Table 2 Biochemical, virological and histological features of patients with severe acute exacerbation at the commencement of therapy | Case | Age
(years)/
sex | Genotype | HBeAg | HBV-DNA
(log copies/
ml) | Preexisting
cirrhosis | Serum
bilirubin
(mg/dl) | ALT
(IU/I) | PT
(%) | Platelets (×10 ⁴ /mm ³) | Therapy | Outcome (time
from treatment
to death,
weeks) | |------|------------------------|----------|-------|--------------------------------|--------------------------|-------------------------------|---------------|-----------|--|----------------|--| | 1 | 63/M | В | - | 8.4 | No | 5.8 | 1680 | 43 | 6.2 | LMV + CS | Death (11) | | 2 | 32/M | В | | >8.7 | No | 6.9 | 1340 | 41 | 13.4 | CS | Death (1) | | 3 | 58/M | В | | 8.6 | No | 7.4 | 1446 | 36 | 7.7 | CS | Death (2) | | 4 | 29/M | В | - | >8.7 | No | 15.6 | 307 | 26 | 10.0 | LMV | Recovery (alive) | | 5 | 54/F | C | + | >8.7 | No | 2.4 | 2077 | 79 | 21.0 | LMV + CS | Recovery (alive) | | 6 | 37/M | С | + | >8.7 | No | 4.1 | 552 | 53 | 8.9 | CS | Recovery (alive) | | 7 | 62/M | С | + | 7.0 | No | 12.0 | 220 | 53 | 7.1 | LMV + CS + IFN | Recovery (alive) | | 8 | 33/F | C | + | >8.7 | No | 14.0 | 632 | 39 | 13.1 | CS | Recovery (alive) | | 9 | 55/M | С | + | >8.7 | Yes | 4.0 | 1089 | 55 | 10.3 | LMV + CS | Death (1) | | 10 | 37/F | C | + | 7.1 | Yes | 5.8 | 1444 | 34 | 22.0 | LMV + CS + IFN | Death (10) | | 11 | 49/M | C | + | 8.0 | Yes | 8.8 | 834 | 58 | 9.9 | CS | Death (10) | | 12 | 33/M | С | + | 8.5 | No | 9.6 | 657 | 26 | 7.4 | LMV + CS | Death (2) | | 13 | 54/M | C | + | 7.8 | Yes | 12.1 | 364 | 36 | 15.8 | LMV + CS | Death (2) | | 14 | 55/M | C | + | >8.7 | No | 24.2 | 520 | 44 | 8.3 | CS | Death (5) | Abbreviations as in Table 1, PT prothrombin activity, LMV lamivudine, CS corticosteroids, IFN interferon-α patients experienced AE after 2000. The other 8 patients experienced AE before 2000, but received LMV through participation in clinical trials or paid for the drug privately. The clinical features at the commencement of therapy of 14 patients who developed SAE are shown in Table 2 (median age 52 years, range 29-63). The mean time period between admission and death of 9 patients who developed SAE was 2 (range 1-11) weeks. Six patients who were admitted before the availability of LMV were treated with CS alone, 5 patients were treated with the combination of LMV and CS, 1 patient was treated with LMV alone, and 2 other patients were treated with LMV, CS, and IFN. Among 8 patients treated with LMV, of those who developed SAE, 5 died, and 2 patients developed complications caused by bacterial infection. Four patients had genotype B, while 10 patients had genotype C. HBeAg status was positive in 10 patients. The mean HBV DNA level was 8.7 (range 7.0->8.7) log copies/ml, ALT 746 (220–2077) IU/I. serum bilirubin 8.1 (2.4-24.2) mg/dl, PT 42 (26-79)%, and platelet count was $10.0 (62-220) \times 10^4 / \text{mm}^3$. Of the 5 patients who were treated successfully after progression to SAE, one later died of severe breakthrough hepatitis caused by emergence of LMV-resistant virus 3 years after SAE (case 7, Table 2). The other four survived (cases 4–6 and 8, Table 2). Table 3 shows the results of univariate analysis. The following factors showed significant relationship with the development of SAE at the commencement of treatment: serum bilirubin (>5 mg/dl) and PT (<60%). Multivariate analysis identified serum bilirubin as a significant and independent determinant of the development of SAE (Table 3). On the other hand, two parameters showed significant relationships with liver-related death: serum bilirubin (>7 mg/dl, P=0.049) and PT (<45%, P=0.003). Multivariate analysis identified PT (OR 9.50, 95% CI 1.3–71.0, P=0.028) as a significant determinant of death. Viral kinetics associated with fulminant hepatic failure To investigate the relationship between viral kinetics and SAE, HBV DNA levels were measured in 25 patients both before and commencement of treatment and also after treatment in 27 patients. Figure 1 shows the viral load of patients who developed and did not develop SAE at commencement of treatment compared with before treatment. Falls in the HBV DNA level occurred naturally. However, in 11 patients who developed SAE, HBV DNA levels increased in 6 patients and did not change in 5 patients. Among the latter 5, HBV DNA levels of 4 patients were >8.7 log copies/ml. In 14 patients who did not develop SAE, HBV DNA levels increased in 4 patients, were unchanged in 4 patients, and decreased in 6 patients. Hence, the HBV DNA level increased/was unchanged in 8 of 14 (57%) patients who did not develop SAE, compared with 11 of 11 (100%) patients who developed SAE. A significantly higher proportion of patients with SAE showed an increase/was unchanged in viral load compared to those who without SAE (P = 0.02). We also examined the viral kinetics in 27 patients by comparing HBV DNA levels at the commencement of treatment to after treatment. Table 3 Univariate and multivariate analyses of host and viral factors associated with progression of severe acute exacerbation at commencement of treatment | Parameter | Univariate analysis | | Multivariate analysi | Multivariate analysis | | |---|---------------------|-------|----------------------|-----------------------|--| | | OR (95% CI) | P | OR (95% CI) | P | | | Sex (female) | 1.30 (0.15-4.11) | 0.76 | | | | | Age (>55 years) | 2.64 (0.57-12.3) | 0.22 | | | | | Cirrhosis (present) | 1.90 (0.39-9.26) | 0.43 | | | | | Albumin (<3.5 g/dl) | 1.75 (0.446.97) | 0.85 | | | | | Bilirubin (>5 g/dl) | 17.0 (2.92–99.1) | 0.002 | 11.2 (1.71–73.8) | 0.01 | | | ALT (>800 IU/I) | 1.88 (0.48-7.26) | 0.36 | | | | | AST/ALT ratio (>1) | 1.27 (0.31-5.19) | 0.74 | | | | | Prothrombin activity (<60%) | 11.9 (1.33-106.7) | 0.03 | 8.22 (0.73-92.6) | 0.09 | | | Platelets ($<15 \times 10^4/\text{mm}^3$) | 0.81 (0.19~3.58) | 0.89 | | | | | Genotype (B) | 8.82 (0.87-89.1) | 0.06 | | | | | HBeAg (positive) | 0.89 (0.20-3.90) | 0.89 | | | | | HBV-DNA (>8.7 log copies/ml) | 2.34 (0.60-9.20) | 0.70 | | | | | PC mutation | 2.29 (0.22-24.1) | 0.49 | | | | | BCP mutation | 0.19 (0.034-1.08) | 0.06 | | | | Abbreviations as in Tables 1 and 2, *OR* odds ratio, *CI* confidence level Fig. 1 Viral kinetics from pretreatment to commencement of treatment in patients with acute exacerbation. Viral kinetics tended to increase or remained unchanged until treatment in 8 patients with acute exacerbation course (n = 14), while the viral load in all patients with severe acute exacerbation (n = 11)increased or remained unchanged (P = 0.02) The HBV DNA level decreased more than 1 log copies/ml in 9 of 17 (52.9%) patients who did not develop SAE, compared with 3 of 10 (30.0%) patients who developed SAE, but the difference between the two groups was not significant. #### Discussion The results of the present study examined the predicting factors of progression to SAE accompanied by coagulopathy and encephalopathy in patients with AE of chronic hepatitis B, as well as the pattern of viral kinetics before and after commencement of therapy. Up to 30% of patients with CHB infection experience reactivation of hepatitis every year [5, 6], while some patients develop acute exacerbation with jaundice and coagulopathy, a severe lifethreatening condition with high mortality [9, 12]. It is important to determine the predicting factors of progression to liver decompensation in patients with acute exacerbation. Multivariate analyses in previous studies indicated that pre-existing cirrhosis, a high Child-Pugh score, low albumin level, high serum bilirubin level, prolonged PT, and high HBV DNA levels were associated with the severity or mortality during acute exacerbation [9, 12, 13]. Our results are almost comparable to those of the above studies. Multivariate analysis in the present study identified the serum bilirubin level as a predictor of progression to liver decompensation. Moreover, there were no significant differences in viral load or therapeutic regimen. Genotype B was the predominant HBV strain in patients with SAE compared to patients with variable severity of liver diseases [25]. The frequencies of HBV genotype in patients with chronic hepatitis B admitted to our hospital were 3.0, 12.3, and 84.5%, for genotypes A, B. and C, respectively [26]. In the present study, although patients with genotype B were only 5 of the total 37 (13.5%), 4 of 14 (28.6%) patients with SAE and 3 of 9 (33.3%) patients who died of liver failure were infected with genotype B. The different HBV genotypes also cause different clinical and epidemiological features. In a study from Japan, a high prevalence of genotype B HBV was found among patients with acute fulminant hepatitis [27]. In two case control studies conducted in Hong Kong, genotype B was the predominant HBV strain among patients with SAE compared to control patients with various severities of liver diseases [25, 28]. In this regard, another study indicated that genotype Bj was associated with high extracellular expression of HBV DNA in vitro [29]. The tendency of genotype B_i to produce high extracellular virion levels would be associated with a more vigorous immune response, leading to a higher risk of hepatic decompensation during the hepatitis flare. Several studies examined the association between specific mutations in the HBV genome and fulminant hepatitis or acute-on-chronic liver failure. especially in the PC (nt 1896) and BCP (nt 1762 and 1764) regions [30-32]. The PC and BCP regions are crucial replications of HBV [33], so alteration of the phenotype by the emergence of mutations in the PC and BCP regions might causes changes in the relationship between the virus and hepatocytes [30], and lead to fulminant hepatitis and acute exacerbation of
