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* Anti-viral effects of tenofovir for HBV mutants.
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Abstract

A multimodality fusion imaging system has been introduced
for the clinical practice of diagnosis and treatment of hepa-
tocellular carcinoma (HCQ), especially for loco-regional treat-
ment. An ultrasonography (US) fusion imaging system can
provide a side-by-side display of real-time US images and
any cross-sectional images of multiplanar reconstruction of
CT or MRI that synchronize real-time US. The US fusion imag-
ing system enables us to perform radiofrequency ablation
(RFA) for HCCs difficult to detect on conventional US safely.
Besides, we can evaluate the treatment effects of RFA easily
at the bedside by combining the contrast-enhanced US and
the US fusion imaging system. Fusion images of pre- and
post-RFA CT have been utilized for the assessment of the
treatment effects of RFA. Although the treatment effects of
RFA have been conventionally evaluated, comparing pre-
and post-RFA CT side-by-side, the evaluation tends to be in-

accurate, On CT fusion images, the tumor and the ablation
zone are overlaid and we can grasp the positional relation
easily, leading to quantitative and more accurate evaluation.
The multimodality fusion imaging system has become quite
an important tool for loco-regional treatment of HCC be-
cause of its usefulness for both the guidance during the RFA
procedure and the evaluation of its treatment effects.
Copyright © 2012 S. Karger AG, Basel

Introduction

Recently, imaging technology in CT, MRI and ultraso-
nography (US) for the diagnosis of hepatocellular carci-
noma (HCC) has dramatically progressed. In addition,
contrast media such as Sonazoid (Daiichi-Sankyo, Tokyo,
Japan), one of the second-generation US contrast agents,
and gadolinium-ethoxybenzyl-diethylenetriamine pen-
taacetic acid (Gd-EOB-DTPA) (Primovist; Bayer Health-
Care, Osaka, Japan), a liver-specific contrast MR agent
have become available [1-9]. As a result, the diagnosis of
HCC has come to be made at an earlier stage. However, it
is occasionally difficult to perform needle-based loco-re-
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gional treatment such as radiofrequency ablation (RFA)
and percutaneous ethanol injection therapy for early
HCCs, since some of them are not clearly visualized on
grayscale US [10].

Along with the progress in diagnostic imaging, a mul-
timodality fusion imaging system has been developed for
the clinical practice of treatment of HCC, particularly for
the assistance of loco-regional treatment. It has been re-
ported that HCCs hardly detectable on conventional
grayscale US could be detected with subsequent loco-re-
gional treatment by virtue of the US fusion imaging sys-
tem [1, 10-15]. In addition to the US fusion imaging sys-
tem, a CT fusion imaging system has been reported to be
useful for accurate assessment of treatment effects of RFA
[16-19]. This report aims to review the usefulness of the
multimodality fusion imaging system for percutaneous
loco-regional treatment of HCC.

Outline of the US Fusion Imaging System

The US fusion imaging system, such as the Volume
Navigation System (GE Healthcare Japan, Tokyo, Japan)
(1, 15] and Real-time Virtual Sonography (Hitachi Med-
ico, Co., Tokyo, Japan) [11-14] enables the synchronized
display of real-time US images and multiplanar recon-
struction (MPR) images of CT or MRI corresponding to
the cross section of real-time US. The MPR images are
reconstructed based on the volume data of CT or MR im-
ages and displayed as a reference, side-by-side, with real-
time US images on a single screen.

The US fusion imaging system is useful for the accu-
rate diagnosis and treatment of HCC with safety, in par-
ticular at the time of percutaneous loco-regional proce-
dures. It has been reported that the US fusion imaging
system is helpful in the detection of HCCs which are dif-
ficult to recognize on grayscale US [1, 14, 15]. Therefore,
even if the diagnosis of HCC is made at an early stage and
the tumor is not detected on US, percutaneous loco-re-
gional treatments can be conducted using the US fusion
imaging system. Besides the guidance of loco-regional
treatments, the US fusion imaging system can be applied
to the evaluation of treatment effects of RFA [13].

