, group I, member 3

SOX12 SRY (sex determining region Y)-box 12

LMO3 LIM domain only3 (thombotin-like 2)

ABL1 c-abl oncogene 1, receptor tyrosine kinase

GTF2IRD1  GTF2I repeat domain containing 1

IRF1 Interferon regulatory factor 1

NFIA Nuclear factor I/A

SS18L1 Synovial sarcoma translocation gene on chromosome 18-
like 1

NFATC2 Nuclear factor of activated T-cells, cytoplasmic,
calcineurin-dependent 2

STATSB Signal transducer and activator of transcription 5B

FOXO4 Forkhead box O4

HOXB6 Homeobox B6

RUNX2 Runt-related transcription factor 2

Low efficiency
condition

1D3 Inhibitor of DNA binding 3, dominant negative helix-
loop-helix protein

XPA Xeroderma pigmentosum, complementation group A

LEF1 Lymphoid enhancer-binding factor 1

KLF2 Kruppel-like factor 2 (lung)

HEY1 Hairy/enhancer of split related with YRPW motif 1

PRDM1 PR domain containing 1, with ZNF domain

ELOF1 Elongation factor 1 homolog (Saccharomyces cerevisiae)

SREBF1 Sterol regulatory element binding transcription factor 1

TBX2 T-box 2
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TABLE 2

Epigenetic modifiers upregulated under high and low efficiency con-
ditions

Symbol Description

High efficiency condition

SETDB2 SET domain, bifurcated 2
WHSCIL1 Wolf-Hirschhorn syndrome candidate 1-like 1
CREBBP CREB-binding protein
SMYD3 SET and MYND domain containing 3
Low efficiency condition
PRDM1 PR domain containing 1, with ZNF domain

data indicated that more transcription factors and epigenetic
modifiers appear to be up-regulated under the high condition.

To assess the function of these epigenetic modifiers for
somatic cell reprogramming, retrovirus vectors were prepared
for Setdb2, Smyd3, and Whsclll variants 1 and 2, epigenetic
modifiers that were up-regulated under the high condition.
These factors were introduced into MEFs together with three
or four of the RTFs, and Nanog-GFP* colonies were counted on
day 17 after infection (Fig. 6, b and c). When introduced with
the three RTFs, Whsclll variant 1 produced many more colo-
nies than the control; however, variant 2 had no significant
effect (Fig. 6¢).

DISCUSSION

From investigations into the mechanisms governing somatic
cell reprogramming that underlies iPS cell technology, several
groups have reported that specific combinations of individual
transcription factors can induce the generation of particular
cell types (20, 21). In contrast to the induction of pluripotent
stem cells, the technology for the generation of lineage-re-
stricted cells is known as transdifferentiation or direct repro-
gramming. A particular combination of specific transcription
factors, which are critical for the development and/or mainte-
nance of the lineage-restricted cells, is used for transdifferen-
tiation. On the other hand, it is reported that pluripotency
inducible factors also mediate transdifferentiation (9, 10, 18).
Therefore, it is both interesting and feasible to analyze the fine-
tuning of the RTFs required for pluripotency. In the present
study, the relative ratio of the four RTFs was examined and the
results demonstrated that there is, indeed, an optimal ratio
(Oct3/4-high, Sox2-low, Kif4-high, and c-Myc-high) of these
factors for iPS cell generation and, moreover, that the ratio,
Oct3/4-high and Sox2-low, is critical.

It was reported previously that high expression of Oct3/4
improves reprogramming efficiencies and that modified Oct3/4
with greater transcriptional activity further enhances the
reprogramming efficiency (22, 23). Furthermore, control of
Oct3/4 expression is essential for maintaining ES cells in the
undifferentiated state, and both the overexpression and down-
regulation of Oct3/4 can induce ES cell differentiation, suggest-
ing that tightly controlled regulation of Oct3/4 expression lev-
els controls the maintenance of pluripotency (24). In the
current study, we have shown that, in the presence of other
factors, high Oct3/4 expression is critical for somatic cell repro-
gramming, whereas low levels of Oct3/4 result in a lower induc-
tion efficiency (Figs. 2 and 3).

