sons, those patients who do not achieve SVR need to be identified, so as to free them of unnecessary side effects and reduce costs, preferably before the start of the combination therapy.

Viral- and host-related factors are useful as predictors of treatment efficacy to 48-week IFN/ribavirin combination therapy. With regard to viral factors, amino acid (aa) substitutions at position 70 and/or 91 in the core region of HCV-1b are pretreatment predictors of virological response to combination therapy [1-4], and also affect clinical outcome, including hepatocarcinogenesis [5, 6]. Furthermore, the NS5A region of HCV-1b, including IFNsensitivity-determining region (ISDR) [7, 8] and IFN/ ribavirin resistance-determining region (IRRDR) [9, 10], are also useful as pretreatment predictors of virological response to combination therapy [11, 12]. With regard to host factors, genetic variations near IL28B gene (rs8099917, rs12979860) on chromosome 19, which encodes IFN-λ-3, are pretreatment predictors of virological response to combination therapy in individuals infected with HCV-1 [13-16], and also affect clinical outcome, including spontaneous clearance of HCV [17]. A recent report identified genetic variation near IL28B gene and aa substitution of the core region as predictors of SVR to triple therapy of telaprevir/pegylated (PEG)-IFN/ribavirin in Japanese patients infected with HCV-1b [18]. However, to our knowledge, there are no previous reports of IFN/ribavirin combination therapy based on multivariate analysis to investigate pretreatment predictors, including all of aa substitutions in core aa 70/91 and NS5A-ISDR/IRRDR, and genetic variation near IL28B gene.

The aim of the present study was to investigate predictive factors of treatment efficacy, including viral- (aa substitutions in core aa 70/91 and NS5A-ISDR/IRRDR) and host-related factors (genetic variation near *IL28B* gene), to 48-week IFN/ribavirin in Japanese adults infected with HCV-1b.

Patients and Methods

Study Population

A total of 1,249 HCV-1b-infected Japanese adult patients were consecutively recruited into the study protocol of combination therapy with IFN (PEG-IFN α -2b or IFN α -2b) plus ribavirin between December 2001 and January 2009 at Toranomon Hospital, Tokyo, Japan. Among these, 490 patients, who could complete a total of 48 weeks of combination therapy, were enrolled in this retrospective study, and fulfilled the following criteria: (1) negativity for hepatitis B surface antigen (HBsAg) in serum; (2) HCV-1b only confirmed by sequence analysis; (3) HCV-RNA levels of \geq 5.0 log IU/ml determined by the COBAS TaqMan HCV test

(Roche Diagnostics, Tokyo, Japan) within the preceding 2 months of enrolment; (4) no hepatocellular carcinoma; (5) body weight >40 kg; (6) lack of coinfection with human immunodeficiency virus; (7) no previous treatment with antiviral or immunosuppressive agents within the preceding 3 months of enrolment; (8) none was an alcoholic; lifetime cumulative alcohol intake was <500 kg; (9) none had other forms of liver diseases, such as hemochromatosis, Wilson disease, primary biliary cirrhosis, alcoholic liver disease, or autoimmune liver disease, and (10) none of the females was pregnant or breastfeeding.

The study protocol was in compliance with the Good Clinical Practice Guidelines and the 1975 Declaration of Helsinki, and was approved by the institutional review board. Each patient gave their informed consent before participating in this trial.

The treatment efficacy was evaluated in terms of HCV-RNA negativity at the end of treatment (end-of-treatment response (ETR)) and 24 weeks after the completion of therapy (SVR), based on the COBAS TaqMan HCV test (Roche Diagnostics). SVR in patients who achieved ETR was defined as SVR after ETR. ETR, SVR, and SVR after ETR could be evaluated in 487 (99%), 448 (91%), and 321 (66%) of 490 patients, respectively.

