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Abstract

The investigation of network dynamics is a major issue in systems and synthetic biology. One of
the essential steps in a dynamics investigation is the parameter estimation in the model that expresses
biological phenomena. Indeed, various techniques for parameter optimization have been devised and
implemented in both free and commercial software. While the computational time for parameter
estimation has been greatly reduced, due to improvements in calculation algorithms and the advent
of high performance computers, the accuracy of parameter estimation has not been addressed.

‘We previously proposed an approach for accurate parameter optimization by using Differential
Elimination, which is an algebraic approach for rewriting a system of differential equations into
another equivalent system. The equivalent system has the same solution as the original system, and it
includes high-order derivatives, which contain information about the form of the observed time-series
data. The introduction of an equivalent system into the numerical parameter optimizing procedure
resulted in the drastic improvement of the estimation accuracy, since our approach evaluates the
difference of not only the values but also the forms between the measured and estimated data, while
the classical numerical approach evaluates only the value difference. In this report, we describe
the detailed procedure of our approach for accurate parameter estimation in dynamic systems. The
ability of our approach is illustrated in terms of the parameter estimation accuracy, in comparison
with classical methods.

1 Introduction

The investigation of network dynamics is a major issue in systems and synthetic biology[1]. In general,
a network model for describing the kinetics of constituent molecules is first constructed with reference
to the biological knowledge, and then the model is mathematically expressed by differential equations,
based on the chemical reactions underlying the kinetics. Finally, the kinetic parameters in the model are
estimated by various parameter optimization techniques[2], from the time-series data measured for the
constituent molecules. While the computational time for parameter estimation has been greatly reduced,
due to the improvements in calculation algorithms and the advent of high performance computers, the
accurate numerical estimation of parameter values for a given model remains a limiting step. Indeed,
the parameter values estimated by various optimization techniques are frequently quite variable, due to
the conditions for parameter estimation, such as the initial values. In particular, we cannot always obtain
the data measured for all of the constituent molecules, due to limitations of measurement techniques and
ethical constraints. In this case, one of the issues we should resolve is that the parameters are estimated
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from the data for only some of the constituent molecules. Unfortunately, it is quite difficult to estimate
the parameters in such a network model including unmeasured variables.

Differential elimination was applied[3] to improve the parameter estimation methods, especially in
the model dynamics including unmonitored variables. The idea consisted of computing differential equa-
tions from the input system, from which the unmonitored variables were eliminated. These differential
equations could then be used to guess the initial values for the Newton-type numerical parameter op-
timization scheme. The overall method was implemented over the BLAD libraries[4]. Differential
elimination theory is a branch of the differential algebra of Ritt and Kolchin[5, 6]. Its basis was de-
veloped by Ritt, who founded the theory of characteristic sets. Ritt’s ideas were subsequently developed
by Seidenberg [7], Wu[8], Boulier et al.[9, 10] and many other researchers. The Rosenfeld-Grobner
algorithm[9, 10] is the first complete algorithm for differential elimination ever implemented. It re-
lies on Ritt and Seidenberg’s ideas, on the Rosenfeld Lemma, which reduces differential problems to
non-differential polynomial ones, and on the Grobner bases theory for solving non-differential poly-
nomial systems (although recent implementations completely avoid Grobner bases computations). The
Rosenfeld-Grobner algorithm was implemented in 1996 in the diffalg package of the MAPLE computer
algebra software. Starting from MAPLE 14, it should be replaced by the MAPLE Differential Algebra
package, which relies on the BLAD libraries[11].

Recently, we proposed a new procedure for optimizing the parameters, by using differential elimi-
nation. Our procedure partially utilizes a technique from a previous study[12, 13], regarding the intro-
duction of differential elimination into parameter optimization in a network. Instead of using differential
elimination for estimating the initial values for the following parameter optimization, the equations de-
rived by differential elimination are directly introduced as the constraints into the objective function for
the parameter optimization[14, 15, 16, 17]. Here, we will describe the detailed procedure of our ap-
proach, by using a simple model represented as non-linear differential equations. We also discuss the
merits and pitfalls of our procedure, in terms of its extension to more realistic and complex models.