In contrast to Oct3/4, low Sox2 expression is more efficient
for the acquisition of pluripotency, and it is reported that low
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Sox2 expression increased the reprogramming efficiency by
repressing ectoderm and mesoderm marker genes (25). In the
array data presented here, the ectoderm maker, CryM, showed
a statistically significant decrease in expression under low Sox2
conditions (supplemental Fig. S92 and Table S3). Although
another ectoderm marker, Sox13, also decreased in the pres-
ence of low Sox2, the expression of Sox21 was not linked to the
level of Sox2 (supplemental Table S3). On the other hand,
expression of the mesoderm marker, Myh2, did not change.
However, when KIf4 expression was altered (high or low), Myh2
expression was lower in cells under low Sox2 conditions than
under high Sox2 conditions (supplemental Fig. S9b and Table
S3). These data indicated that although low Sox2 expression
may repress ectoderm and mesoderm markers, the other RTFs
are also involved in the repression of ectoderm and mesoderm
marker genes. Furthermore, it has been proposed that a two-
step reprogramming mechanism is necessary for the induction
of pluripotency, and that Sox2 functions in the latter stages of
reprogramming (26). Our data and a previous report suggest
that Sox2 expression levels are low during the early phase of
reprogramming (25). Thus, it is important to analyze the
effects of Sox2 during the different phases of somatic cell
reprogramming,.

To understand the molecular basis for these events, we per-
formed microarray analyses of the high (Oct3/4-high and Sox2-
low) and low (Oct3/4-low and Sox2-high) reprogramming con-
ditions. We observed that 50% of the up-regulated and 80% of
the down-regulated genes were common to both conditions
when iPS cells were compared with MEF and ES cells (Fig. 4, b
and c¢). Because all four RTFs were introduced for this analysis,
it is conceivable that many genes were commonly up- and
down-regulated compared with MEF and ES cells. However,
when we focused on gene expression levels between the two
conditions, the GO terms showed down-regulation of cellular
recognition under the low efficiency condition (supplemental
Fig. S7), whereas GPCR signaling emerged as a significant path-
way under the high condition (Fig. 5). As reported previously,
for transdifferentiation using the four RTFs, culture conditions
are important for defining cell fate (9, 10), and it is interesting
that, in the current study, the high efficiency condition up-reg-
ulated the signaling pathway from cell surface molecules,
whereas the low efficiency condition down-regulated cellular
recognition as demonstrated by the GO terms. One could pre-
dict that the four RTFs alter the original program in the somatic
cells and up-regulate cell surface molecules to produce favor-
able signals, including those involved in cell adhesion, required
to direct different cell fates. It has been reported that cells
adhered together during iPS cell generation, through the up-
regulation of the cell adhesion molecule, E-cadherin (7, 27, 28).
Furthermore, in the present study, we have confirmed the
importance of the GPCR pathway by the addition of the chemo-
kine, CCL2, which binds to the GPCR, CCR2. Interestingly,
addition of CCL2 was effective for the high (Oct3/4-high and
Sox2-low) but not low (Oct3/4-low and Sox2-high) reprogram-
ming conditions (supplemental Fig. S10). CCL2 was recently
reported to maintain pluripotency in ES cells by inducing Kif4
via the activation of STAT3 (29). In the current study, we dem-
onstrated that CCL2 also has a function in the induction of
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pluripotency. In the case of iPS cell induction, Kif4 is intro-
duced exogenously; therefore, it is important to know
whether other pathways are activated during the induction of
pluripotency.

When we focused on the role of transcription factors and
epigenetic modifiers of the signature genes, the results showed
that the high efficiency condition had more activated genes
than the low condition. Thus, because epigenetic modifiers
affect the expression of multiple genes, it is important to ana-
lyze the listed factors. SETDB2 and SMYD3 contain a SET
domain, which has putative methyltransferase activity (30, 31),
whereas WHSCI1L1 is linked to Wolf-Hirschhorn syndrome
(32). None of these genes have been well analyzed with respect
to their roles in the induction of pluripotency. However, we
found that Whsc1ll variant 1, but not variant 2, enhances the
reprogramming efficiency in the presence of Oct3/4, Sox2, and
Kif4 (Fig. 6¢). WHSCIL1 variant 1 is shorter and about the half
the length of variant 2, and interestingly, variant 1 lacks the SET
domain, which has putative histone methyltransferase activity
(Fig. 6d). In future, to improve our understanding of somatic
cell reprogramming, it will be important to analyze the repro-
gramming activity and the supporting roles played by the other
genes identified as pluripotency signature genes in this study.
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We consider the problem of network completion, which is to make the minimum amount of modifications to a given network
so that the resulting network is most consistent with the observed data. We employ here a certain type of differential equations
as gene regulation rules in a genetic network, gene expression time series data as observed data, and deletions and additions of
edges as basic modification operations. In addition, we assume that the numbers of deleted and added edges are specified. For this
problem, we present a novel method using dynamic programming and least-squares fitting and show that it outputs a network
with the minimum sum squared error in polynomial time if the maximum indegree of the network is bounded by a constant. We
also perform computational experiments using both artificially generated and real gene expression time series data.