chronic hepatitis. In the present study, genotype B and PC/BCP mutations were not significant predictors associated with the development of SAE or liver-related death, which is probably related to the small number of cases. Jeng et al. [13] reported that HBV DNA levels greater than 1.55×10^9 copies/ml in patients with AE may predict subsequent occurrence of hepatic decompensation. While the overall viral load in our subjects was high (8.5 log copies/ml, Table 1), there was no relationship between viral load and the severity of AE or mortality. In addition, the HBV DNA level could not be estimated correctly when it was above the upper limit. Interestingly. the level of HBV DNA re-measured by TaqMan PCR in stored blood samples was higher than the upper limit (>9.1 log copies/ml) in one-third of the patients. The extremely high HBV DNA levels in patients with AE suggest that the vigorous immune attack on HBV and resultant liver injury will continue and may progress into hepatic decompensation. The present results showed that the decrease of viral load was significantly lower in patients with fulminant hepatic failure than in those with AE. These findings suggest that viral kinetics before the commencement of therapy are an important predictor of hepatic decompensation in patients with CHB infection complicated with AE. Interestingly, there was no significant difference in viral kinetics after the commencement of therapy between the two groups. To our knowledge, this is the first report that identifies viral kinetics before the commencement of therapy as a predictor of prognosis of patients with AE of chronic hepatitis B. LMV monotherapy does not seem to improve short-term mortality in patients with AE [9], although other studies showed a possible decrease in the mortality rate with earlier administration [21]. In a recent randomized trial designed for the treatment of acute-on-chronic liver failure due to severe reactivation of hepatitis B, the use of tenofovir significantly reduced the mortality rate compared with placebo [11], and the results suggested that rapid suppression of HBV DNA replication with potent antiviral therapy could inhibit the ongoing necroinflammation and permitted hepatic regeneration. Although 8 of 14 patients were treated with LMV in the present study, two patients had to start LMV after the development of SAE because of the rapid exacerbation soon after admission. Five patients developed SAE within a median period of 8 days (range 1-17 days) after the commencement of LMV. The other one patient developed complications caused by bacterial infection and gradually progressed to liver failure over 2 months. Thus, it is thought that most of these patients developed SAE earlier than the available effect of LMV. The prevailing idea is that AE is the result of a robust quantitative recovery of HBV specific T cells, which directly cause liver injury [34]. Other mechanisms of the effects of CS in AE may be related to the prevention of endotoxin-induced secondary liver injury [35], prevention of cytolysis of ballooned hepatocytes by stabilization of the lysosomal membrane [36], and improvement of the functional activity of the remaining hepatocytes [37]. Other studies showed that the preferential increase in the number of HBV-specific CD8 T and CD4 T cells is associated with viral control rather than liver damage [38, 39]. Whatever the mechanism of AE, a few weeks are needed for sufficient suppression of the production of HBV-related proteins by preventing HBV replication even when NAs are used [40]. Thus, earlier introduction of CS in combination with potent antiviral therapy is a reasonable approach for the initial treatment of AE to prevent excessive immunological reactions and progression of liver cell injury [22, 41]. NA or CS used on its own has limits in the resolution of the serious conditions. Considered together, it is necessary to establish effective standardized strategies, such as the combination of NA and CS. Moreover, to provide cover for NA, especially for the time until NA starts to exert its potent antiviral effect, IFN could be added with NA and CS. In conclusion, the results of this study suggest that viral kinetics before therapy may influence the clinical course and fate of patients with SAE complicating chronic hepatitis B. Antiviral therapies, including NA and/or IFN with CS, should be started as soon as possible in cases with high serum bilirubin and/or low PT levels, genotype B, and viral load to prevent progression into hepatic decompensation. Although ethical issues could be an obstacle to randomized trials in such severe cases, more effective strategies are necessary for the treatment of AE associated with chronic hepatitis B. **Acknowledgment** This study was supported in part by a Grant-in-aid from the Ministry of Health, Labor and Welfare of Japan. Conflict of interest The authors declare no conflict of interest. #### References - Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet. 1981;2:1129-33. - Hsu YS, Chien RN, Yeh CT, Sheen IS, Chiou HY, Chu CM, et al. Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B. Hepatology. 2002;35:1522-7. - 3. Sheen IS, Liaw YF, Tai DI, Chu CM. Hepatic decompensation associated with hepatitis B e antigen clearance in chronic type B hepatitis. Gastroenterology. 1985;89:732–5. - Chu CM, Liaw YF. Increased incidence of fulminant hepatic failure in previously unrecognized HBsAg carriers with acute hepatitis independent of etiology. Infection. 2005;33:136–9. - Levy P, Marcellin P, Martinot-Peignoux M, Degott C, Nataf J, Benhamou JP. Clinical course of spontaneous reactivation of hepatitis B virus infection in patients with chronic hepatitis B. Hepatology. 1990;12:570–4. - Davis GL, Hoofnagle JH, Waggoner JG. Spontaneous reactivation of chronic hepatitis B virus infection. Gastroenterology. 1984;86:230-5. - 7. Wands JR, Chura CM, Roll FJ, Maddrey WC. Serial studies of hepatitis associated antigen and antibody in patients receiving antitumor chemotherapy for myeloproliferative and lymphoproliferative disorders. Gastroenterology. 1975;68:105–12. - 8. Hui CK, Cheung WW, Zhang HY, Au WY, Yueng YH, Leung AY, et al. Kinetics and risk of de novo hepatitis B infection in HBsAg-negative patients undergoing cytotoxic chemotherapy. Gastroenterology. 2006;131:59–68. - 9. Tsubota A, Arase Y, Suzuki Y, Suzuki F, Sezaki H, Hosaka T, et al. Lamivudine monotherapy for spontaneous severe acute exacerbation of chronic hepatitis B. J Gastroenterol Hepatol. 2005;20:426–32. - Wong VW, Wong GL, Yiu KK, Chim AM, Chu SH, Chan HY, et al. Entecavir treatment in patients with severe acute exacerbation of chronic hepatitis B. J Hepatol. 2011;54:236–42. - 11. Garg H, Sarin SK. Kumar M, Garg V, Sharma BC, Kumar A. Tenofovir improves the outcome in patients with spontaneous reactivation of hepatitis B presenting as acute-on-chronic liver failure. Hepatology. 2011;53:774–80. - Yuen MF, Sablon E, Hui CK, Li TM, Yuan HJ, Wong DK, et al. Prognostic factors in severe exacerbation of chronic hepatitis B. Clin Infect Dis. 2003;36:979–84. - Jeng WJ, Sheen IS, Liaw YF. Hepatitis B virus DNA level predicts hepatic decompensation in patients with acute exacerbation of chronic hepatitis B. Clin Gastroenterol Hepatol. 2010;8:541–5. - 14. Fujiwara K, Mochida S, Matsui A, Nakayama N, Nagoshi S. Intractable Liver Diseases Study Group of Japan. Fulminant hepatitis and late onset hepatic failure in Japan. Hepatol Res. 2008;38:646–57. - Mochida S. Indication criteria for liver transplantation for acute liver failure in Japan. Hepatol Res. 2008;38(The 6 Japan Society of Hepatology Single Topic Conference: Liver Failure: Recent Progress and Pathogenesis to Management. 28–29 September 2007, Iwate, Japan):S52–5. - Sjogren MH, Hoofnagle JH, Waggoner JG. Effect of corticosteroid therapy on levels of antibody to hepatitis B core antigen in patients with chronic type B hepatitis. Hepatology. 1987;7:582-5. - 17. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol. 2009;50:227–42. - Lok AS, McMahon BJ. Chronic hepatits B. Hepatology. 2007;45: 507–39. - 19. Liaw YF, Leung N, Guan R. Lau GK, Merican I, McCaughan G, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update. Hepatol Int. 2008;22:262–83. - 20. Tsubota A, Arase Y, Suzuki Y, Suzuki F, Hosaka T, Someya T. et al. Benefit of lamivudine therapy and factors associated with clinical outcome in spontaneous severe acute exacerbation of chronic hepatitis B virus infection. Intervirology. 2004;47:335–41. - Chien RN, Lin CH, Liaw YF. The effect of lamivudine therapy in hepatic decompensation during acute exacerbation of chronic hepatitis B. J Hepatol. 2003;38:322-7. - 22. Fujiwara K, Yasui S, Yonemitsu Y, Fukai K, Arai M, Imazeki F, et al. Efficacy of combination therapy of antiviral and immunosuppressive drugs for the treatment of severe acute exacerbation of chronic hepatitis B. J Gastroenterol. 2008;43:711–9. - 23. Usuda S, Okamoto H, Imawari H, Baba K, Tsuda F, Miyakawa Y, et al. Serological detection of hepatitis B virus genotypes by ELISA with monoclonal antibodies to type-specific epitopes in preS2-region product. J Virol Method. 1999;80:97–112. - Tadokoro K, Kobayashi M, Yamaguchi T, Suzuki F, Miyauchi S, Egashira T, et al. Classification of hepatitis B virus genotypes by the PCR-Invader method with genotype-specific probes. J Virol Method. 2006;138:30–9. - 25. Chan HL, Tsang SW, Wong ML, Tse CH, Leung NW, Chan FK, et al. Genotype B hepatitis B virus is associated with severe icteric flare-up of chronic hepatitis B virus infection in Hong Kong. Am J Gastroenterol. 2002;97:2629–33. - Kobayashi M, Ikeda K, Arase Y, Suzuki F, Akuta N, Hosaka T, et al. Change of hepatitis B virus genotypes in