2 Procedure

2.1 Overview of Present Procedure

The key point of this study is the introduction of new constraints obtained by differential elimination
into the objective function, to improve the parameter accuracy. This section outlines our new procedure
for estimating the parameters, using constraints built from differential elimination, and compared it with
the classical constraints based on the total relative error. For clarity, the method is described using an
academic example.

We first present the example. We then show how to build our new constraints using differential
elimination, and how to optimize the evaluation of those new constraints over numeric values. Subse-
quently, we present our genetic algorithm for estimating the parameter values, and finish with the results.
All Maple commands used for computing the expressions described in the following subsections are
provided in appendix A.

2.2 Example

Differential algebra aims at studying differential equations from a purely algebraic point of view[5, 6].
Differential elimination theory is a sub theory of differential algebra, based on Rosenfeld-Grobner[9].
Differential elimination rewrites the inputted system of differential equations to another equivalent sys-
tem, according to (order of terms). Here, we provide an example of differential elimination, as shown
below, according to Boulier[12].
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(Michaelis-Menten exchange)
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Figure 1: Schematic representation of the model

The model is composed of two state variables, x; and x,. We assumed that the time-series data for one
of the variable, x1, are obtained.
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Figure 2: Reference curve

According to the kinetics of the model (Eqn. (1)), a reference curve of one variable, x|, was generated
for 0 <r < 1.5 with intervals of 0.05, under the following conditions: x;(0) = 50.0,x5(0) = 0.0,Ve =
101.0,k12 = 0.5,/(21 = 3.0 and ke =17.0.

Assume a model of two variables, x; and xp, as schematically depicted in Fig. 1, with the corre-
sponding system of differential equations expressed as follows:

{ Xy = —kipxi +kyixy — 0

X2 = kiox1 —ka1x2

where k12, k21, k. and V, are some constants. Two molecules are assumed to bind according to Michaelis-
Menten kinetics.
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Here we assume that the time-series of only one variable, x;, can be observed. x; is assumed to be
non-observed; however, we assumed that x,(0) = 0 was known. According to the model in Fig. 1, a
reference curve of one variable, x;, was generated in Fig. 2. Among the parameters in the model, the
values of three parameters, k12, k1, and V,, were estimated, and the values of the remaining parameters
were set to the same values as those used in the generation of the reference curve of Fig. 2.

2.3 Differential Elimination

The differential elimination then produces the following two equations equivalent to the above system.

{ x1 (ka1 +x1) + ko133 + (k1o + Vo) x1 — koi (ke +x1 )20 = 0 @

X1001 +ke)? + (k1o + ko1 )x1 (x1 + ke )? + Vioxrke + ki Voxy (x1 +k.) =0

As a consequence, the latter two equations should be zero for any solution of (1). The latter to
equations, respectfully, called C;, and Cy; in the following, will be used to define our error estimation,
based on the evaluation of |C |+ |Ca|.

System (2) can be computed in Maple 14, using the following commands:

> with(DifferentialAlgebra):

> sys := [
> x1[t] - ( -k12%x1 + k21*x2 - Vexx1/(ke+xl)),
> x2[t] - ( k12*x1l - k21%x2)
> 1;
Ve x1
sys := [x1[t] + k12 x1 - k21 %2 + ———---- , x2[t] - k12 x1 + k21 x2]
ke + x1

> R := DifferentialRing(blocks=[x2,x1,k12(0) ,k21(),Ve(),ke()], derivatiomns=[t]);

R := differential_ring
> Ids := RosenfeldGroebner( numer(sys), denom(sys), R,
> basefield=field(generators=[k12,k21,Ve,ke]));
Ids := [regular_differential_chain]
> eqgs := Equations(Ids[1]);
eqs := [
2

k21 x2 x1 + k21 x2 ke - x1[t] x1 - x1[t] ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2
x1[t, t] x1 + 2 x1[t, t] x1 ke + x1[t, t] ke + x1[t] x1 k12