1. Introduction

Analysis of biological networks is one of the central research
topics in computational systems biology. In particular,
extensive studies have been done on inference of genetic
networks using gene expression time series data, and a
number of computational methods have been proposed,
which include methods based on Boolean networks [1, 2],
Bayesian networks [3, 4], time-delayed Bayesian networks
[5], graphical Gaussian models [6-8], differential equations
[9, 10], mutual information [11, 12], and linear classification
[13]. However, there is not yet an established or standard
method for inference of genetic networks, and thus it still
remains a challenging problem.

One of the possible reasons for the difficulty of inference
is that the amount of available high-quality gene expression
time series data is still not enough, and thus it is intrinsically
difficult to infer the correct or nearly correct network from
such a small amount of data. Therefore, it is reasonable
to try to develop another approach. For that purpose, we

proposed an approach called network completion [14] by
following Occam’s razor, which is a well-known principle in
scientific discovery. Network completion is, given an initial
network and an observed dataset, to modify the network
by the minimum amount of modifications so that the
resulting network is (most) consistent with the observed
data. Since we were interested in inference of signaling
networks in our previous study [14], we assumed that
activity levels or quantities of one or a few kinds of proteins
can only be observed. Furthermore, since measurement
errors were considered to be large and we were interested
in theoretical analysis of computational complexity and
sample complexity, we adopted the Boolean network [15]
as a model of signaling networks. We proved that network
completion is computationally intractable (NP-hard) even
for tree-structured networks. In order to cope with this
computational difficulty, we developed an integer linear
programming-based method for completion of signaling
pathways [16]. However, this method could not handle
addition of edges because of its high computational cost.
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In this paper, we propose a novel method, DPLSQ,
for completing genetic networks using gene expression
time series data. Different from our previous studies [14,
16], we employ a model based on differential equations
and assume that expression values of all nodes can be
observed. DPLSQ is a combination of least-squares fitting
and dynamic programming, where least-squares fitting is
used for estimating parameters in differential equations and
dynamic programming is used for minimizing the sum of
least-squares errors by integrating partial fitting results on
individual genes under the constraint that the numbers of
added and deleted edges must be equal to the specified
ones. One of the important features of DPLSQ is that it
can output an optimal solution (i.e.,, minimum squared
sum) in polynomial time if the maximum indegree (i.e., the
maximum number of input genes to a gene) is bounded by
a constant. Although DPLSQ does not automatically find
the minimum modification, it can be found by examining
varying numbers of added/deleted edges, where the total
number of such combinations is polynomially bounded. If
a null network (i.e., a network having no edges) is given as
an initial network, DPLSQ can work as an inference method
for genetic networks.

In order to examine the effectiveness of DPLSQ, we per-
form computational experiments using artificially generated
data. We also make computational comparison of DPLSQ
as an inference method with other existing tools using
artificial data. Furthermore, we perform computational
experiments on DPLSQ using real cell cycle expression data
of Saccharomyces cerevisige.

2. Method

The purpose of network completion is to modify a given
network with the minimum number of modifications so that
the resulting network is most consistent with the observed
data. In this paper, we consider additions and deletions of
edges as modification operations (see Figure 1). If we begin
with a network with an empty set of edges, it corresponds to
network inference. Therefore, network completion includes
network inference although it may not necessarily work
better than the existing methods if applied to network
inference.

In the following, G(V, E) denotes a given network where
V and E are the sets of nodes and directed edges respectively,
where each node corresponds to a gene and each edge
represents some direct regulation between two genes. Self
loops are not allowed in E although it is possible to modify
the method so that self-loops are allowed. In this paper, n
denotes the number of genes (i.e., the number of nodes) and
weletV = {v),...,v,}. Foreachnode v;, e”(v;) and deg™ (v;),
respectively, denote the set of incoming edges to v; and the
number of incoming edges to v; as defined follows:

e (v) = {vj | (vj,v,-) € E},
deg™(vi) = |e"(v;)].