acute and chronic infections in Japan. J Med Virol. 2008;80:1880–4. - 27. Imamura T, Yokosuka O, Kurihara T, Kanda T, Fukai K. Imazeki F, et al. Distribution of hepatitis B viral genotypes and mutations in the core promoter and precore regions in acute forms of liver disease in patients from Chiba, Japan. Gut. 2003;52:1630–7. - 28. Yuen MF, Sablon E, Wong DK, Yuan HJ, Wong BC, Chan AO, et al. Role of hepatitis B virus genotypes in chronic hepatitis B exacerbation. Clin Infect Dis. 2003;37:593–7. - 29. Ozasa A, Tanaka Y, Orito E, Sugiyama M, Kang JH, Hige S, et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology. 2006;44:326-34. - Baumert TF, Rogers SA, Hasegawa K, Liang TJ. Two core promotor mutations identified in a hepatitis B virus strain associated with fulminant hepatitis result in enhanced viral replication. J Clin Invest. 1996;98:2268–76. - 31. Ren EX, Xu Z, Liu Y, Li X, Bai S, Ding N, et al. Hepatitis B virus genotype and basal core promoter/precore mutations are associated with hepatitis B-related acute-on-chronic liver failure without pre-existing liver cirrhosis. J Viral Hepat. 2010:17: 887–95. - Liang TJ. Hasegawa K. Rimon N, Wands JR, Ben-Porath E. A hepatitis B virus mutant associated with epidemic of fulminant hepatitis. N Engl J Med. 1991;324:175-9. - 33. Yuh CH, Chang YL, Ting LP. Transcriptional regulation of precore and pregenomic RNAs of hepatitis B virus. J Virol. 1992;66:4073–84. - Perrillo RP. Acute flares in chronic hepatitis B: the natural and unnatural history of an immunologically mediated liver disease. Gastroenterology. 2001;120:1009–22. - 35. Higuchi N, Kato M, Kotoh K, Kojima M, Aishima S, Nakamuta M, et al. Methylprednisolone injection via the potal vein suppresses inflammation in acute liver failure induced in rats by lipopolysaccharide and p-galactosamine. Liver Int. 2007;27: 1342-8. - Wang M, Shen F, Shi LH, Xi T, Li XF, Chen X, et al. Protective effect of prednisolone on ischemia-induced liver injury in rats. World J Gastroenterol. 2008;14:4332–7. - Dich J, Vind C, Grunnet N. Long-term culture of hepatocytes: effect of hormones on enzyme activities and metabolic capacity. Hepatology. 1998:8:39–45. - 38. Webster GJ, Reignat S, Brown D, Ogg GS, Jones L, Seneviratne SL, et al. Longitudinal analysis of CD8+ cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol. 2004;78:5707–19. - 39. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, et al. The role of virus-specific CD8+ cells in viral control and liver damage during persistent hepatitis B virus infection. J Exp Med. 2000;191:1269–80. - Chan TM, Wu PC, Li FK, Lai CL, Cheng IKP. Lai KN. Treatment of fibrosing cholestatic hepatitis with lamivudine. Gastro-enterology. 1998;115:177–81. - 41. Zhang XQ, Jiang L, You JP, Liu YY, Peng J, Zhang HY, et al. Efficacy of short-term dexamethasone therapy in acute-on-chronic pre-liver failure. Hepatol Res. 2011:41:46-53. Hepatology Research 2012; 42: 949-957 #### **Original Article** # Efficacy of reduction therapy of natural human β -interferon and ribavirin in elderly patients with chronic hepatitis C, genotype 1b and high viral load Yasuji Arase,¹ Yusuke Kawamura,¹ Yoshiyuki Suzuki,¹ Fumitaka Suzuki,¹ Norio Akuta,¹ Naoki Matsumoto,¹ Yuya Seko,¹ Hitomi Sezaki,¹ Masahiro Kobayashi,¹ Tetsuya Hosaka,¹ Miharu Hirakawa,¹ Satoshi Saito,¹ Kenji Ikeda,¹ Mariko Kobayashi² and Hiromitsu Kumada¹ ¹Department of Hepatology and Okinaka Memorial Institute for Medical Research, and ²Hepatic Research Unit, Toranomon Hospital, Tokyo, Japan Aim: To evaluate the efficacy of reduction therapy of natural human interferon (IFN)- β and ribavirin in elderly patients with hepatitis C virus (HCV) genotype 1b and high viral load who had complications of anemia, low bodyweight (<50 kg), diabetes mellitus and/or hypertension. Methods: Inclusion criteria were age of 65 years or older, HCV genotype 1b, and serum HCV RNA level of 5.0 logIU/mL or higher. A total of 23 subjects with hemoglobin level of less than 13 g/dL, low bodyweight, diabetes mellitus and/or hypertension were enrolled in this study (reduction-dose group). IFN- β was administrated i.v. at a dose of 6 million units daily for 4 weeks initially, followed by three times a week for 44 weeks. Ribavirin was given daily for 48 weeks at a decreased dose of one tablet per day compared to the ordinary dose described based on bodyweight. As a control, another 22 patients without anemia, low bodyweight and/or complications treated with the standard dose of ribavirin (standard-dose group) were enrolled. Results: Patients' rates with further dose reduction or discontinuation of treatment was 26.1% (6/23) in the reduction-dose group and 77.3% (17/22) in the standard-dose group. The sustained virological response (SVR) was 39.1% (9/23) in the reduction-dose group and 27.3% (6/22) in the standard-dose group (P=0.404). Based on genetic variations near the IL28B gene (rs8099917), SVR was 44.1% (15/34) in patients with TT and 0% (0/11) in patients with TG (P=0.008). Conclusion: The reduction therapy of IFN- β and ribavirin in elderly HCV patients with genotype 1b, high viral load, IL28B gene (rs8099917) of TT who had complications of anemia, low bodyweight, diabetes mellitus and/or hypertension is one possible selection of treatment. **Key words:** β-interferon, chronic hepatitis C, hepatitis C virus genotype 1b, natural ribavirin #### INTRODUCTION Combination Therapy OF peginterferon and ribavirin has been widely recommended as a first choice for chronic hepatitis C patients with high viral load. ¹⁻⁷ In addition, recent study suggests that combination therapy of peginterferon, ribavirin and protease inhibitor is more effective compared to combination therapy of peginterferon and ribavirin against hepatitis C virus (HCV) of genotype 1 and high viral load. ^{8,9} The sustained virological response (SVR) rate was approximately 75% in naïve cases with genotype 1 and high viral load treated with three-drug combination therapy of peginterferon, ribavirin and protease inhibitor for 24 weeks. Thus, combination therapy of peginterferon, ribavirin and protease inhibitor might be recommended as a first choice for chronic hepatitis C patients with genotype 1 and high viral load in future. However, the big problem in combination therapy of peginterferon and ribavirin or combination therapy based on three drugs of peginterferon, ribavirin, and protease inhibitor is the side-effects due to treatment. 9-11 Combination therapy of peginterferon, ribavirin and protease inhibitor might cause severe dermatitis and anemia compared to conventional treatments. The adverse events due to combination therapy of Correspondence: Dr Yasuji Arase, Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan. Email: es9y-ars@asahi-net.or.jp Received 4 February 2012; revision 5 March 2012; accepted 18 March 2012. peginterferon and ribavirin or combination therapy of peginterferon, ribavirin and protease inhibitor have a tendency to occur in elderly patients compared to young patients. Several authors have reported that interferon (IFN)- β plus ribavirin therapy might seem to have a strong effect and mild side-effects from reports of treatment to date. This indicates the possibility that IFN- β plus ribavirin therapy could be given to elderly patients for eradication of HCV. In particular, dose reduction might enhance the tolerability of IFN- β plus ribavirin therapy. However, there is little information regarding efficacy of dose reduction in IFN- β plus ribavirin for elderly patients with chronic hepatitis C. Thus, in the present study, we performed a retrospective study to examine the efficacy of reduction therapy of IFN- β and ribavirin in elderly patients of 65 years or older with HCV genotype 1b and high viral load who had complications of anemia, low bodyweight (<50 kg), diabetes mellitus and/or hypertension. #### **METHODS** #### **Patients** Γ LIGIBILITY CRITERIA FOR entry into the study Eincluded the following: (i) age of 65 years or older; (ii) HCV genotype 1b; (iii) serum level of HCV RNA of 5.0 logIU/mL or higher before treatment; (iv) no corticosteroid, immunosuppressive agents or antiviral agents used within 6 months; (v) no hepatitis B surface antigens, antinuclear antibodies or anti-mitochondrial antibodies detectable in serum, as determined by radioimmunoassay, enzyme-linked immunosorbent assay or indirect immunofluorescence assay; (vi) leukocytes of more than 2000/mm3, platelet count of more than 80 000/mm³ and bilirubin of less than 2.0 mg/dL; (vii) follow up for more than 6 months before treatment; (viii) complication of anemia (hemoglobin <13 g/dL), low bodyweight (<50 kg), diabetes mellitus and/or hypertension. We excluded from the study all of the patients with the following: (i) a history of alcohol abuse; (ii) complication of malignancy; (iii) advanced liver cirrhosis of encephalopathy, bleeding esophageal varices or ascites. From December 2007 to October 2010, a total of 23 HCV patients were enrolled in this retrospective cohort study at the study hospital. In these 23 patients, combination therapy was started with dose reduction of ribavirin. As control, another 22 patients without complications anemia, low bodyweight, and/or diabetes mellitus and/or hypertension treated with the standard dose of IFN-β and ribavirin were enrolled (standard-dose group). All collection and analysis of patient data for the dose-reduction group and standard-dose group was performed retrospectively from the patient records. This study had been approved by Institutional Review Board of our hospital. #### Combination therapy of IFN-β and ribavirin Treatment was provided for 48 weeks. IFN-β (Feron; Toray Industries, Tokyo, Japan)