422 (86%) patients received PEG-IFN α -2b at a median dose of 1.4 μ g/kg (range 0.7–1.9) subcutaneously each week plus oral ribavirin at a median dose of 11.1 mg/kg (range 3.7–15.1) daily for 48 weeks. The remaining 68 (14%) patients received 6 million units of IFN α -2b intramuscularly each day for 48 weeks (daily for the initial 2 weeks, followed by three times per week for 46 weeks), and oral ribavirin at a median dose of 11.3 mg/kg (range 6.8–13.4) daily for 48 weeks.

Table 1 summarizes the profiles and laboratory data of the 490 patients at the commencement of treatment. They included 310 males and 180 females aged 20–75 years (median 54).

Measurement of HCV RNA

The antiviral effects of treatment on HCV were assessed by measuring plasma HCV-RNA levels. In this study, HCV-RNA levels were evaluated at least once every month before, during, and after therapy. HCV-RNA concentrations were determined using the COBAS TaqMan HCV test (Roche Diagnostics). The linear dynamic range of the assay was 1.2–7.8 log IU/ml, and the undetectable samples were defined as negative.

Detection of aa Substitutions in Core, and NS5A Regions of HCV-1b

With the use of HCV-J (accession No. D90208) as a reference [19], the sequence of 1-191 aa in the core protein of HCV-1b was determined and then compared with the consensus sequence constructed on the previous study to detect substitutions at aa 70 of arginine (Arg70) or glutamine/histidine (Gln70/His70) and aa 91 of leucine (Leu91) or methionine (Met91) [1]. The sequence of 2,209-2,248 aa in the NS5A of HCV-1b (ISDR) reported by Enomoto et al. [7, 8] was determined, and the number of aa substitutions in ISDR was defined as wild-type (WT) (0, 1) or non-wildtype (non-WT) (≥2) in comparison with HCV-J. Furthermore, the sequence of 2,334-2,379 aa in the NS5A of HCV-1b (IRRDR) reported by El-Shamy et al. [9, 10] was determined and then compared with the consensus sequence constructed on the previous study. In the present study, aa substitutions of the core region and NS5A-ISDR/IRRDR of HCV-1b were analyzed by direct sequencing [10, 18].

232

Intervirology 2012;55:231-241

Genetic Variation near IL28B Gene

Samples for genome-wide association survey were genotyped using the Illumina HumanHap610-Quad Genotyping BeadChip. Genotyping data were subjected to quality control before the data analysis. Genotyping for replication and fine mapping was performed by use of Invader assay, TaqMan assay, or direct sequencing as described previously [20, 21].

In this study, genetic variations near *IL28B* gene (rs8099917), reported as the pretreatment predictors of treatment efficacy in Japanese patients [14, 18], were investigated.

Statistical Analysis

Non-parametric tests (Mann-Whitney U test, χ^2 test and Fisher's exact probability test) were used to compare the characteristics of the groups. Correlation analysis was evaluated by the Spearman rank correlation test. Uni- and multivariate logistic regression analyses were used to determine those factors that significantly contributed to ETR, SVR, and SVR after ETR. The odds ratios (OR) and 95% confidence intervals (95% CI) were also calculated. All p values < 0.05 by the two-tailed test were considered significant. Variables that achieved statistical significance (p < 0.05) on univariate analysis were entered into multiple logistic regression analysis to identify significant independent predictive factors. Each variable was transformed into categorical data consisting of two simple ordinal numbers for uni- and multivariate analyses. Potential predictive factors associated with ETR, SVR, and SVR after ETR included the following variables: sex, age, history of blood transfusion, familial history of liver disease, body mass index, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, γ-glutamyl transpeptidase (GGT), leukocyte count, hemoglobin, platelet count, level of viremia, α-fetoprotein, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, uric acid, ribavirin dose/body weight, genetic variation near IL28B gene, and aa substitution in the core region, and NS5A-ISDR/IRRDR. Statistical analyses were performed using SPSS software (SPSS Inc., Chicago, Ill., USA).

Results

Response to Therapy

ETR was achieved by 372 of 487 (76%) patients, SVR by 244 of 448 (54%), and SVR after ETR by 244 of 321 (76%).