&y
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Observed data

Completed network

e

FiGURE 1: Network completion by addition and deletion of edges.
Dashed edges and dotted edges denote deleted edges and added
edges, respectively.

Vi

FIGURE 2: Dynamics model for a node.

DPLSQ consists of two parts: (i) parameter estimation
and (ii) network structure inference. We employ least-
squares fitting for the former part and dynamic program-
ming for the latter part. Furthermore, there are three variants
on the latter parts: (a) completion by addition of edges,
(b) completion by deletion of edges, and (¢) completion
by addition and deletion of edges. Although the last case
includes the first and second cases, we explain all of these for
the sake of simplicity of explanation.

2.1. Model of Differential Equation and Estimation of Parame-
ters. We assume that dynamics of each node v; is determined
by a differential equation:

h

dx; : . . :

-a?' =ay+ Za}xij + Za},kx,'jxik +b'w, (2)
j=1 j<k

where v;,...,v;, are incoming nodes to v;, x; corresponds
to the expression value of the ith gene, and w denotes a
random noise. The second and third terms of the right-hand
side of the equation represent linear and nonlinear effects
to node v;, respectively (see Figure 2), where positive a§ or
joral,

a}, « corresponds to an activation effect and negative a;

corresponds to an inhibition effect.
In practice, we replace derivative by difference and ignore
the noise term as follows:

h
x(t+1) = x(8) + At(af) + Za}xij(t) + Zaj-)kxij(t)xik(t)),
j=1 j<k
(3)

where At denotes the time step.
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We assume that time series data y;(f)s, which correspond
to x;(t)s, are given for t = 0,1,...,m. Then, we can use
the standard least- squares ﬁttmg method to estimate the
parameters a ]s and aj;s.

In applying the least -squares fitting method, we mini-
mize the following objective function:

Sl

i1,12500sih

ylt+1

h
- liyi(t) + At (a{)+ Doy (+Dak v (D (t))}

j=1 j<k

(4)

2.2. Completion by Addition of Edges. In this subsection, we
consider the problem of adding k edges in total so that the
sum of least-squares errors is minimized.

Let 0,2”],’]» denote the minimum least-squares error when

adding k; edges to the jth node, which is formally defined by

+
%y = 3 I8, St 5)
where each vj, must be selected from V — v; — e7(v;). In
order to avoid combinatorial explosion, we constrain the
maximum k to be a small constant K and let o}, j= 1 for
kj > K or kj + deg™(v;) = n. Then, the problem is stated as

k1+k2+ +k,, Zak’] (6)
Here, we define D* [k, i] by
Yy
bk = k1+kz+ Tk kZUkl] @)

Then, D*[k, n} is the objective value (i.e., the minimum of
the sum of least-squares errors when adding k edges).

The entries of D*[k, j] can be computed by the following
dynamic programming algorithm:

D*[k, 1] = of),

. . (8)
D*[kj+1] = min {D*{k,]]+cf,j,,j+l}.
It is to be noted that D*[k,n] is determined uniquely
regardless of the ordering of nodes in the network. The
correctness of this dynamic programming algorithm can be
seen by

n n-1
min ZJI: .= min min Zak gt O’k,
kot +hn=k 2y PI krk =k ekt =5

= DYk ,n—1]+a}
kl;IIlcmk [ I+ 0

€

2.3. Completion by Deletion of Edges. In the above, we
considered network completion by addition of edges. Here,
we consider the problem of deleting & edges in total so that
the sum of least-squares errors is minimized.

Let 0, ; denote the minimum least-squares error when
deleting h; edges from the set e~ (v) of incoming edges to v;.
As in Section 2.2, we constrain the maximum #; to be a small
constant H and let 0, ; = +oo if hj > H or deg™(v;) —h; < 0.
Then, the problem is stated as

h1+h2+ +h —h Z kl J (10)
Here, we define D[k, i] by
D7tk il = k1+k2THik -k ZOk;J (11)

Then, we can solve network completion by deletion of edges
using the following dynamic programming algorithm:

D[k, 1] = o),
(12)

D [kyji+ 1] = min {D7[K' 1+ 0501

2.4. Completion by Addition and Deletion of Edges. We can
combine the above two methods into network completion
by addition and deletion of edges.