The Volume Navigation System, one of the multimo-
dality fusion imaging systems commercially available
since 2009 in Japan, is equipped with an ultrasound unit
LOGIQ E9 (GE Healthcare Japan) (fig. 1). In Volume
Navigation System, the following steps are needed for the
synchronized display of real-time US images and CT or
MR images.

Fusion Imaging and Hepatocellular
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First, the volume data of CT or MR images for refer-
ence should be imported into the system in the digital
imaging and communication in medicine (DICOM) for-
mat, through a network or a recording media such as CD-
ROM or USB-HDD. After the volume data is imported,
US images are displayed on the left side of the screen and
CT or MR images on the right side, as a reference. In order
to synchronize real-time US images to the reference, the
cross section of US images approximately parallel to the
axial image of the reference has to be registered. Next,
two magnetic positioning sensors attached to the probe
of an ultrasound scanner (a in fig. 1) detect the magnetic
field radiated from a magnetic field transmitter (b in
fig. 1) and transmit the information of spatial location
and orientation of the probe to a magnetic position-de-
tecting unit (c in fig. 1) equipped with LOGIQ E9. In this
way, a magnetic position-detecting unit integrates the
positional information of two magnetic positioning sen-
sors and reconstructs MPR images which match the 3D
information of the sensors. Subsequently, real-time US
and reference images are synchronously displayed in ac-
cordance with the movement of the probe. However,
since these two image sets are not exactly matched at this
time yet, further positional registration of real-time US
and reference images is needed. A common point on US
and reference images should be visualized for the regis-
tration. Practically, we have to visualize a characteristic
landmark on US images and mark the point. After mark-
ing the landmark point, the US image is fixed and we
should operate the probe to seek the corresponding land-
mark on reference images, by comparing it with the fixed
US image. When the landmark point on the reference im-
age is marked, the registration is completed. Then, US
and reference images are matched and simultaneously
displayed, side by side, on the same screen.

In addition to the simultaneous display of real-time
US images and a reference, the Volume Navigation Sys-
tem is equipped with the global positioning system (GPS)
function. After positional registration, when GPS mark-
ers are indicated on the target on reference images, cor-
responding sites are pinpointed on real-time US images.
This GPS function provides several advantages: firstly,
since the site where the target should be visible is pin-
pointed on real-time US images, it is helpful to detect the
target on US, even if it is difficult to perceive on conven-
tional US, and secondly, once the GPS markers are indi-
cated on a target, the target can easily be detected by any-
one and from any scanning section, by referring to the
GPS markers. Thirdly, it can be applied to the evaluation
of treatment effects of RFA, as described later.
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Sensor (a)

Fig. 1. An outline of the Volume Naviga-
tion System. Two magnetic positioning
sensors (a), a magnetic field transmitter
(b), and a position sensor unit installed in
the body of an ultrasound system (c) are
needed for the Volume Navigation System.
A magnetic field transmitter can be set
anywhere at the bedside. Two magnetic
positioning sensors are attached to the US
probe and the positional information of
each sensor is compared in order to evalu-
ate the accuracy of it. The positional infor-
mation of magnetic positioning sensors is
sent to a magnetic position-detecting unit
and MPR images which synchronize real-

Transmitter (b)

Position sensor unit (c)

time US images are reconstructed based
on this.

Application of the US Fusion Imaging System to
the Guidance of Percutaneous Loco-Regional
Treatments

Since Gd-EOB-DTPA-enhanced MRI has been clini-
cally available, the diagnosis of HCC tends to be made at
an earlier stage than before [1-5]. Accordingly, HCCs
difficult to recognize on grayscale US have become de-
tectable as hypointense nodules on hepatobiliary phase
of Gd-EOB-DTPA-enhanced MRI. The US fusion imag-
ing system effectively serves as assistance in the diagno-
sis and percutaneous loco-regional treatment of such
HCCs.