Number of aa Substitutions in NS5A-ISDR and NS5A-IRRDR

As a whole, 0, 1, and ≥ 2 as substitutions in ISDR were found in 56% (227 of 406), 23% (95 of 406), and 21% (84 of 406) of patients, respectively. Thus, the percentage of patients with ≤ 1 as substitution in ISDR (WT) was 79% (322 of 406). Furthermore, ≤ 3 , 4–5, and ≥ 6 as substitutions in IRRDR were found in 36% (73 of 200), 34% (67 of 200), and 30% (60 of 200) of patients, respectively (fig. 1).

Table 1. Patient profile and laboratory data at commencement of the 48-week combination therapy of IFN + ribavirin in 490 patients infected with HCV-lb

Demographic data	
Number of patients	490
Male/female	310/180
Age, years	54 (20-75)
History of blood transfusion	169 (34%)
Family history of liver disease	96 (20%)
Body mass index, kg/m ²	22.6 (15.7–34.7)
Laboratory data	
Level of viremia, log IU/ml	6.4(2.2-7.7)
Serum AST, IU/l	50 (16-296)
Serum ALT, IU/l	67 (12-836)
Serum albumin, g/dl	3.9 (3.1-4.7)
GGT, IU/l	44 (10-592)
Leukocyte count, n/mm ³	4,700
	(1,200-10,900)
Hemoglobin, g/dl	14.4 (10.6–18.1)
Platelet count, $\times 10^4/\text{mm}^3$	16.7 (6.4–37.5)
α-Fetoprotein, μg/l	5 (1-459)
Total cholesterol, mg/dl	170 (96-284)
High-density lipoprotein cholesterol, mg/dl	46 (13-95)
Low-density lipoprotein cholesterol, mg/dl	100 (32-190)
Triglycerides, mg/dl	90 (33-416)
Uric acid, mg/dl	5.5 (2.3-9.4)
Treatment	
PEG-IFNα-2b/IFNα-2b	422/68
Ribavirin dose, mg/kg	11.2 (3.7–15.1)
aa substitutions in the HCV-1b	
Core aa 70, arginine/glutamine (histidine)	266/151
Core aa 91, leucine/methionine	246/169
ISDR of NS5A, 0/1/≥2	227/95/84
IRRDR of NS5A, ≤3/4-5/≥6	73/67/60
Genetic variation near IL28B gene	
rs8099917 genotype, TT/TG/GG	150/65/4

Data represent number of patients with percentages in parentheses, or median (range) values.

The correlation between ISDR and IRRDR was analyzed. There was a significant positive correlation between the number of as substitutions in ISDR and those in IRRDR (r = 0.308, p < 0.001) (fig. 2).

aa Substitutions in the Core Region and NS5A-ISDR/IRRDR

Concerning the substitution of core aa 70, the number of aa substitutions in ISDR of 256 patients with Arg70 (median 0) was not significantly different from that of 146 patients with Gln70 (His70) (median 0) (fig. 3a). Fur-

Core/NS5A and *IL28B* Affect Treatment Efficacy

Intervirology 2012;55:231-241

233

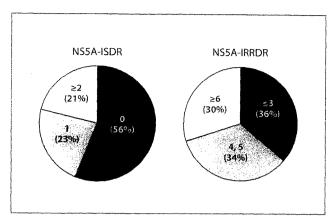
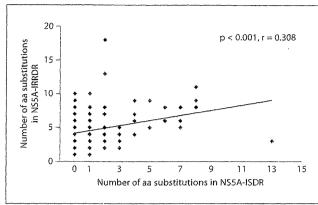



Fig. 1. The number of as substitutions in NS5A-ISDR and NS5A-IRRDR. The percentage of patients with ≤ 1 as substitution in ISDR (WT) was 79%.