was administrated i.v. at a dose of 6 million units (MU) daily for 4 weeks, followed by three times a week for 44 weeks. Ribavirin (Rebetol; MSD, Whitehouse Station, NJ, USA) were given at the dose described based on bodyweight. In the standard-dose group, the ribavirin dose was adjusted according to bodyweight (600 mg for ≤60 kg, 800 mg for >60 kg and ≤ 80 kg, and 1000 mg for >80 kg). Twenty-two patients were given the standard dose of ribavirin as described above at the initiation of combination therapy (standard-dose group). On the other hand, 23 patients were given a reduced dose of ribavirin that decreased by one tablet per day compared to the standard group due to complications of having a hemoglobin level of less than 13 g/dL, bodyweight of less than 50 kg, diabetes and/or hypertension (reductiondose group). ## Aspartate aminotransferase to platelet ratio index (APRI) calculation method and prevalence of significant fibrosis The hepatic fibrosis was evaluated by the APRI, which was calculated according to the following formula: $\Delta PRI = (AST \text{ level } / \text{ ULN}) \times 100 / \text{ platelet count } (10^9/\text{L}),$ where ULN was the aspartate aminotransferase (AST) upper limit of normal (33 IU/L). As previously reported, an APRI of more than 1.50 is predictive of significant fibrosis (positive predictive value, 88%; negative predictive value, 64%). 15 #### Laboratory investigation In this study, HCV RNA levels were evaluated at least once every month before, during and after therapy. HCV RNA concentrations were determined using the COBAS TaqMan HCV test (Roche Diagnostics, Basel, Switzerland). The linear dynamic range of the assay was 1.2–7.8 logIU/mL, and the undetectable samples were defined as negative. An SVR was defined as clearance of HCV RNA by COBAS TaqMan HCV test (Roche Diagnostics) at 6 months after the cessation of combination therapy. Hepatitis C virus genotype was examined by polymerized chain reaction assay, using a mixture of primers for the six subtypes known to exist in Japan, as reported previously. 16 Inosine triphosphatase (ITPA) (rs1127354) and interleukin (IL28B) (rs8099917) were genotyped by the Invader assay (Third Wave Technologies, Madison, WI, USA), TagMan assay or direct sequencing as described. 17-19 The core protein of HCV-1b was determined by the previous report.20 Clinical evaluation and biochemical and hematological tests were performed at a minimum of 4-week intervals. #### Statistical analysis Non-parametric procedures were employed for the analysis of background features of the patients with and without SVR, including the Mann-Whitney U-test, Fisher's exact test and Kruskal-Wallis test. The following variables were evaluated as prognostic factors: sex, age, body mass index, a history of IFN therapy, a HCV RNA level, biochemical factors (AST, alanine aminotransferase, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol), platelet count, and HCV RNA 4, 8 and 12 weeks after the initiation of IFN therapy. Changes in hemoglobin, white blood cells and platelets between reduction-dose group and standard-dose group during follow up were analyzed by the Mann-Whitney *U*-test. Significance of trends in SVR based on adherence of IFN and ribavirin was determined with the Cochran-Armitage trend test. The SPSS software package (SPSS, Chicago, IL, USA) was used to perform statistical analysis. P < 0.05 was considered a statistically significant difference. Table 1 Clinical backgrounds before combination therapy of IFN-β and ribavirin in chronic hepatitis c patients | Characteristic | Total | Reduction-dose group | Standard-dose group | P-value* | |----------------------------------|-----------------|----------------------|---------------------|----------| | Patients, n | 45 | 23 | 22 | | | Sex, male (%) | 48.9% | 30.4% | 68.2% | 0.017 | | Age (years) | 67.5 ± 2.8 | 68.1 ± 2.6 | 66.9 ± 3.0 | 0.105 | | Height (cm) | 159.4 ± 8.7 | 155.2 ± 6.6 | 163.6 ± 8.5 | 0.008 | | Weight (kg) | 57.1 ± 8.7 | 54.1 ± 8.6 | 60.3 ± 7.7 | 0.017 | | BMI | 22.6 ± 2.5 | 22.7 ± 2.9 | 22.5 ± 2.2 | 0.843 | | History of IFN (+) | 60.0% | 52.2% | 68.2% | 0.365 | | Diabetes (+/-) | 2/43 | 2/21 | 0/22 | 0.489 | | Hypertension (+/-) | 5/40 | 5/19 | 0/22 | 0.049 | | APRI | 1.55 ± 1.22 | 1.39 ± 1.09 | 1.71 ± 1.34 | 0.619 | | APRI (≥1.5/<1.5) | 22/23 | 10/13 | 12/10 | 0.556 | | HCV RNA (logIU/mL) | 6.6 ± 0.6 | 6.6 ± 0.6 | 6.5 ± 0.5 | 0.712 | | IL28B (TT/TG) | 34/11 | 19/4 | 15/7 | 0.314 | | IICV core 70 (wild/mutant) | 31/14 | 17/6 | 14/8 | 0.530 | | ITPA (CC/CA) | 31/14 | 14/9 | 17/5 | 0.337 | | AST (IU/L) | 60 ± 36 | 58 ± 40 | 63 ± 33 | 0.555 | | ALT (IU/L) | 89 ± 87 | 73 ± 79 | 109 ± 95 | 0.804 | | FPG (mg/dL) | 107 ± 30 | 110 ± 37 | 105 ± 20 | 0.121 | | Triglyceride (mg/dL) | 97 ± 41 | 87 ± 40 | 108 ± 41 | 0.073 | | Total cholesterol (mg/dL) | 170 ± 28 | 164 ± 29 | 176 ± 27 | 0.193 | | HDL cholesterol (mg/dL) | 46 ± 10 | 46 ± 11 | 46 ± 9 | 0.864 | | LDL cholesterol (mg/dL) | 88 ± 33 | 84 ± 32 | 93 ± 35 | 0.479 | | Hemoglobin (g/dL) | 13.7 ± 1.3 | 13.1 ± 1.1 | 14.4 ± 1.2 | < 0.001 | | WBC (×10³/mm³) | 4.1 ± 1.1 | 4.3 ± 1.2 | 3.9 ± 0.9 | 0.354 | | Platelet (×10 ⁴ /mm³) | 15.2 ± 7.7 | 14.3 ± 5.4 | 16.2 ± 9.7 | 0.776 | ^{*}Non-parametric procedures were employed for the analysis of background features of the patients in the reduction-dose group and the standard-dose group, including the Mann-Whitney U-test or Fisher's exact test. Data are number of patients (percentage) or mean ± standard deviation. ALT, alanine aminotransferase; APRI, aspartate aminotransferase to platelet ratio index; AST, aspartate aminotransferase; BMI, body mass index; FPG, fasting plasma glucose; HCV, hepatitis C virus; HDL, high density lipoprotein; IFN, interferon; IL, interleukin; ITPA, inosine triphosphatase; LDL, low density lipoprotein; WBC, white blood cell. #### **RESULT** #### Clinical characteristics of the patients A TOTAL OF 45 patients were enrolled in the present study. Table 1 shows the characteristics before treatment of the elderly patients who received combination therapy. There were no significant differences in clinical backgrounds except for hemoglobin level, sex, height, bodyweight and hypertension between the reduction-dose group and standard-dose group. #### Safety and tolerance of IFN Of the 45 patients included in this study, nine of the patients discontinued combination therapy because of related adverse events (three patients) or poor response (six patients). In the reduction-dose group, one patient discontinued therapy at 8 weeks because of general fatigue and another two discontinued therapy because of poor response at 10 and 20 weeks. In the standard-dose group, two discontinued therapy at 3 and 12 weeks because of bronchitis and skin rash, respectively. Another four discontinued therapy because of poor response at 11, 13, 14 and 21 weeks. Next, seven patients (four in the reduction-dose group and three in then standard-dose group) had dose reduction of IFN- β from 6 MU to 3 MU because of side-effects (five cases of thrombocytopenia and/or leukopenia, two cases of general fatigue). The onset of dose reduction based on IFN-related side-effects ranged 2–12 weeks after initiation of combination therapy. Moreover, 13 patients (three in the reduction-dose group and 10 in the standard-dose group) had further reduction of ribavirin due to anemia. Further reduction rate of ribavirin during treatment was 13% (3/23) in the reduction-dose group and 45% (10/22) in the standard-dose group. There was a statistically significant difference in further reduction rate of ribavirin between the reduction-dose group and the standard-dose group (P = 0.008). One patient of the reduction-dose group and two patients of the standard-dose group received both reduction of IFN- β and ribavirin during treatment. Figure 1 shows the change of hemoglobin level after the initiation of combination therapy based on the difference between the reduction-dose group and standard-dose group. The hemoglobin level at the initiation of combination therapy in the reduction-dose group was statistically lower than that in the standard-dose group by the use of the Mann–Whitney *U*-test. However, there was no significant difference in the hemoglobin level between the reduction-dose group and the standard-dose group after the initiation of combination therapy. Figures 2 and 3 show the change of white blood cell and platelet levels after the initiation of combination therapy based on the difference between the reduction-dose group and the standard-dose group. There were no significant changes of average white blood cell and Statistical difference in hemoglobin level between reduction group and standard group † No. of patients who were given new reduction of ribavirin dose during combination therapy/ total no. of patients who were given combination therapy Figure 1 Change of hemoglobin level after the initiation of the combination therapy of interferon- β and ribavirin in the reduction-dose group and the standard-dose group. Figure 2 Change of white blood cell count after the initiation of the combination therapy of interferon (IFN)-β and ribavirin in the reduction-dose group and the standard-dose group. Statistical difference in white blood cell level between reduction-dose group and standard-dose group †No. of patients who were given new reduction of IFN-beta close during combination therapy/ total no. of patients who were given combination therapy platelet levels during combination therapy between the reduction-dose group and the standard-dose group. #### **Efficacy of treatment** Out of the 45 patients enrolled in the present study, 15 patients (33.3%) achieved SVR by the intention-totreat analysis. The SVR rate was 39.1% (9/23) in the