Let 0, k;,; denote the minimum least-squares error when
deleting h; edges from e (v;) and adding k; edges to
e~ (vj) where deleted and added edges must be disjoint. We
constrain the maximum /; and k; to be small constants H
and K. We let Ohjkjj = +oo if hj > H, kj > K, kj - h]‘ +
deg™(vj) = n, or kj — h; + deg™(v;) < 0 holds. Then, the
problem is stated as

min o
Bythytee-thy hz hikij- (13)

Ky tko btk =k =1

Here, we define D[h, k, i] by

Dlh,k, z]h1+h2r31n+h_ ZUh ki (14)

Foythy b ti= kf 1

Then, we can solve network completion by addition and
deletion of edges using the following dynamic programming
algorithm:

D[h’ k, 1] = Ohk,1>

(15)

D[h, k,] + 1] = h[l;l}l}[ll:h{D[h,,k',j] + Uh"’k”,j+1}.

kK +k" =k

2.5. Time Complexity Analysis. In this subsection, we analyze
the time complexity of DPLSQ. Since completion by addition
of edges and completion by deletion of edges are special cases
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of completion by addition and deletion of edges, we focus on
completion by addition and deletion of edges.

First, we analyze the time complexity required per least-
squares fitting. It is known that least-squares fitting for linear
systems can be done in O(mp? + p®) time where m is the
number of data points and p is the number of parameters.
Since our model has O(n?) parameters, the time complexity
is O(mn*+n®). However, if we can assume that the maximum
indegree in a given network is bounded by a constant, the
number of parameters is bounded by a constant, where we
have already assumed that H and K are constants. In this
case, the time complexity for least-squares fitting can be
estimated as O(m).

Next, we analyze the time complexity required for
computing oy, ;- In this computation, we need to examine
combinations of deletions of h; edges and additions of
k; edges. Since h; and k; are, respectively, bounded by
constants H and K, the number of combinations is O(nH#+X).
Therefore, the computation time required per oOp;,; is
O(n"*X(mn* + n%)) including the time for least-squares
fitting. Since we need to compute oy, for H X K X n
combinations, the total time required for computation of
Oy ;.8 is O(nTHH (mnt + 1)),

Finally, we analyze the time complexity required for
computing D[h, k, i]s. We note that the size of table D[, k, i]
is O(n?), where we are assuming that 4 and k are O(n).
In order to compute the minimum value for each entry in
the dynamic programming procedure, we need to examine
(H + 1)(K + 1) combinations, which is O(1). Therefore,
the computation time required for computing D[h, k, i]s is
O(n?). Since this value is clearly smaller than the one for
On, k;,jS> the total time complexity is

O(nH’rK+1 - (mn* + n6)). (16)

Although this value is too high, it can be significantly
reduced if we can assume that the maximum degree of an
input network is bounded by a constant. In this case, the
least-squares fitting can be done in O(m) time per execution.
Furthermore, the number of combinations of deleting at
most h; edges is bounded by a constant. Therefore, the
time complexity required for computing o, k;,;s is reduced
to O(mnX*). Since the time complexity for computing
DI[h, k,i]s remains O(n?), the total time complexity is

O(mnK+1 +n3). (17)

This number is allowable in practice if K < 2 and n is not too
large (e.g., n < 100).

3. Results

We performed computational experiments using both arti-
ficial data and real data. All experiments on DPLSQ were
performed on a PC with Intel Core i7-2630QM CPU
(2.00GHz) with 8 GB RAM running under the Cygwin
on Windows 7. We employed the liblsq library (http://
www2.nict.go.jp/aeri/sts/stmg/K5/VSSP/install Isq.html) for
a least-squares fitting method.
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FiGUre 3: Structure of WNT5A network [17].

3.1. Completion Using Artificial Data. In order to evaluate
the potential effectiveness of DPLSQ, we began with network
completion using artificial data. To our knowledge, there
is no available tool that performs the same task. Although
some of the existing inference methods employ incremental
modifications of networks, the number of added/deleted
edges cannot be specified. Therefore, we did not compare
DPLSQ for network completion with other methods (but we
compared it with the existing tools for network inference).