Fig. 2. Correlation between NS5A-ISDR and NS5A-IRRDR. There was a significant positive correlation between the number of aa substitutions in ISDR and that in IRRDR (r = 0.308, p < 0.001).

thermore, the number of as substitutions in IRRDR of 123 patients with Arg70 (median 5) was also not significantly different from that of 77 patients with Gln70 (His70) (median 4) (fig. 3b).

Concerning the substitution of core aa 91, the number of aa substitutions in ISDR of 240 patients with Leu91 (median 1) was significantly higher than that of 161 patients with Met91 (median 0) (p < 0.001) (fig. 3c). Furthermore, the number of aa substitutions in IRRDR of 111 patients with Leu91 (median 5) was significantly higher than that of 89 patients with Met91 (median 3) (p < 0.001) (fig. 3d).

Viremia Level and aa Substitutions in Core Region/ISDR/IRRDR

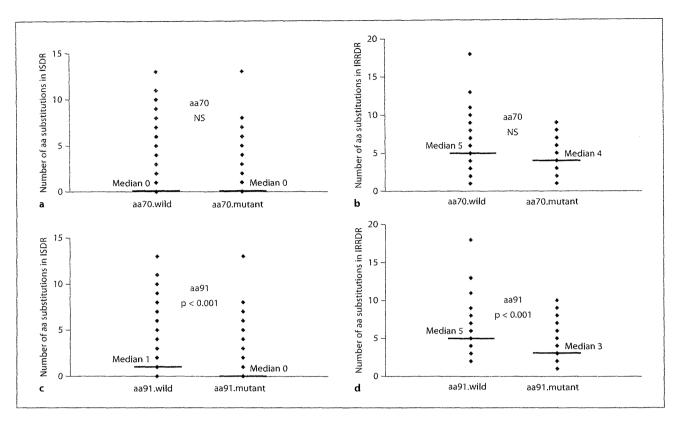
Concerning the number of substitutions in ISDR, viremia levels of 321 patients with WT (median 6.5) were significantly higher than those of 84 patients with non-WT (median 5.7) (p < 0.001) (fig 4a).

Concerning the number of substitutions in IRRDR, viremia levels of 140 patients with ≤ 5 substitutions (median 6.4) were significantly higher than those of 60 patients with ≥ 6 (median 6.1) (p = 0.027) (fig. 4b).

Concerning the substitution of core aa 70, viremia levels of 265 patients with Arg70 (median 6.4) were not significantly different from those of 151 patients with Gln70 (His70) (median 6.3) (fig. 4c).

Concerning the substitution of core as 91, viremia levels of 169 patients with Met91 (median 6.5) were significantly higher than those of 245 patients with Leu91 (median 6.2) (p = 0.028) (fig. 4d).

Thus, levels of viremia were influenced by an substitutions in core and ISDR/IRRDR.


Treatment Response according to the Number of aa Substitutions in IRRDR

Concerning the number of aa substitutions in IRRDR, a significantly higher proportion of patients with ≥ 4 aa substitutions (58%) showed SVR compared to patients with ≤ 3 (42%) (p = 0.039). In contrast, the SVR rate was not significantly different between patients with ≤ 4 (49%) and those with ≥ 5 (57%) aa substitutions. Likewise, the SVR rate was not significantly different between patients with ≤ 5 (51%) and those with ≥ 6 (55%) aa substitutions (fig. 5a).

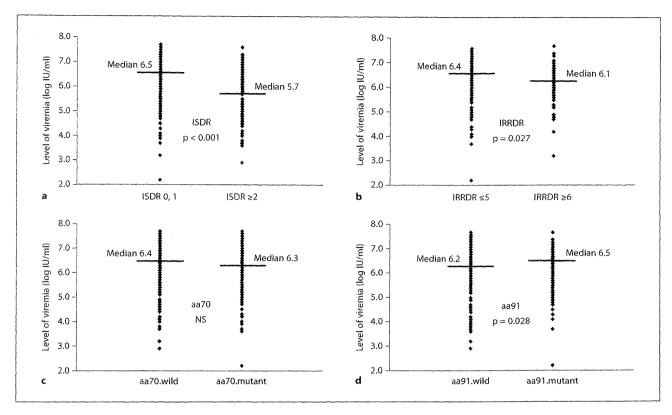
The ETR rate was not significantly different between patients with ≤ 3 (74%) and those with ≥ 4 (82%) as substitutions, nor between patients with ≤ 4 (76%) and those with ≥ 5 (83%). Likewise, the ETR rate was not significantly different between those with ≤ 5 (79%) and those with ≥ 6 (80%) as substitutions (fig. 5b).