2 2
+ x1[t] x1 k21 + 2 x1[t] x1 k12 ke + 2 x1[t] x1 k21 ke + x1[t] k12 ke

2 2
+ x1[t] k21 ke + x1[t] Ve ke + x1 k21 Ve + x1 k21 Ve kel
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2.4 Simplification

In general, the problem of reducing the evaluation complexity (additions, multiplications) is difficult
and requires a large number of computer operations (a.k.a. a high algorithmic complexity). Moreover,
the evaluation complexity of the Rosenfeld-Grobner output tends to be exponential in the evaluation
complexity of the input, especially when using elimination rankings, as in this case. Consequently, before
directly applying techniques such as factorization, Horner schemes, common sub expression detection,
etc. for reducing the evaluation complexity, we try to use the knowledge we already have on the initial
ODE system.

We now describe a preprocessing step that facilitates the evaluation of Cpg = |Ci /| + |Coy]-

The expressions of Ci; and Gy, given in (2) are not the expressions originally computed by the
Rosenfeld-Grobner algorithm. Indeed, the Rosenfeld-Grobner algorithm outputs expanded expressions.

Thus, using the Rosenfeld-Grobner outputs, one has to evaluate the following expression, Cpg:

Cpog = Iwkglx;zke — ka1x0x1 + X1ke + X121 + k1ox1ke + klzx% + Vexy 1 3)
+ lkZIkeVexl + 2kek1ax1 X1 + 2ko1kex X -+ 2k X1x1 + k1oX k2
ke Vexy + kiaxixy + ko1 koxy + ka1 xixy + kpixi Vi - 5 k2 + %107 |

requiring 18 additions + 46 multiplications (+2 function evaluations for the absolute value). These oper-
ations represent the evaluation complexity of the expression Cpg.

Since the expressions of Cy ; and C; ; were computed from an ODE system involving the denominator
k. +x1, from a Michaelis-Menten factor, the expression k., +x) can be likely be factorized. By introducing
anew variable, d, = k. +x1, and applying the substitution k, — d, — x; in the previous expression of Cpg,
one gets

Coe = |—kaxade +x1de + kioxide + Vex | “4)
+ ik21V3x1de + k12x1d3 +V.x1d, — VoX1x1 + kzlx'ldez —I—)C.]dezl

requiring 9 additions + 21 multiplications.

Please note that the last expression of Cpg does not involve k, anymore, which shows that the variable
k. only appears in Cpg in the term k, + x;.

This trick with the denominators has divided the number of operations by 2. On more complex
systems, the benefit can be much greater. It is worth noting that the trick works quite similarly if several
denominators are involved and if each denominator linearly involves a parameter that is not involved in
the other denominators. More precisely, if one has n denominators of the form k; + f;, and if k; is not
involved in any f;, then one performs » substitutions k; — f; — d;.

Further computations using a Horner scheme can now be accomplished. For example, applying a
recursive Horner scheme with decreasing priority on the variables d,,x;,x;,x1,X] yields:

Coe = |Vex1 — (kaixa — X1 — kiax1)de| )
+ | =Vexix1 + (ko1 Vexy + Vex + (%1 + (k2 + ka1)x1)d, )d, | ‘
requiring 9 additions + 12 multiplications.

To finish, further simplification can be achieved using the optimize command of the optimize package
in the Computer Algebra software Maple. This last command tries to recognize common expressions in
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order to compute common subexpressions only once. This command is not very costly, since it is based
on easy heuristics. In our case, it yields the sequence of commands:

17 = |Vexi — (kaixo — X1 — kiox1)d,|, ©)
18 - ‘/ex.la
t19 = |—18x; + (ko1 Voxy +18 + (x1 + (k12 + ko1 )x1)de)de|

Cpr = t7+1t19

requring 9 additions + 11 multiplications + 4 assignments. Note that the last gain here is only 1 multipli-
cation, but can be higher on larger systems.