We employed the structure of the real biological network
named WNT5A (see Figure 3) [17]. For each node v; with h
input nodes, we considered the following model:

h
xi(t+ 1) =x(t) + At (af) + Za?xf). +Za§’kx,'}.(t)x,'k(t) +biw) ,
j=1 Jj<k

(18)
where aj-s and a;’ks are constants selected uniformly at
random from [-1,1] and [-0.5,0.5], respectively. The
reason why the domain of a}ks is smaller than that for ajs
is that non-linear terms are not considered as strong as linear
terms. It should also be noted that b;w is a stochastic term,
where b; is a constant (we used b; = 0.2 in all computational
experiments) and w is a random noise taken uniformly at
random from [-1,1].

For artificial generation of observed data y;(t), we used

yi(t) = x:(t) + de, (19)

where 0’ is a constant denoting the level of observation errors
and € is a random noise taken uniformly at random from
[1,-1]. Since the use of time series data beginning from
only one set of initial values easily resulted in overfitting, we
generated time series data beginning from 20 sets of initial
values taken uniformly at random from [1, —1], where the
number of time points for each set was set to 10 and At = 0.2
was used as the period between the consecutive two time
points. Therefore, 20 sets of time series data, each of which
consisted of 10 time points, were used per trial (200 time
points were used in total per trial). It is to be noted that in
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our preliminary experiments, the use of too small Af resulted
in too small changes of expression values whereas the use of
large At resulted in divergence of time series data. Therefore,
after some trials, At = 0.2 was selected and used throughout
the paper.

Under the above model, we examined several ofs as
shown in Table 1. In order to examine network completion,
WNT5A was modified by randomly adding h edges and
deleting k edges and the resulting network was given as an
initial network.

We evaluated the performance of the method in terms of
the accuracy of the modified edges and the success rate. The
accuracy is defined here by

h+k+

Eorig

- Eorig N Ecmpl l (20)
h+k ’

where Eurig and Eqpp are the sets of edges in the original
network and the completed network, respectively. This value
takes 1 if all deleted and added edges are correct and 0 if
none of the deleted and added edges is correct. For each
(h, k), we took the average accuracy over a combination of
10 parameters (a}s and a;’ks) and 10 random modifications
(i.e., addition of h edges and deletion of k edges to construct
an initial network). The success rate is the frequency of the
trials (among 10 x 10 trials) in which the original network
was correctly obtained by network completion. The result is
shown in Table 1. It is seen from this table that DPLSQ works
well if the observation error level is small. It is also seen that
the accuracies are high in the case of h = 0. However, no clear
trend can be observed on a relationship between h, k values
and the accuracies. It is reasonable because we evaluated
the result in terms of the accuracy per deleted/added edge.
On the other hand, it is seen that the success rate decreases
considerably as ki and k increase or the observation error level
increases. This dependence on / and k is reasonable because
the probability of having at least one wrong edge increases as
the number of edges to be deleted and added increases. As
for the computation time, the CPU time for each trial was
within a few seconds, where we used the default values of
H = K = 3. Although these default values were larger than
h, k here, it did not cause any effects on the accuracy or the
success rate. How to choose H and K is not a trivial problem.
As discussed in Section 2.5, we cannot choose large H or K
because of the time complexity issue. Therefore, it might be
better in practice to examine several combinations of small
values H and K and select the best result although how to
determine the best result is left as another issue.

3.2. Inference Using Artificial Data. We also examined
DPLSQ for network inference, using artificially generated
time series data. In this case, we used the same network
and dynamics model as previously mentioned but we let
E = @ in the initial network. Since the method was applied
to inference, we let H = 0, K = 3, and k = 30. It is to be
noted that deg™(v;) = 3 holds for all nodes v; in the WNT5A
network. Furthermore, in order to examine how CPU time
changes as the size of the network grows, we made networks

with 30 genes and 50 genes (with k = 90 and k = 150) by
making 3 and 5 copies of the original networks, respectively.

Since the number of added edges was always equal to
the number of edges in the original network, we evaluated
the results by the average accuracy, which was defined as the
ratio of the number of correctly inferred edges to the number
of edges in the correct network (i.e., the number of added
edges). We examined observation error levels of 0.1, 0.3,
0.5, and 0.7, for each of which we took the average over 10
trials using randomly generated different parameter values
(i.e., aés and a?)ks), where time series data were generated
as in Section 3.1. The result is shown in Table 2, where the
accuracy and the average CPU time (user time + sys time)
per trial are shown for each case. It is seen from the table that
the accuracy is high even for large networks if the error level
is not high. It is also seen that although the CPU time grows
rapidly as the size of a network increases, it is still allowable
for networks with 50 genes.