reduction-dose group and 27.3% (6/22) in the standard-dose group. There was no significant difference in SVR rate between the reduction-dose group and the standard-dose group (P = 0.404). Table 2 shows the difference of clinical backgrounds between patients with and without SVR. On the predictive factor for SVR, the negativity of HCV RNA at 8-24 weeks after the initiation of treatment was an important factor. None of the patients with positive HCV RNA at 24 weeks after the Figure 3 Change of platelet count after the initiation of the combination therapy of interferon (IFN)-β and ribavirin in the reduction-dose group and the standard-dose group. Statistical difference in platelet level between reduction group and standard group [†]No. of patients who were given new reduction of IFN-beta dose during combination therapy/ total no. of patients who were given combination therapy Table 2 Difference of clinical backgrounds between patients with SVR and those without SVR | | SVR $(n = 15)$ | Non-SVR $(n = 30)$ | P-value* | |----------------------------------|------------------|--------------------|----------| | Age (years) | 67.6 ± 2.4 | 67.5 ± 2.9 | 0.983 | | Sex (male/female) | 5/10 | 16/14 | 0.340 | | Height (cm) | 158.9 ± 10.1 | 159.6 ± 8.2 | 0.571 | | Weight (kg) | 55.3 ± 5.8 | 57.8 ± 9.5 | 0.140 | | BMI | 22.0 ± 2.3 | 22.9 ± 2.6 | 0.133 | | Diabetes (+/-) | 0/15 | 2/28 | 0.545 | | Hypertension (+/-) | 2/13 | 3/27 | 1.000 | | History of IFN (+/-) | 6/9 | 21/9 | 0.105 | | HCV load (logU/mL) | 6.5 ± 0.6 | 6.6 ± 0.5 | 0.572 | | APRI | 1.15 ± 0.98 | 1.72 ± 1.29 | 0.140 | | IL28B (TT/TG) | 15/0 | 19/11 | 0.008 | | HCV core 70 (wild/mutant) | 11/4 | 20/10 | 0.743 | | ITPA (CC/CA) | 9/6 | 22/8 | 0.497 | | AST (IU/L) | 54 ± 28 | 63 ± 39 | 0.400 | | ALT (IU/L) | 58 ± 27 | 73 ± 51 | 0.293 | | FPG (mg/dL) | 106 ± 43 | 108 ± 23 | 0.197 | | Triglyceride (mg/dL) | 99 ± 44 | 96 ± 41 | 0.255 | | Total cholesterol (mg/dL) | 177 ± 24 | 167 ± 29 | 0.182 | | HDL cholesterol (mg/dL) | 47 ± 9 | 4.5 ± 10 | 0.435 | | LDL cholesterol (mg/dL) | 99 ± 31 | 84 ± 34 | 0.071 | | Hemoglobin (g/dL) | 13.7 ± 1.3 | 13.5 ± 1.4 | 0.912 | | WBC $(\times 10^3/\text{mm}^3)$ | 3.9 ± 1.3 | 4.2 ± 0.9 | 0.525 | | Platelet (×10 ⁴ /mm³) | 19.4 ± 11.1 | 13.4 ± 5.1 | 0.012 | | HCV RNA (+/-) 4W | 9/6 | 29/1 | 0.464 | | HCV RNA (+/-) 8W | 6/9 | 28/2 | 0.021 | | HCV RNA (+/-) 12W | 2/13 | 26/4 | < 0.001 | | HCV RNA (+/-) 24W | 0/15 | 24/6 | < 0.001 | | Adherence of IFN (%) | 89 ± 16 | 69 ± 31 | 0.009 | | Adherence of ribavirin (%) | 77 ± 15 | 61 ± 27 | 0.064 | | Reduction group/standard group | 9/6 | 14/16 | 0.404 | ^{*}Non-parametric procedures were employed for the analysis of background features of the patients in the reduction-dose group and the standard-dose group, including the Mann-Whitney *U*-test or Fisher's exact test. Data are number of patients (percentage) or mean ± standard deviation. ALT, alanine aminotransferase; APRI, aspartate aminotransferase to platelet ratio index; AST, aspartate aminotransferase; BMI, body mass index; FPG, fasting plasma glucose; HCV, hepatitis C virus; HDL, high density lipoprotein; IFN, interferon; IL, interleukin; ITPA, inosine triphosphatase; LDL, low density lipoprotein; SVR, sustained virological response; W, weeks; WBC, white blood cell. initiation of treatment achieved SVR. Based on genetic variations near the *IL28B* gene (rs8099917), SVR was 44.1% (15/34) in patients with TT and 0% (0/11) in patients with TG. SVR rate in patients with TT was significantly higher than that in patients with TG (P = 0.008). Regarding HCV core and *ITPA* gene, there was no significant difference between patients with SVR and patients without SVR. #### Efficacy based on adherence Tables 3–5 show the SVR rate based on adherence to combination therapy in the reduction-dose group, the standard-dose group and total patients. Patients with adherence of 2/3 or more for both IFN and ribavirin had an SVR of 40% or more in the reduction-dose group and the standard-dose group. #### **DISCUSSION** \mathbf{W}^{E} HAVE DESCRIBED the efficacy of reduction therapy of IFN- β and ribavirin in elderly patients infected with HCV genotype 1b and high viral load. Several findings from the present study have direct implications for combination therapy for elderly patients with HCV genotype 1b and high viral load in the future. Table 3 Sustained virological response rate based on adherence of combination therapy in the reduction-dose group | Ribavirin dose | | β-Interferon | | Total† | |----------------|----------------|--------------|------------|------------| | | <1/3 ≥1/3-<2/3 | ≥1/3-<2/3 | ≥2/3 | | | <1/3 | 0% (0/2) | None | None | 0% (0/2) | | ≥1/3-<2/3 | None | 0% (0/2) | 50% (1/2) | 25% (1/4) | | ≥2/3 | None | 33% (1/3) | 50% (7/14) | 47% (8/17) | | Total* | 0% (0/2) | 20% (1/5) | 50% (8/16) | 39% (9/23) | ^{*}P = 0.046 for comparison of the three interferon groups (Cochran-Armitage trend test). Table 4 Sustained virological response rate based on adherence of combination therapy in the standard-dose group | Ribavirin dose | β-Interferon | | | Total† | |----------------|--------------|-----------|------------|------------| | | <1/3 | ≥1/3-<2/3 | ≥2/3 | | | <1/3 | 0% (0/3) | None | None | 0% (0/3) | | ≥1/3-<2/3 | None | 0% (0/2) | 0% (0/3) | 0% (0/5) | | ≥2/3 | None | 50% (1/2) | 42% (5/12) | 43% (6/14) | | Total* | 0% (0/3) | 25% (1/4) | 33% (5/15) | 27% (6/22) | ^{*}P = 0.130 for comparison of the three interferon groups (Cochran-Armitage trend test). First, the dropout rate due to side-effects in combination therapy of IFN-β and ribavirin in elderly patients with aged 65 years or older was 4.3% (1/23) in the reduction-dose group and 9.1% (2/22) in the standarddose group. In the previous study, we reported that 68 of 612 patients treated with peginterferon and ribavirin stopped the treatment due to side-effects and the dropout rate was 14.9% in 1 year.9 Although the 612 patients treated with peginterferon and ribavirin had a mean age of 53 years, the dropout rate tended to be high compared to combination therapy of IFN-B and ribavirin for elderly patients. This means that combination therapy of IFN-β and ribavirin might be safe compared with combination therapy of peginterferon and ribavirin. However, in the present study, the ratio of patients treated with the scheduled dose was approximately 23% in the standard-dose group. Most patients received reduction of drugs at the initiation of combination therapy or during combination therapy. Thus, physicians in charge should particularly pay attention to onset of treatment-induced side-effects in combination therapy for elderly patients. Second, 15 out of 45 patients achieved SVR. When patients with genotype 1b and high viral load have been treated with IFN-β monotherapy, it has been reported that the SVR rate ranges 0-11%.12,21 Thus, the present study indicates that the combination therapy of IFN-B and ribavirin is more effective for elderly patients with HCV genotype 1b and high viral load compared with IFN-β monotherapy. Table 5 Sustained virological response rate based on adherence of combination therapy in the total patients | Ribavirin dose | | β-Interferon | | Total† | |----------------|----------|--------------|-------------|-------------| | | <1/3 | ≥1/3-<2/3 | ≥2/3 | | | <1/3 | 0% (0/5) | None | None | 0% (0/5) | | ≥1/3-<2/3 | None | 0% (0/4) | 20% (1/5) | 11% (1/9) | | ≥2/3 | None | 40% (2/5) | 46% (12/26) | 45% (14/31) | | Total* | 0% (0/5) | 22% (2/9) | 42% (13/31) | 33% (15/45) | ^{*}P = 0.022 for comparison of the three interferon groups (Cochran-Armitage trend test). $[\]dagger P = 0.075$ for comparison of the three ribavirin groups (Cochran-Armitage trend test). $[\]dagger P = 0.024$ for comparison of the 3 ribavirin groups (Cochran-Armitage trend test). $[\]dagger P = 0.007$ for comparison of the 3 ribavirin groups (Cochran-Armitage trend test). Third, the negativity of HCV RNA at 8-24 weeks after the initiation of treatment was an important factor for predicting SVR. None of the patients with positive HCV RNA at 24 weeks after the initiation of treatment achieved SVR. This result shows that negative HCV RNA at 24 weeks after the initiation of treatment could be a predictive marker for eliminating the HCV by combination therapy of IFN- β and ribavirin for 48 weeks. Fourth, patients with adherence of 2/3 or more for both IFN and ribavirin had SVR of 40% or more in both the reduction-dose group and the standard-dose group. Seventeen of 22 patients in the standard-dose group had dose reduction or discontinuation of treatment. On the other hand, six of 23 patients in the reduction-dose group had dose reduction or discontinuation of treatment. Thus, many patients in the standard-dose group did not receive the dose of IFN and/or ribavirin as scheduled. Our results suggests that adherence of 2/3 or more for both IFN and ribavirin might enhance the elimination of HCV. Fifth, based on genetic variations near the *IL28B* gene (rs8099917), SVR was approximately 45% in patients with TT. On the other hand, our result shows that SVR was rare in patients with TG. This result suggests that elderly patients with HCV genotype 1b, high viral load and IL28B gene (rs8099917) of TG should avoid combination therapy of IFN- β and ribavirin because of poor clearance of HCV. Finally, there was no significant difference in the complete blood cell count between the reduction-dose group and the standard-dose group during combination therapy. In the standard-dose group, many patients discontinued the combination therapy or received dose reduction as described above. The further reduction of ribavirin or discontinuation of treatment might produce elevation of the hemoglobin level at 48 weeks after the initiation of combination therapy in the standard-dose group. The present study was limited to patients with genotype 1b