The SVR rate after ETR was not significantly different between patients with \leq 3 (61%) and those with \geq 4 (74%) as substitutions, nor between patients with \leq 4 (67%) and those with \geq 5 (72%). Likewise, they were not significantly different between patients with \leq 5 (67%) and those with \geq 6 (75%) as substitutions (fig. 5c).

Thus, it was useful as predictor of SVR to categorize into two groups of ≤ 4 and ≥ 5 as substitutions by univariate analysis. However, the ETR and SVR after ETR rates were not significantly different according to the number of as substitutions in IRRDR.

Fig. 3. aa substitutions in the core region and NS5A-ISDR/IRRDR. **a, b** Concerning the substitution of core aa 70, the number of aa substitutions in ISDR/IRRDR of patients with Arg70 was not significantly different from that of patients with Gln70 (His70). **c, d** Concerning the substitution of core aa 91, the number of aa substitutions in ISDR/IRRDR of patients with Leu91 was significantly higher than that of patients with Met91 (p < 0.001).

Predictors of SVR as Determined by Uni- and Multivariate Analyses


Univariate analysis identified 15 parameters that correlate with SVR: gender (male sex; p < 0.001), age (<55 years; p < 0.001), ribavirin dose (\geq 11.0 mg/kg; p = 0.006), AST (<58 IU/l; p = 0.039), leukocyte count (\geq 4,500/mm³; p = 0.043), hemoglobin (\geq 14.0 g/dl; p = 0.001), platelet count (\geq 15.0 \times 10⁴/mm³; p < 0.001), GGT (<50 IU/l; p = 0.028), uric acid (\geq 5.5 mg/dl; p = 0.005), level of viremia (<6.0 log IU/ml; p < 0.001), α -fetoprotein (<10 µg/l; p < 0.001), genetic variation in rs8099917 (genotype TT; p < 0.001), substitution of aa 70 (Arg70; p < 0.001), the number of aa substitutions in ISDR (non-WT; p < 0.001) and IRRDR (\geq 4; p = 0.039). Figure 6 shows the SVR rate according to aa substitution in the core/NS5A region and genetic variation near *IL28B* by univariate analysis.

Multivariate analysis that included the above variables identified 3 parameters that independently influenced

SVR: genetic variation in rs8099917 (genotype TT; p < 0.001), gender (male sex; p < 0.001), and the number of aa substitutions in ISDR (non-WT; p = 0.027) (table 2).

Predictors of ETR as Determined by Uni- and Multivariate Analyses

Univariate analysis identified 14 parameters that correlated with ETR: gender (male sex; p = 0.001), age (<55 years; p = 0.004), AST (<39 IU/l; p = 0.027), hemoglobin (\geq 14.0 g/dl; p = 0.035), platelet count (\geq 15.0 \times 10⁴/mm³; p < 0.001), albumin (\geq 3.9 g/dl; p = 0.014), GGT (<50 IU/l; p < 0.001), uric acid (\geq 5.5 mg/dl; p = 0.003), level of viremia (<6.0 log IU/ml; p = 0.001), low-density lipoprotein cholesterol (\geq 85 mg/dl; p = 0.004), α -fetoprotein (<10 μ g/l; p < 0.001), genetic variation in rs8099917 (genotype TT; p < 0.001), substitution of aa 70 (Arg70; p < 0.001), and the number of aa substitutions in ISDR (non-WT; p = 0.021). Figure 7 shows the ETR rate according to aa