We also compared DPLSQ with two well-known existing
tools for inference of genetic networks, ARACNE [11, 12]
and GeneNet [7, 8]. The former is based on mutual
information and the latter is based on graphical Gaussian
models and partial correlations. Computational experiments
on ARACNE were performed under the same environment as
that for DPLSQ, whereas those on GeneNet were performed
on a PC with Intel Core i7-2600 CPU (3.40 GHz) with 16 GB
RAM running under the Cygwin on Windows 7 because of
the availability of the R platform on which GeneNet works.
We employed datasets that were generated in the same way as
for DPLSQ and default parameter settings for both tools.

Since both tools output undirected edges along with their
significance values (or their probabilities), we selected the top
M edges in the output where M was the number of edges in
the original network and regarded {v;,v;} as a correct edge
if either (v;,v;) or (v;,v;) was included in the edge set of
the original network. As in Table 2, we evaluated the results
by the average accuracy, that is, the ratio of the number of
correctly inferred edges to the number of edges in the original
network.

The result is shown in Table 3. Interestingly, both tools
have similar performances. It is also interesting that the
performance does not change much in each method even
if the level of observation error changes. Readers may
think that the accuracies shown in Table 3 are close to
those by random prediction. However, these accuracies were
much higher than those obtained by assigning random
probabilities to edges, and thus we can mention that these
tools outputted meaningful results.

It is seen from Tables 2 and 3 that the accuracies
by DPLSQ are much higher than those by ARACNE and
GeneNet even though both directions of edges are taken
into account for ARACNE and GeneNet. However, it should
be noted that time series data were generated according
to the differential equation model on which DPLSQ relies.
Therefore, we can only mention that DPLSQ works well
if time series data are generated according to appropriate
differential equation models. It is to be noted that we can use

~ 348 -



The Scientific World Journal

TaBLE 1: Result on completion of WNT5A network, where the average accuracy is shown for each case.

No. deleted edges No. added edges

Observation error level

0.1 0.3 0.5 0.7
h=0 k=1 Accuracy 0.990 0.910 0.730 0.410
Success rate 0.99 0.91 0.73 0.41
h=0 k=2 Accuracy 1.000 0.955 0.670 0.395
Success rate 1.00 0.91 0.42 0.17
he1 k=0 Accuracy 0.990 0.850 0.470 0.240
Success rate 0.99 0.85 0.47 0.24
h=1 k=1 Accuracy 0.995 0.845 0.405 0.210
Success rate 0.99 0.71 0.11 0.02
h=1 k=2 Accuracy 0.983 0.843 0.470 0.190
Success rate 0.95 0.58 0.11 0.00
h=2 k=0 Accuracy 1.000 0.795 0.440 0.215
Success rate 1.00 0.67 0.18 0.01
h=2 k=1 Accuracy 0.996 0.833 0.453 0.223
Success rate 0.99 0.53 0.05 0.01
h=2 k=2 Accuracy 1.000 0.862 0.517 0.285
Success rate 1.00 0.56 0.03 0.01

TaBLE 2: Result on inference of WNT5A network by DPLSQ.

Observation error level

0.1 0.3 0.5 0.7
n=10 Accuracy 1.000 0.966 0.803 0.620
CPU time (sec.) 0.685 0.682 0.682 0.685
n =30 Accuracy 0.995 0.914 0.663 0.443
CPU time (sec.) 66.2 66.2 66.1 65.9
n =50 Accuracy 0.999 0.913 0.613 0.392
CPU time (sec.) 534.0 534.2 533.6 533.5

other differential equation models as long as parameters can
be estimated by least-squares fitting.

As for computation time, both methods were much
faster than DPLSQ. Even for the case of N = 50, each of
ARACNE and GeneNet worked in less than a few seconds
per trial. Therefore, DPLSQ does not have merits on practical
computation time.

3.3. Inference Using Real Data. We also examined DPLSQ for
inference of genetic networks using real gene expression data.
Since there is no gold standard on genetic networks and thus
we cannot know the correct answers, we did not compare it
with the existing methods.

We employed a part of the cell cycle network of
Saccharomyces cerevisiae extracted from the KEGG database
[18], which is shown in Figure 4. Although the detailed
mechanism of the cell cycle network is still unclear, we used
this network as the correct answer, which may not be true.
Although each of (MCM1, YOX1, YHPI1), (SWI4, SWI6),
(CLN3, CDC28), (MBP1, SWI6) constitutes a protein com-
plex, we treated them separately and ignored the interactions

TABLE 3: Result on inference of WNTS5A network using ARACNE
and GeneNet, where the accuracy is shown for each case.