and HCV load of 5.0 logIU/mL or more. Moreover, in 40 of 45 patients histological examination of the liver was not undertaken within 1 year before combination therapy. In the present study, we tried to evaluate liver fibrosis by the APRI. To Our results show that SVR was not statistically associated with the APRI. In the present study, unfortunately, we checked HCV mutations in the core region and IFN sensitivity-determining region in only a few patients. Thus, we could not discuss the relationship between HCV mutation and SVR in the present study. Another limitation is that the present study was not a randomized controlled study. β -Interferon is inconvenient for treatment compared to i.m. or s.c. injection. However, IFN- β -related side-effects are mild and few compared to combination therapy of IFN- α . ^{8,9} In fact, IFN- β -induced mental disorders are mild compared to those induced by IFN- α . ²² Moreover, IFN- β could be given in elderly patients of 70 years or older because of mild side-effects. ²³ Additionally, platelet count recovered to the baseline at 12–48 weeks after the initiation of combination therapy. ²⁴ Thus, combination therapy of IFN- β and ribavirin might be given to patients such as the elderly and/or slightly depressive. In conclusion, the reduction therapy of IFN-β and ribavirin in elderly HCV patients with genotype 1b, high viral load and IL28B gene (rs8099917) of TT who had complications of anemia, low bodyweight, diabetes mellitus and/or hypertension is one possible selection of treatment. #### **ACKNOWLEDGMENTS** THE PRESENT WORK was supported in part by Grants-in-Aid from the Japanese Ministry of Health, Labor and Welfare. The authors acknowledge the editorial assistance of Thomas Hughes. #### **REFERENCES** - 1 Manns MP, McHutchison JG, Gordon SC et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001; 358: 958-65. - 2 Fried MW, Shiffman ML, Reddy KR *et al.* Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. *N Engl J Med* 2002; 347: 975–82. - 3 Hadziyannis SJ, Sette H, Morgan TR et al. PEGASYS International Study Group.Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 2004; 140: 346–55. - 4 McHutchison JG, Manns M, Patel K *et al.* Adherence to combination therapy enhances sustained response in genotype-1-infected patients with chronic hepatitis C. *Gastroenterology* 2002; **123**: 1061~9. - 5 Shiffman ML, Di Bisceglie AM, Lindsay Kl. et al.; Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis Trial Group. Peginterferon alfa-2a and ribavirin in patients with chronic hepatitis C who have failed prior treatment. *Gastroenterology* 2004; **126**: 1015–23. - 6 Shiffman ML, Ghany MG, Morgan TR et al. Impact of reducing peginterferon alfa-2a and ribavirin dose during retreatment in patients with chronic hepatitis C. Gastroenterology 2007; 132: 103-12. - 7 Schalm SW, Weiland O, Hansen BE et al. Interferonribavirin for chronic hepatitis C with and without cirrhosis: analysis of individual patient data of six controlled trials. Eurohep Study Group for Viral Hepatitis. Gastroenterology 1999; 117: 408-13. - 8 Akuta N, Suzuki F, Hirakawa M et al. Amino acid substitution in hepatitis C virus core region and genetic variation near the interleukin 28B gene predict viral response to telaprevir with peginterferon and ribavirin. Hepatology 2010; 52: 421-9. - 9 Suzuki F, Suzuki Y, Akuta N et al. Influence of ITPA polymorphisms on decreases of hemoglobin during treatment with pegylated interferon, ribavirin, and telaprevir. Hepatology 2011; 53: 415-21. - 10 Iwasaki Y, Ikeda H, Araki Y et al. Limitation of combination therapy of interferon and ribavirin for older patients with chronic hepatitis C. Hepatology 2006; 43: 54-63. - 11 Arase Y, Suzuki F, Suzuki Y et al. Side effects of combination therapy of peginterferon and ribavirin for chronic hepatitis-C. Intern Med 2007; 46: 1827-32. - 12 Kurosaki M, Enomoto N, Murakami T et al. Analysis of genotypes and amino acid residues 2209 to 2248 of the NS5A region of hepatitis C virus in relation to the response to interferon-beta therapy. Hepatology 1997; 25: 750 - 3 - 13 Enomoto M, Tamori A, Kawada N et al. Interferon-beta plus ribavirin for patients with hepatitis C virus genotype 1: a randomized pilot trial. Gut 2006; 55: 139-40. - 14 Arase Y, Suzuki Y, Suzuki F et al. Efficacy and safety of combination therapy of natural human interferon beta and ribavirin in chronic hepatitis C patients. Intern Med 2011; 50: 2083-8. - 15 Wai CT, Greenson JK, Fontana RJ et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis - in patients with chronic hepatitis C. Hepatology 2003; 38: 518-26. - 16 Dusheiko G, Schmilovitz-Weiss H, Brown D et al. Hepatitis C virus genotypes: an investigation of type-specific differences in geographic origin and disease. Hepatology 1994; 19: 13-18. - 17 Ohnishi Y, Tanaka T, Ozaki K et al. A high-throughput SNP typing system for genome-wide association studies. I Hum Genet 2001; 46: 471-7. - 18 Suzuki A, Yamada R, Chang X et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003; 34: 395-402. - 19 Tanaka E, Mochida S, Murawaki Y et al. Genome-wide association of IL28B with response to pegylated interferonand ribavirin therapy for chronic hepatitis C. Nat Genet 2009; 41: 1105-9. - 20 Akuta N, Suzuki F, Sezaki H et al. Association of amino acid substitution pattern in core protein of hepatitis C virusgenotype1b high viral load and non-virological response to interferon-ribavirin combination therapy. Intervirology 2005; 48: 372-80. - 21 Kainuma M, Ogata N, Kogure T et al. The efficacy of a herbal medicine (Mao-to) in combination with intravenous natural interferon-beta for patients with chronic hepatitis C, genotype 1b and high viral load: a pilot study. Phytomedicine 2002; 9: 365-72. - 22 Arase Y, Suzuki F, Suzuki Y et al. The efficacy of interferonbeta monotherapy for elderly patients with type C hepatitis of genotype 2. Intern Med 2009; 48: 1337-42. - 23 Katamura Y, Suzuki F, Akuta N et al. Natural human interferon beta plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus and a high viral load. Intern Med 2008; 47: 1827-34. - 24 Arase Y, Suzuki F, Akuta N et al. Efficacy and safety of combination therapy of natural human interferon beta and ribavirin in chronic hepatitis C patients with genotype1b and high virus load. Intern Med 2011; 49: 957-63. #### **Original Article** ## Combination of hepatitis B viral antigens and DNA for prediction of relapse after discontinuation of nucleos(t)ide analogs in patients with chronic hepatitis B Akihiro Matsumoto,¹ Eiji Tanaka,¹ Yoshiyuki Suzuki,² Mariko Kobayashi,² Yasuhito Tanaka,⁴ Noboru Shinkai,⁴ Shuhei Hige,⁶ Hiroshi Yatsuhashi,⁶ Shinya Nagaoka,⁶ Kazuaki Chayama,⁶ Masataka Tsuge,⁶ Osamu Yokosuka,¹⁰ Fumio Imazeki,¹⁰ Shuhei Nishiguchi,¹¹ Masaki Saito,¹¹ Kei Fujiwara,⁵ Nobuyuki Torii,³ Naoki Hiramatsu,¹² Yoshiyasu Karino² and Hiromitsu Kumada² ¹Department of Medicine, Shinshu University School of Medicine, Matsumoto, ²Department of Hepatology, Toranomon Hospital, ³Department of Internal Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, ⁴Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, ⁵Gastroenterology Section, Nagoya Daini Red Cross Hospital, Nagoya, ⁵Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, ¬Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo, ³The Clinical Research Center, NHO Nagasaki Medical Center, Omura, °Program for Biomedical Research, Division of Frontier Medical Science, Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, ¹ºDepartment of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, ¹¹Division of Hepatobiliary and Pancreatic Diseases, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, and ¹²Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan Aim: The factors associated with hepatitis recurrence after discontinuation of nucleos(t)ide analogs (NAs) in patients with chronic hepatitis B were analyzed to predict the risk of relapse more accurately. Methods: A total of 126 patients who discontinued NA therapy were recruited retrospectively. The clinical conditions of a successful discontinuation were set as alanine aminotransferase (ALT) below 30 IU/L and serum hepatitis B virus (HBV) DNA below 4.0 log copies/mL. Results: Relapse of hepatitis B were judged to occur when maximal serum ALT became higher than 79 IU/L or when maximal serum HBV DNA surpassed 5.7 log copies/mL following NA discontinuation since these values corresponded with mean values of ALT (30 IU/L) and HBV DNA (4.0 log copies/mL), respectively. At least 90% of patients with either detectable hepatitis B e antigen or serum HBV DNA higher than 3.0 log copies/mL at the time of NA discontinuation relapsed within one year. In the remaining patients, higher levels of both hepatitis B surface and core-related antigens at the time of discontinuation, as well as a shorter course of NA treatment, were significantly associated with relapse by multivariate analysis. Conclusions: It appears that negative results for hepatitis B e antigen and serum HBV DNA lower than 3.0 log copies/mL are essential for successful NA discontinuation, which may be attained by a longer treatment period. Levels of hepatitis B surface and core-related antigens are also significant factors