Fig. 4. Viremia level and as substitutions in core region/ISDR/IRRDR. **a** Concerning the number of substitutions in ISDR, viremia levels of patients with WT were significantly higher than those of patients with non-WT (p < 0.001). **b** Concerning the number of substitutions in IRRDR, viremia levels of patients with ≤ 5 as substitutions were significantly higher levels than those of patients with ≥ 6 (p = 0.027). **c** Concerning the substitution of

core aa 70, viremia levels of patients with Arg70 were not significantly different from those of patients with Gln70 (His70). **d** Concerning the substitution of core aa 91, viremia levels of patients with Met91 were significantly higher than those of patients with Leu91 (p = 0.028). Thus, levels of viremia might be influenced by aa substitutions in core aa 91 and ISDR/IRRDR.

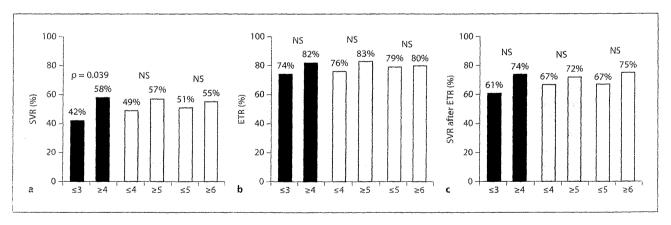
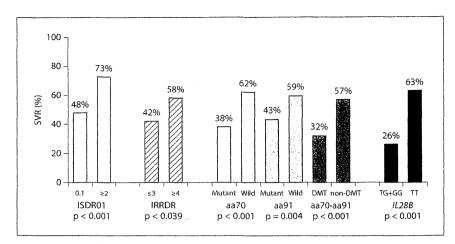
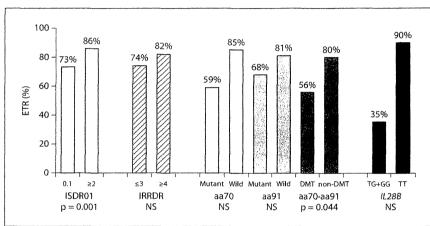



Fig. 5. Treatment response according to the number of aa substitutions in NS5A-IRRDR. **a** A significantly higher proportion of patients with ≥ 4 (58%) aa substitutions showed SVR compared to patients with ≤ 3 (42%) (p = 0.039), and it was useful as predictor


of SVR to categorize into two groups of ≤ 4 and ≥ 5 as substitutions by univariate analysis. **b**, **c** ETR and SVR after ETR rates were not significantly different according to the number of as substitutions in IRRDR.

236

Intervirology 2012;55:231-241

Fig. 6. SVR rate according to an substitution in core/NS5A region and genetic variation near *IL28B* by univariate analysis.

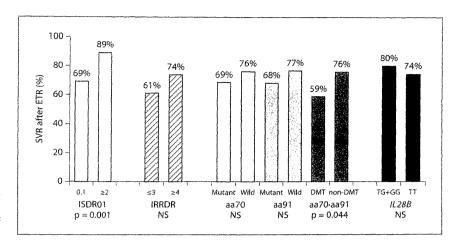
Fig. 7. ETR rate according to an substitution in core/NS5A region and genetic variation near *IL28B* by univariate analysis.

Table 2. Factors associated with SVR to 48-week IFN + ribavirin combination therapy in patients infected with HCV-1b, identified by multivariate analysis

Factor	Category	OR (95% CI)	p
rs8099917	1: TG+GG	1	<0.001
genotype	2: TT	16.7 (4.54–61.3)	
Gender	1: Female 2: Male	1 10.5 (3.47–32.3)	< 0.001
ISDR of	1: WT	1	0.027
NS5A	2: Non-WT	5.68 (1.22–26.3)	

Only variables that achieved statistical significance (p < 0.05) on multivariate logistic regression are shown.