Observation error level

Method
0.1 0.3 0.5 0.7

n=10 ARACNE 0.523 0.523 0.523 0.526

GeneNet 0.526 0.526 0.533 0.533
n=30 ARACNE 0.332 0.328 0.326 0.326

GeneNet 0.368 0.380 0.383 0.384
” =150 ARACNE 0.308 0.312 0.310 0.391

GeneNet 0.313 0.316 0.314 0.316

inside a complex because making a protein complex does
not necessarily mean a regulation relationship between the
corresponding genes.

As for time series data of gene expression, we employed
four sets of times series data (alpha, cdcl5, cdc28, elu) in
[19] that were obtained by four different experiments. Since
there were several missing values in the time series data,
these values were filled by linear interpolation and data
on some endpoint time points were discarded because of
too many missing values. As a result, alpha, cdcl5, cdc28,
and elu datasets consist of gene expression data of 18, 24,
11, and 14 time points, respectively. In order to examine
a relationship between the number of time points, and
accuracy, we examined four combinations of datasets as
shown in Table 4. We evaluated the performance of DPLSQ
by means of the accuracy (i.e., the ratio of the number
of correctly inferred edges to the number of added edges),
where K = 3 and k = 25 were used. The result is shown in
Table 4.

Since the total number of edges in both the original
network and the inferred networks is 25 and there exist
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FIGURE 4: Structure of part of yeast cell cycle network.

9x10 = 90 possible edges (excluding selfloops), the expected
number of corrected edges is roughly estimated as

25
22X 25=6.944..., 21
5 6 (21)

if 25 edges are randomly selected and added. Therefore, the
result shown in Table 4 suggests that DPLSQ can do much
better than random inference when appropriate datasets are
provided (e.g., cdcl5 only or cdcl5+cdc28+alphatelu). Itisa
bit strange that the accuracies for the first and last datasets are
better than those for the second and third datasets because
it is usually expected that adding more evidences results in
more accurate networks. The reason may be that time series
of cdc28 and alpha may contain larger measurement errors
than those of cdc15 and elu, or some regulation rules that are
hidden in Figure 4 may be activated under the conditions of
cdc28 and/or alpha.

4. Conclusion

In this paper, we have proposed a network completion
method, DPLSQ, using dynamic programming and least-
squares fitting based on our previously proposed methodol-
ogy of network completion [14]. As mentioned in Section 1,
network completion is to make the minimum amount of
modifications to a given network so that the resulting
network is (most) consistent with the observed data. In our
previous model [14], we employed the Boolean network as
a model of networks and assumed that only expression or
other values of one or a few nodes are observed. However,
in this paper, we assumed that expression values of all nodes
are observed, which correspond to gene microarray data, and
regulation rules are given in the form of differential equa-
tions. The most important theoretical difference between this
model and our previous model is that network completion
can be done in polynomial time if the maximum indegree
is bounded by a constant in this model whereas it is NP-
hard in our previous model even if the maximum indegree
is bounded by a constant. This difference arises not from the
introduction of a least-squares fitting method but from the
assumption that expression values of all nodes are observed.

It should also be noted that the optimality of the solution
is not guaranteed in most of the existing methods for

TABLE 4: Result on inference of a yeast cell cycle network.

Experimental conditions Accuracy
cdcl5 11/25
cdcl5 + cdc28 8/25
cdcl5 + c¢dc28 + alpha 8/25
cdcl5 + cdc28 + alpha + elu 11/25

inference of genetic networks, whereas it is guaranteed in
DPLSQ if it is applied to inference of a genetic network
with a bounded maximum indegree. Of course, the objective
function (i.e., minimizing the sum of squared errors) is
different from existing ones, and thus this property does
not necessarily mean that DPLSQ is superior to existing
methods in real applications. Indeed, the result using real
gene expression data in Section 3.3 does not seem to be
very good. However, DPLSQ has much room for extensions.
For example, least-squares fitting can be replaced by another
fitting/regression method (with some regularization term)
and the objective function can be replaced by another
function as long as it can be computed by sum or product of
some error terms. Studies on such extensions might lead to
development of better network completion and/or inference
methods.
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