582 Dig Dis 2012;30:580-587

Figure 2 shows a case of HCC in which needle core
tumor biopsy and RFA using US fusion imaging system
were carried out. Although the hypovascular nodule in
segment III was depicted as a hypointense nodule on the
hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI,
it was undetectable either on dynamic CT, grayscale US,
or Sonazoid-enhanced US (fig. 2a-c). With the Volume
Navigation System using the hepatobiliary phase of
Gd-EOB-DTPA-enhanced MRI as a reference, we per-
formed US-guided target biopsy of the site correspond-
ing to the nodule on reference images, using intrahe-
patic vessels and hepatic contours as landmarks (tig. 2¢).
The pathological diagnosis was well-differentiated HCC
(tig. 2d). After the diagnosis of HCC, we conducted RFA
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Fig. 2. Needle core biopsy and RFA with
guidance from an US fusion imaging sys-
tem in an 80-year-old woman with hypo-
vascular HCC. a Arterial phase of pre-RFA
dynamic CT. b Hepatobiliary phase of Gd-
EOB-DTPA-enhanced MRI. ¢ Fusion im-
ages of pre-RFA grayscale US and hepato-
biliary phase of Gd-EOB-DTPA-enhanced
MRI using the Volume Navigation System.
d Histology of the biopsy specimen of the
nodule in segment III (HE staining).
e Portal phase of post-RFA dynamic CT.
The nodule in segment I1I was detected on
neither grayscale US, Sonazoid-enhanced
US, or dynamic CT. Only the hepatobil-
iary phase of Gd-EOB-DTPA-enhanced
MRI could identify the hypointense nod-
ule 27 mm in diameter (arrow), which was
suspected of being a hypovascular HCC.
Therefore, using the hepatobiliary phase
of Gd-EOB-DTPA-enhanced MRI as a ref-
erence, needle core biopsy was performed
with the Volume Navigation System and
the nodule was proven to be a well-differ-
entiated HCC. Subsequently, RFA was car-
ried out with the Volume Navigation Sys-
tem in the same way, and the tumor was
completely ablated.

in the same way with the guidance of the Volume Navi-
gation System. The dynamic CT at 3 days after RFA re-
vealed complete ablation of the tumor (fig. 2e). In this
way, percutaneous target biopsy or loco-regional treat-
ment can be performed with the assistance of US fusion
imaging system, even if the nodule is undetectable ei-
ther on conventional grayscale US or contrast-enhanced
Us.

The utility of the US fusion imaging system has also
been reported in several studies [10-15]. Kunishi et al.

Fusion Imaging and Hepatocellular
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[15] reported that US fusion imaging combining conven-
tional US and the hepatobiliary phase of Gd-EOB-DTPA-
enhanced MRI was more sensitive than conventional US
or contrast-enhanced US for the detection of HCCs, es-
pecially small or atypical HCCs, which was quite similar
to our results.

Thus, the indication of percutaneous loco-regional
treatment seems to have been greatly extended by virtue
of the US fusion imaging system.
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Fig. 3. US fusion imaging system for the
evaluation of treatment effects of RFA in a
57-year-old man with hypervascular HCC.
a Arterial phase of pre-RFA Gd-EOB-
DTPA-enhanced MRI. b Hepatobiliary
phase of pre-RFA Gd-EOB-DTPA-en-
hanced MRI. ¢ Arterial phase of pre-RFA
dynamic CT. d Portal phase of post-RFA
dynamic CT. e Fusion images of post vas-
cular phase of contrast-enhanced US (left
side) and hepatobiliary phase of Gd-EOB-
DTPA-enhanced MRI (right side). The tu-
mor was visualized as an early enhancing
nodule on both the arterial phase of Gd-
EOB-DTPA-enhanced MRI and dynamic
CT, and as a hypointense nodule on the
hepatobiliary phase of Gd-EOB-DTPA-
enhanced MRI in segment I11 (arrow). Fol-
lowing RFA, contrast-enhanced US using
Sonazoid was performed at the bedside to
evaluate the treatment effects with the
Volume Navigation System using the GPS
function. The hepatobiliary phase of Gd-
EOB-DTPA-enhanced MRI was used as
reference. After marking four points on
the margin of the tumor on the reference
image (e; right side), the corresponding
four points were displayed on real-time US
(e; left side). In the post-vascular phase of
Sonazoid-enhanced US, these four points
were fully encompassed within the hy-
poechoic area of the ablation zone, indicat-
ing complete ablation. Complete ablation
was also confirmed on dynamic CT after
RFA.