independently associated with relapse of hepatitis. **Key words:** discontinuation, hepatitis B core-related antigen, hepatitis B surface antigen, nucleos(t)ide analogs, relapse of hepatitis Correspondence: Professor Eiji Tanaka, Department of Medicine, Gastroenterology Division, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan. Email: etunaka@shinshu-u.ac.jp Financial support This research was supported in part by a research grant from the Ministry of Health, Labor and Welfare of Japan. *Received 7 August 2011; revision 31 August 2011; accepted 5* September 2011. INTRODUCTION HEPATITIS B VIRUS (HBV) infection is a major health concern that has an estimated 350 to 400 million carriers worldwide. Chronic infection with HBV can cause chronic hepatitis, and may eventually develop into liver cirrhosis and hepatocellular carcinoma. Over the last decade, major advances in the treatment of chronic hepatitis B have been made with nucleos(t)ide © 2011 The Japan Society of Hepatology 139 analogs (NAs) such as lamivudine (LVD), adefovir dipivoxil (ADV), and entecavir (ETV).4 NAs are orally administered and are associated with low rates of adverse effects. Treatment with NAs shows strong suppression of HBV replication and consequently rapid improvement of elevated ALT levels. Furthermore, these drugs have been reported to lower the risk of complicating cirrhosis and hepatocellular carcinoma,5-7 and so NAs are becoming widely used to treat patients with chronic hepatitis B. On the other hand, NAs carry the risk of developing drug-resistance;8 drug-resistant viruses emerging during treatment may be associated with hepatitis flare-ups. Hepatitis B patients are also required to undergo prolonged treatment with NAs because early discontinuance often leads to relapse of hepatitis and ensuing hepatic failure following rises in alanine aminotransferase (ALT) level. 9,10 Serum HBV DNA is normally used to monitor the antiviral effect of NAs. HBV DNA decreases rapidly and becomes undetectable in the majority of patients who are treated with NAs, ^{11–13} but relapse after discontinuation is not rare. ^{14–17} Since it is also true that favorable virological and biochemical responses to NAs may continue indefinitely in some patients, ^{9,15} reliable markers that can predict relapse of hepatitis after NA discontinuation are needed. Such markers would benefit not only patients who are considering discontinuation of NA treatment, but also clinicians, hospitals, and the medical economy. In the present study, we assessed several factors associated with relapse of hepatitis after discontinuation of NAs in patients with chronic hepatitis B, including hepatitis B viral antigens, which have been reported as new and promising markers for monitoring the effect of antiviral agents, such as interferon and NAs. #### **METHODS** #### **Patients** A TOTAL OF 126 patients with chronic hepatitis B who underwent and completed NA treatment between 2000 and 2010 were enrolled in this study. Patients were recruited retrospectively from 11 hospitals across Japan (Toranomon Hospital, Hokkaido University Hospital, Nagoya City University Hospital, Shinshu University Hospital, Hiroshima University Hospital, National Hospital Organization Nagasaki Medical Center, Chiba University Hospital, The Hospital of Hyogo College of Medicine, Japanese Red Cross Nagoya Daini Hospital, and Tokyo Women's Medical University Hospital, Sapporo Kosei General Hospital) and met the following conditions: (i) serum ALT higher than 30 IU/L and serum HBV DNA higher than 4.0 log copies/mL were observed at least twice within the 6 months prior to administration of NAs; (ii) stored serum samples at initiation and discontinuation of NAs were available for measurements of viral markers; (iii) clinical outcomes were followed for at least 6 months after the discontinuation of NAs; and (iv) tests for hepatitis C and human immunodeficiency virus antibodies were negative. Hepatitis B surface antigen (HBsAg) was confirmed to be positive on at least two occasions at least 6 months apart in all patients before treatment. Patients complicated with hepatocellular carcinoma or signs of hepatic failure at treatment discontinuation were excluded from the study. Our cohort consisted of 83 men and 43 women with a median age of 46 (range, 19 to 79) years when NA administration was discontinued. Hepatitis B e antigen (HBeAg) was positive in 64 patients (51%) at the initiation of treatment and in 24 patients (19%) at its discontinuation. HBV genotype was A in two (2%) patients, B in five (4%), C in 102 (81%), and undetermined in 17 (13%). Thirty-five of the 126 patients in this study were younger than 35 years old. Although not recommended as the first line treatment for this group by Japanese guidelines,18 NA treatment was commenced since chronic active hepatitis had been persisting in all cases irrespective of their HBeAg status (26 positive and nine negative) at the initiation of treatment. The decision to discontinue NAs was made by individual physicians using similar, but not uniform, conditions. Four patients who halted NAs for financial reasons were included. No patient underwent interferon treatment during or after NA treatment. The decision to recommence NA administration was also made by individual physicians, essentially when relapse of hepatitis became obvious. With few exceptions, patients were seen at least once a month during the first year after discontinuation of NAs, and at least once every several months afterwards. Stored serum samples were kept frozen at -20°C or below until assayed. This study was approved by the Ethics Committees of all participating institutions. #### Hepatitis B viral markers Serological markers for HBV, including HBsAg, HBeAg, and antibody to HBe (anti-HBe) were tested using commercially available enzyme immunoassay kits (Abbott Japan Co., Ltd, Tokyo, Japan; Fujirebio Inc., Tokyo, Japan; and/or Sysmex Co., Kobe, Japan) at each hospital. Quantitative measurement of HBsAg¹⁹ was done using a chemiluminescence enzyme immunoassay (CLEIA)-based HISCL HBsAg assay manufactured by Sysmex Corporation (Kobe, Japan). The assay had a quantitative range of -1.5 to 3.3 log IU/mL. End titer was determined by diluting samples with normal human serum when initial results exceeded the upper limit of the assay range. Serum concentration of HBV DNA was determined using an Amplicor HBV monitor kit (Roche, Tokyo, Japan),20 which had a quantitative range of 2.6 to 7.6 log copies/mL. Serum HBV DNA was also determined using a COBAS TaqMan HBV kit (Roche, Tokyo, Japan)21 with a quantitative range of 2.1 to 9.0 log copies/mL in 43 patients whose serum samples were available at the time of NA discontinuation. According to the manufacturer's instructions, detection of a positive signal below the quantitative range was described as a positive signal, and no signal detection was described as a negative signal. Six HBV genotypes (A-F) were evaluated according to the restriction patterns of DNA fragments from the method reported by Mizokami et al.22 Serum hepatitis B core-related antigen (HBcrAg) levels were measured using a CLEIA HBcrAg assay kit with a fully automated Lumipulse System analyzer (Fujirebio Inc., Tokyo, Japan) as described previously. 23,24 Briefly, 150 µL of serum was incubated with pretreatment solution and then added to a ferrite microparticle suspension in an assay cartridge. Ferrite particles were coated with a monoclonal antibody mixture against denatured HBcAg, HBeAg, and the 22 kDa precore protein. After incubation and washing, further incubation was carried out with alkaline phosphatase conjugated with two kinds of monoclonal antibodies against denatured HBcAg, HBeAg, and the 22 kDa precore protein. Following washing, a substrate solution was added to the test cartridge and then incubated. The relative chemiluminescence intensity was measured, and HBcrAg concentration was calculated by a standard curve generated using recombinant pro-HBeAg. The immunoreactivity of pro-HBeAg at 10 fg/mL was defined as 1 U/mL. We expressed HBcrAg in terms of log U/mL, with a quantitative range set at 3.0 to 6.8 log U/mL. #### Statistical analyses A linear regression model was used to examine for associations between mean and maximal values of both ALT and HBV DNA. Correlations between variables were calculated using the Spearman's rank correction correlation coefficient test. Each cut-off value was decided using receiver operating characteristic curve (ROC) analysis and results were evaluated by measuring the area under the curve (AUC). The Fisher's exact and Pearson's χ^2 tests were adopted to test for differences between subgroups of patients. To compare continuous data, the Mann-Whitney U-test was used. The Kaplan-Meier method was used to estimate rates of non-relapse observations, and the log-rank test was used to test hypotheses concerning differences in non-relapse observations between selected groups. Multivariate analyses were performed using the Cox regression model. Variables associated with a P-value < 0.2 in univariate analyses were included in a stepwise Cox regression analysis to identify independent factors associated with relapse of hepatitis after discontinuation of NAs. All tests were performed using the IBM SPSS Statistics Desktop for Japan ver. 19.0 (IBM Japan Inc., Tokyo, Japan). P-values of less than 0.05 were considered to be statistically significant. #### **RESULTS** #### Definition of hepatitis relapse after discontinuation of NAs THE CLINICAL CONDITIONS of a successful discon-🗘 tinuation of NAs were set at serum HBV DNA below 4.0 log copies/mL and ALT below 30 IU/L according to the Japanese guidelines for the treatment of hepatitis B. 18 However, these criteria could not be directly applied to our cohort as post-therapy fluctuations in ALT and HBV DNA were difficult to evaluate consistently. In total, 26 (76%) of 34