All previous operations can be automated in Maple (see appendix A for the complete set of Maple
commands); the C command of the optimize package yields the C code as

t7 = fabs(Vexx1—(k21%x2—x1t—k12*x1)xde);

t8 = VexxlIt;

t19 = fabs(—t8*x1+(k21*xVexx1+t8+(x1tt+(kl12+k21)*xx1t)*xde)xde);
E = t7+t19 ;.

2.5 Introduction of Constraints

The objective function for parameter optimization in this study is composed of two terms: one is the
standard error function between the estimated and monitored data, and the other is the constraints ob-
tained by differential elimination. The error function is defined as follows: Suppose x{, is the time-series
data at time ¢ of x;, simulated by using the estimated parameter values and the model equations by inte-
gration, and x7;, represents the monitored data at time 7. The sum of the absolute values of the relative
error between xf, , and x:f‘t gives the averaged relative error over the numbers of monitored variables and
time points, E, as a standard error function, i.e.,

1 N

i=1t=1

T

5

(7

ol
X~ X
mn

X

it
where N and T are the numbers of monitored variables and time points, respectively.

Next we define the DE constraints obtained by the differential elimination and simplification proce-
dure. The simplified equivalent system (Eqn. (6)) is composed of x;, its derivatives (x; and X1), x», and
the parameters (k12, k21, Ve and k.). Note that x; in Eqn. (6) can be estimated by x;, the parameters, and
x2(0). The derivatives of variable x) can be estimated numerically by the following procedure. First, we
obtain two equations by a Taylor expansion of x;(z),

h2 h3 /"

21 (t+h) = x (1) + 7 (6) + =31 () + = () + - ®)
/ h2 1" h3 "
xl(t—h)le(t)—hxl(t)+7x1 (t)~——6—~x1 &) +---. )
Second, we subtract Eqn. (9) from (8),
wa(t+ ) —x1 (£ — h) = 20, (1) + —;—hz’x’l”(t) . (10)

1
20X, (1) = xi (1 h) =01 (1 = h) = I () + -,

x1(t+h)—x1(t—nh W?
gy =20 CR) Ry

_48_



General Procedure for Accurate Parameter Estimation Nakatsui, et al.

Finally, we obtain following approximation, under the assumption of 0 < A < 1,

A = xl(t—i-h)—xl(t—h)

! 2
1(0) > +0(h?). (11)

We are able to obtain higher-order derivatives from lower-order derivatives in same way, as mentioned
above. For instance, we can estimate second order derivatives of x; by using following equation,

2y =" (r+h)2—hx’1 Ul NPT (12)

The value of the simplified equivalent system (Eqn. (6)) can be calculated by the substitution of the
observed xi, its numerically the estimated derivatives, estimated x;, and the parameter values estimated
by the numerical parameter optimizing procedure. In general, Differential Elimination rewrites the orig-
inal system of differential equations into an equivalent system, which means both systems have the same
solutions. This clearly shows that the evaluated values of the equivalent system will be zero with exactly
estimated parameter sets, time-series data without noise, and derivatives. Thus, the equivalent system
can be regarded as a kind of objective function that expresses the difference between the monitored and
estimated data. In this study, we express DE Constraint (Cpg), as the average of the linear combination
of the equation in the equivalent system over the number of equations and time points, as follows:

1

Crr =
DE IT

L T
Y Y G (13)

I=1t=1

where L and T are the numbers of equivalent equations and time points, respectively. Finally, we in-
troduce Cpg Cpg, which is simplified as Cpg, into the objective function, F', in combination with E,
as:

F=aE+(l—a)Cpg (14)

where o.(0 < o < 1) is the weight of the two functions. As a result, our computational task is to find
a set of parameter values that minimize . When we apply the simplification procedure (see 2.4), then
le—C_'DE is used instead of Cpg.