Application of the US Fusion Imaging System in the
Evaluation of the Treatment Effects of RFA

The US fusion imaging system is useful not only for
the guidance of loco-regional treatment, but also for the
assessment of the treatment effects of RFA [13]. Since an
ablated tumor becomes obscure on US during RFA due

584 Dig Dis 2012;30:580-587

to surrounding high echoic bubbles, it is difficult to
evaluate the treatment effects of RFA using convention-
al US. However, by using the GPS function of the US
fusion imaging system described above, the treatment
effects can be easily evaluated at the bedside by compar-
ing the ablated area depicted as a low echoic area on the
post-vascular phase of Sonazoid-enhanced US with the
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Fig. 4. CT fusion imaging system for the evaluation of treatment
effects of RFA in a 68-year-old man with hypervascular HCC.
a Arterial phase of pre-RFA dynamic CT. b Portal phase of post-
RFA dynamic CT. ¢ Fusion image of pre- and post-RFA CT.
d Fusion image of pre- and post-RFA CT (enlarged). The hyper-

tumor on the reference images. One example is demon-
strated in figure 3. The tumor on hepatobiliary phase of
Gd-EOB-DTPA-enhanced MRI, used as a reference,
was considered to be covered by the low echoic area on
the post-vascular phase of Sonazoid-enhanced US per-
formed after RFA, which becomes quite comprehensive
using the GPS function. Since the volume data of US, as
well as those of CT and MRI, can also be used as a ref-
erence, US images of pre- and post-RFA can be com-
pared.

Although inherent limitations still remain in terms of
the accuracy, due to difficulty in the fusion technology of
volume data of US, the US fusion imaging system is use-
ful for the assessment of the treatment effects of RFA by
virtue of its convenience, minimal invasiveness, and real-
time characteristics.

Fusion Imaging and Hepatocellular
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vascular HCC in segment VI (arrow) was treated with RFA.
Compared with side-by-side interpretation of pre- and post-RFA
CT, the positional relationship becomes clear and it becomes
possible to evaluate the ablative margin accurately on CT fusion
images.

CT Fusion Imaging System for the Evaluation of
Treatment Effects of RFA

For the evaluation of treatment effects of RFA using
dynamic CT, pre- and post-RFA CT have been conven-
tionally compared in a side-by-side manner. However,
since it is quite difficult to comprehend the locational re-
lationship of the tumor and ablation zone graphically in
this side-by-side interpretation, the assessment tends to
be subjective and inaccurate.

Recently, to overcome these problems, fusion images
of pre- and post-RFA CT have been utilized for judging
the curative effects of RFA [16-19]. Figure 4 shows the
case of an HCC patient who underwent RFA and the
treatment effects were assessed using a CT fusion imag-
ing system. CT fusion images are created with Advantage
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Workstation VolumeShare 4 (GE Healthcare Japan). Af-
ter automatic alignment of pre- and post-RFA CT using
the rigid registration method, manual registration was
added by referencing to intrahepatic structures such as
blood vessels, cysts, or the iodized oil from previous
treatments, and hepatic contours around the tumor. Since
pretreatment tumor and the ablation zone are overlaid, it
becomes easy to grasp the positional relation of the tumor
and the ablation zone visually, resulting in more accurate
evaluation of the treatment effects of RFA.

At Ikeda Municipal Hospital, a CT fusion imaging sys-
tem was introduced for the evaluation of treatment eftects
of RFA in 2011. Now, the creation of CT fusion images of
RFA are performed as routine daily work by radiological
technicians, and these images can be seen on patients’
charts for use in deciding whether to administer addition-
al RFA. The application of a CT fusion imaging system to
the evaluation of treatment effects of RFA is just getting
started, and it is hoped to be widely used hereafter.

Conclusion
The present state of the multimodality fusion imaging

system and its usefulness in the diagnosis and treatment
of HCC were outlined in this review. Since US fusion im-
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