patients with successful discontinuation of NAs showed transient abnormal levels of ALT and/or HBV DNA, especially during the early phase after cessation. We therefore used mean and maximal values of these markers to evaluate relapse of hepatitis B in this study; mean values were used to evaluate relapse of hepatitis as a whole, and maximal values were used to dynamically assess relapse during the follow-up period after NA discontinuation. Both ALT and HBV DNA were measured 11.0 times per year on average during the first year and 4.1 times per year on average thereafter. The mean values of HBV DNA were significantly (P < 0.001) correlated with maximal values with a correlation coefficient of 0.853. Similarly, the mean values of ALT were significantly (P < 0.001) correlated with maximal values with a correlation coefficient of 0.940 (Fig. 1). The mean HBV DNA value of 4.0 log copies/mL corresponded to a maximal HBV DNA value of 5.7 by ROC analysis (AUC = 0.930, P < 0.001), and the mean ALT value of 30 IU/L corresponded to a maximal ALT value of 79 IU/L (AUC = 0.988, P < 0.001). These results suggested that patients having serum HBV DNA higher Figure 1 Correlation between maximal and mean levels of alanine aminotransferase (ALT) (a) and hepatitis B virus (HBV) DNA (b) after discontinuation of nucleos(t)ide analogs (NAs). Open circles indicate patients with detectable hepatitis B e antigen (HBeAg) and closed squares indicate patients without detectable HBeAg. than 5.7 log copies/mL during the follow-up period after NA discontinuation were not likely to achieve the HBV DNA criterion of a successful discontinuation of below 4.0 log copies/mL. Similarly, it could be inferred that patients reaching ALT levels higher than 79 IU/L would also not likely achieve the ALT criterion of a successful discontinuation of below 30 IU/L. Based on our findings, we judged that a relapse of hepatitis B occurred when serum ALT exceeded 79 IU/L or when serum HBV DNA exceeded 5.7 log copies/mL following NA discontinuation. Accordingly, 92 (73%) of the 126 patients enrolled in the present study showed a relapse. We set the follow-up period as discontinuation to relapse for relapse patients and as discontinuation to the last recorded examination for patients without relapse. Whereas re-administration of NAs due to relapse was commenced in 70% of relapse patients in the follow-up period, none was performed in non-relapse patients during that time. ### Elimination of cases likely to show relapse of hepatitis As it is generally believed that patients who are positive for HBeAg and/or have a higher level of HBV DNA at discontinuation of NAs are likely to relapse, these factors were assessed first. The progression of analyses in the present study and the population structure of each analysis are shown in Figure 2. The non-relapse rate was compared using the Kaplan–Meier method between 31 patients with HBV DNA equal to or higher than 3.0 log copies/mL and 95 patients with levels lower than 3.0 log copies/mL when NAs were discontinued (Fig. 3). The revised cut-off value of 3.0 log copies/mL was determined by ROC analysis (AUC = 0.709, P < 0.001). Thirty (97%) of 31 patients with HBV DNA equal to or higher than 3.0 log copies/mL relapsed within one year of discontinuation. On the other hand, approximately 30% of patients with levels lower than 3.0 log copies/mL showed prolonged non-relapse. Thus, the 31 patients with high HBV DNA at the time of discontinuation were eliminated from the following analyses. In the remaining 95 patients, the non-relapse rate was compared using the Kaplan–Meier method between 10 patients with detectable HBeAg and 85 patients without HBeAg when NAs were discontinued (Fig. 4). Ninety percent of patients with HBeAg experienced relapse within one year, which was significantly (P = 0.005) higher than in cases without HBeAg. In patients without HBeAg, the non-relapse rate decreased rapidly during the first year to approximately 45%, and then decreased relatively slowly over the following 3 years to nearly 30%. It is noteworthy that this subgroup did not relapse afterwards. Since the relapse rate was high among patients with detectable HBeAg, they were excluded from the following analyses as well. ### Factors associated with relapse of hepatitis after discontinuation of NAs Additional factors associated with relapse of hepatitis were analyzed in the remaining 85 patients who were Figure 2 The progression of analyses in the present study and population structure of each analysis. both negative for HBeAg and whose serum HBV DNA was lower than 3.0 log copies/mL at NA cessation. Table 1 shows the comparison of clinical and virological backgrounds between the 53 relapse and 32 non-relapse patients using univariate analysis. Age and gender distributions were similar between the groups. Approximately 75% of the 85 patients had HBV genotype C, but the distribution of genotypes did not differ between the groups. Approximately 90% of patients were being treated with LVD alone at the time of discontinuation, compared with 6% of patients being given ETV. The median duration of NA treatment was about two times longer in patients without relapse. Levels of both HBsAg and HBcrAg were significantly lower in non-relapse patients than in relapse patients at the time of NA discontinuation. The difference between serum HBsAg was also significant at the initiation of NAs, but not that of HBcrAg. As only patients with HBV DNA lower than 3.0 log copies/mL were analyzed, the majority of these cases showed levels below the 2.6 log copies/mL lower detection limit of the Amplicor assay at NA discontinuation. We therefore also tested HBV DNA with a TaqMan assay, which had a higher sensitivity than the Amplicor assay, in 43 patients whose serum samples were available. The prevalence of patients having a negative detection signal did not differ between the two groups. The number of Figure 3 Comparison of non-relapse rates using the Kaplan-Meier method between 31 patients with serum hepatitis B virus (HBV) DNA equal to or higher than 3.0 log copies/mL and 95 patients with serum HBV DNA lower than 3.0 log copies/mL at the time of nucleos(t)ide analog (NA) discontinuation. Figure 4 Comparison of non-relapse rates using the Kaplan-Meier method between 10 patients with detectable hepatitis B e antigen (HBeAg) and 85 patients without detectable HBeAg at the time of nucleos(t)ide analog (NA) discontinuation. Table 1 Comparison of clinical and virological backgrounds between patients with and without relapse of hepatitis at initiation and discontinuation of nucleos(t)ide analogs (NAs) | Background | Non-relapse patients $(n = 32)$ | Relapse patients $(n = 53)$ | P-value | |---|--
---|---------| | At initiation of NAs | With a court of the th | and the control of the second | | | Age (years)† | 47 (17-75) | 48 (26-74) | >0.2 | | Gender (M:F) | 23:9 | 32:21 | >0.2 | | ALT (IU/L)† | 183 (9-1182) | 187 (20-2052) | >0.2 | | Genotype (A:B:C:UD) | 1:2:21:8 | 0:3:44:6 | 0.193 | | HBeAg (positive)‡ | 11 (34%) | 16 (30%) | >0.2 | | HBV DNA | | | | | Amplicor assay (log copies/mL)† | 6.2 (<2.6->7.6) | 6.5 (<2.6->7.6) | 0.099 | | HBsAg (log IU/mL)† | 2.7 (0.1-4.3) | 3.3 (1.6-3.9) | 0.018 | | HBcrAg (log U/mL)† | 5.2 (<3.0->6.8) | 5.6 (<3.0->6.8) | >0.2 | | At discontinuation of NAs | | | | | Age (years)† | 50 (21-78) | 49 (26-79) | >0.2 | | NAs (LVD : LVD+ADV : ETV : ADV) | 28:1:3:0 | 50:0:2:1 | >0.2 | | Duration of NA treatment (months)† | 36 (4-129) | 17 (4-84) | 0.007 | | Follow-up period after discontinuation of NAs (months)† | 45 (6-123) | 12 (1-111) | 0.002 | | ALT (IU/L)† | 16 (7-38) | 20 (9-65) | 0.002 | | HBV DNA | | | | | Amplicor assay (log copies/mL)† | <2.6 (<2.6-2.9) | <2.6 (<2.6-2.9) | >0.2 | | TaqMan assay (negative signal)‡ | 5 (23%) | 3 (14%) | >0.2 | | | (n = 22) | (n = 21) | | | TaqMan assay (negative or positive signal)‡ | 13 (59%) | 13 (62%) | >0.2 | | | (n = 22) | (n = 21) | | | HBsAg (log IU/ml)† | 2.0 (<-1.5-4.3) | 3.1 (0.6-4.0) | 0.001 | | HBcrAg (log IU/mL)† | 3.4 (<3.0-4.9) | 4.3 (<3.0->6.8) | 0.003 | [†]Data are expressed as the median (range) patients with a negative detection signal or a positive signal also did not vary significantly. The follow-up period after discontinuation of NAs was significantly shorter in patients with relapse than in those without because formal follow-up ended once patients relapsed. The median period of follow-up was 45 months in patients without relapse. Multivariate analyses revealed that a shorter duration of NA treatment and higher levels of HBsAg and HBcrAg at discontinuation were significantly associated with the occurrence of hepatitis relapse (Table 2). The cut-off values that showed the highest significance by ROC analysis were 1.9 log IU/mL for HBsAg (AUC = 0.707, P = 0.001), 4.0 log U/mL for HBcrAg (AUC = 0.692, P = 0.003), and 16 months (AUC = 0.674, P = 0.007) for treatment duration. ## Model for predicting relapse of hepatitis using levels of HBsAg and HBcrAg The existence of a second cut-off value was suggested by ROC analysis for both of HBsAg (2.9 log IU/mL) and HBcrAg (3.0 log IU/mL) to discriminate between Table 2 Multivariate analysis of factors associated with relapse of hepatitis after discontinuation of nucleos(t)ide analogs (NAs) | Factor | Hazard ratio | 95%CI | P-value | |--|--------------|------------|---------| | HBsAg at discontinuation ≥ 1.9 log IU/mL | 5.21 | 1.87-14.55 | 0.002 | | HBcrAg at discontinuation ≥ 4.0 log U/mL | 2.20 | 1.25-3.87 | 0.006 | | Duration of NA treatment ≥ 16 months | 0.54 | 0.31-0.93 | 0.027 | CI, confidence interval; IIBcrAg, hepatitis B core-related antigen; IIBsAg, hepatitis B surface antigen. [‡]Data are expressed as a positive number (%) ADV; adefovir dipivoxil; ALT, alanine aminotransferase; ETV, entecavir; HBcrAg, hepatitis B core-related antigen; HBeAg, hepatitis B eantigen; HBsAg, hepatitis B surface antigen; LVD, lamivudine; UD, undetermined.