The weighting factor o in the objective function F is estimated from the slope of the Pareto-optimal
solutions. First, we obtained some parameter sets (in the case study, we obtained 200 kinds of parameter
sets) by the compute_parameter_set function, under the conditions of 8 = 1.0 and the tentative value of
o ta = 1 (this means we used the classical objective function, i.e. F = E). Second, we selected the
Pareto-optimal solutions from the list of estimated parameter sets, by the select_pareto_optimal_solutions
function. By fitting the linear function C = aE + b to the selected the Pareto-optimal solutions, we ob-
tained the slope of Pareto-optimal solutions, a. Finally, we estimated the value of o from the slope a.
The detailed algorithms for estimating the value of o are shown in Algorithm 1 and 2. Fig. 3 represents
a part of the estimated parameter sets in the case study (the detailed algorithms for the parameter opti-
mization we used for the case study are shown in 2.6), the Pareto-optimal solutions, and the fitted line
for the Pareto-optimal solutions. We obtained the slope a = 20.7653 for the case study, and the value of
o was estimated as o0 = 0.95406.
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Figure 3: Slope of Pareto-optimal solutions

The empty squares ([]) indicate the set of evaluated values, E and Cpg. The filled squares (H) show the
Pareto-optimal solutions, and the line represents the fitted line for Pareto-optimal solutions.

Algorithm 1 Estimate value of weighting factor o

Function : estimate_alpha(d, n, ta)

Input : error tolerance &, number of trials #, and tentative value of o ta
Return : estimated value of weighting factor o

RES « compute_parameter_set(ta, )
P « select_pareto_optimal_solutions(RES)
EV «— ¢
CV —0¢
n size of P
fori=0tondo
EV « EV union E(R;)
CV « CV union C(R;)
end for
fit CV; = —aEV; 4 b from EV and CV by using least square method
: returna/(a+1)

N e AR A Y e

[N
—_ O
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Algorithm 2 Select Pareto-optimal solutions
Function : select_pareto_optimal_solutions(R)
Input : R set of estimated parameters
Return : Pareto-optimal solutions (P)

P—¢
EV «— ¢
CV «— 0
n size of R
fori=0tondo
EV « EV union E(R;)
CV «— CV union C(R;)
end for
fori=0tondo
Flag I[p = true
for j=0tondo
if (EV; < EV; and CV; < CV)) then
Ip « false
14: end if
15:  end for
16:  if Ip then
17: P «— Punion R;
18:  end if
19: end for
20: return P

R e A AR A > e

_ e
w2

2.6 Optimization Algorithm

Our approach can be applied to many kinds of parameter optimizing procedures, such as the Gradient-
based method and the evolutionary optimizing method, including the Modified Powell method[18, 19],
Genetic Algorithms[20, 21], and Particle Swarm Optimization[22, 23], by modifying the objective func-
tion (cost function) only[16].

Here, we applied our approach to Real-coded Genetic Algorithms[24, 25, 26], to demonstrate its
ability. The detailed algorithms used to analyze the case study (Fig. 1 and 2) are shown in Algorithm 3
to 5.

Let us explain the differences between our procedure and the classical constraint E. First of all, by
using o = 1, one obtains a classical genetic algorithm using the relative error E, since we have F = E
when o0 = 1. Second, when using o0 < 1, each parameter set k returned by the compute_parameter_sets
satisfies E(k) < 8, as in the classical procedure. However, the manner in which the population evolves
(in the compute_next_generation) depends on the function F. To summarize, the objective function F is
only used to direct the evolution of the population, by not using the objective function F to select the final
candidates, and thus it makes sense to compare the parameter sets computed in the classical procedure
and in our procedure.

2.7 Results

To evaluate the ability of our procedure, we performed a simulation study by using the objective function
with and without the newly developed DE constraints, by estimating the kinetic parameters in Eqn. (1).
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Algorithm 3 Modify the parameter set K by computing the next generation
Function compute_next_generation(o, K)
Input : the weighting factor 0., a parameter set K

1: nsizeof K

2: denote K = {ki,...,k,}

compute 1 < s < n such that k; is the one best element according to the F function (i.e. F(k;) is the
minimum of F(k;),...,F(K,))

pick a random number r such that 1 < r < #, and r is different from s

mix ks and k, and compute a new set k' = {K7,...,k,}

K’ « K’ union {k}

modify k by replacing ks and &, by the two best elements of K’ according to the F function

w

A A

Algorithm 4 Optimization process

Function : compute_one_parameter_set(c., 8, pop, gen)

Input : the weighting factor o, the error tolerance delta for function F, the population size of GA pop,
the maximum generation counts gen

Return : a set containing zero or one parameter set

create a set K containing pop random parameter sets
: fori=1to gendo
compute_next_generation(alpha, K)
if an element & in K satisfies E (k) < § then
return k
end if
end for
return ¢

A O S ol o

Algorithm 5 generate a list of estimated parameter sets

Function : compute_parameter_sets(, &, pop, gen, trials)

Input : the weighting factor &, the error tolerance 8 for function F, the population size of GA pop, the
maximum generation counts gen, the trial number trials

Return : a list of parameter sets

1: RES+ 0

2: for i =1 to trials do

3:  RES « RES union compute_one_parameter.set(al pha, delta, pop, gen)
4: end for

5: return RES
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Figure 4: Comparison of parameter value clouds estimated by the classical or our proposed procedure,
(A) with and (B) without DE constraints

The given values are as follows: x2(0) = 0.0 and k, = 7.0. The black circles indicate the correct parameter
set.
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Here, we assume that the time-series of only one variable, x;, can be observed. According to the model,
the reference curve of one variable, x;, was generated in Fig. 2. Among the parameters in the model, the
values of three parameters, k2, k21, and V,, were estimated, and the values of the remaining parameters
were set to the same values as those used in the generation of the reference curve.

The introduction of DE constraints into the objective function was quite effective, in the comparison
with the distributions of the parameter values estimated with and without DE constraints (see Fig. 4).
Indeed, the distribution of the estimated k;» and kp; values was highly concentrated around the correct
values by the estimation with the introduction (Fig. 4 (A)), while the estimated parameters were widely
distributed by the estimation without the introduction of DE constraints (Fig. 4 (B)).

3 Discussion

The accuracy of parameter estimation was clearly improved by the introduction of DE constraints into
the objective function of the numerical parameter optimizing method. Indeed, the parameter value sets
estimated with the introduction of DE constraints into the objective function were sharply distributed near
the correct values, in contrast to the wide distribution without the introduction. In general, the derivatives
included the information on the curve form of the observed time-series data, such as slope, extremal point
and inflection point. This indicates that the new objective function we proposed estimates the difference
of not only the values but also the forms between the measured and estimated data, while the classical
objective function estimates only the value difference. Note that the DE constraint is rationally reduced
from the original system of differential equations for a given model, in a mathematical sense. Thus, our
approach is expected to become a general approach for parameter optimization to improve the parameter
accuracy.

As expected, the new objective function requires more computational time, in comparison with an
objective function with only a standard error function, due to the increase of the function in the DE
constraints. In equivalent systems derived by Differential Elimination, the number of terms and operators
frequently increases, and this may make the application of our procedure to a complex or large system
difficult, without simplification of the equivalent system. To overcome the difficulty in the complex
system, we applied simplification by symbolic computation (see 2.4). For instance, we could estimate
the kinetic parameters in the negative feed-back oscillator model[27, 28, 29] by using the simplification
procedure[17], while the estimation without the simplification failed, due to the immense computational
time.

Another possible way to overcome the difficulty in complex models is to approximate the DE con-
straint. In the DE constraint, the terms with a higher order of derivatives in the differential equations
generally appeared in the equivalent system. The magnitudes of the estimated values of the higher order
derivatives were relatively smaller than those of the lower order derivatives. Although our procedure was
useful, even for noisy data in a simple model[15], the estimated values of the higher order derivatives for
noisy data may become large in this case. However, some techniques are frequently used for smoothing
noisy data, and after smoothing, the values of the higher order derivatives may be smaller. If the terms
with higher order derivatives can be neglected in the estimation, then the computational time may be
reduced. Further studies to improve the computational time by approximation of the DE constraint will
be reported in the near future.

A Implementation of Simplification

The following commands use the new Differential Algebra package, and thus require Maple 14 to work.
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