Table 3. Factors associated with ETR response to 48-week IFN + ribavirin combination therapy in patients infected with HCV-1b, identified by multivariate analysis


Factor	Category	OR (95% CI)	p
rs8099917	1: TG+GG	1	<0.001
genotype	2: TT	18.2 (6.29–52.6)	
Level of viremia	1: ≥6.0	1	0.001
log IU/ml	2: <6.0	9.20 (2.59–32.6)	
Core aa 70	1: Gln70 (His70) 2: Arg70	1 4.68 (1.65–13.3)	0.004
Serum albumin	1: <3.9	1	0.030
g/dl	2: ≥3.9	3.08 (1.11–8.47)	

Only variables that achieved statistical significance (p < 0.05) on multivariate logistic regression are shown.

Core/NS5A and *IL28B* Affect Treatment Efficacy

Intervirology 2012;55:231-241

237

Fig. 8. SVR after ETR rate according to aa substitution in core/NS5A region and genetic variation near *1L28B* by univariate analysis.

substitution in the core/NS5A region and genetic variation near *IL28B* by univariate analysis.

Multivariate analysis that included the above variables identified 4 parameters that independently influenced ETR: genetic variation in rs8099917 (genotype TT; p < 0.001), level of viremia (<6.0 log IU/ml; p = 0.001), substitution of aa 70 (Arg70; p = 0.004), and albumin (\geq 3.9 g/dl; p = 0.030) (table 3).

Predictors of SVR after ETR as Determined by Uni- and Multivariate Analyses

Univariate analysis identified 11 parameters that influenced SVR after ETR: gender (male sex; p < 0.001), age (<55 years; p < 0.001), ribavirin dose (\geq 11.0 mg/kg; p = 0.025), leukocyte count (\geq 4,500/mm³; p = 0.033), hemoglobin (\geq 14.0 g/dl; p = 0.025), platelet count (\geq 15.0 × 10⁴/mm³; p = 0.001), level of viremia (<6.0 log IU/ml; p = 0.020), total cholesterol (<170 mg/dl; p = 0.017), α -fetoprotein (<10 μ g/l; p = 0.004), substitution of aa 70 and 91 (Arg70 and/or Leu91; p = 0.044), and the number of aa substitutions in ISDR (non-WT; p = 0.001). Figure 8 shows the SVR after ETR rate according to aa substitution in the core/NS5A region and genetic variation near *IL28B* by univariate analysis.

Multivariate analysis that included the above variables identified 6 parameters that independently influenced the SVR after ETR: gender (male sex; p < 0.001), ribavirin dose (≥ 11.0 mg/kg; p = 0.002), the number of aa substitutions in ISDR (non-WT; p = 0.012), substitution of aa 70 and 91 (Arg70 and/or Leu91; p = 0.023), platelet count ($\geq 15.0 \times 10^4/\text{mm}^3$; p = 0.033), and α -fetoprotein (<10 μ g/l; p = 0.042) (table 4).

Comparison of Factors Associated with Treatment Efficacy Identified by Multivariate Analysis

Table 5 shows the variables that achieved statistical significance on multivariate logistic regression for each evaluation of treatment efficacy. Rs8099917 genotype was an important predictor of ETR and SVR. With regard to viral factors, core region was an important predictor of ETR, and SVR after ETR. ISDR was an important predictor of SVR, and SVR after ETR. Level of viremia was an important predictor of ETR. Thus, genetic variation near *IL28B* and viral factors (core region, ISDR, and level of viremia) were important predictors of treatment efficacy. Furthermore, gender, α -fetoprotein, albumin, and platelet count were also identified as other important predictors of treatment efficacy, in addition to genetic variation near *IL28B* and viral factors.

Discussion

Using multivariate analysis, the present study identified viral- (aa substitutions in core aa 70/91 and NS5A-ISDR/IRRDR) and host-related factors (genetic variation near *IL28B* gene) that influenced treatment efficacy to 48-week IFN/ribavirin combination therapy, which is in agreement with recent findings [22, 23]. Identification of these viral and host factors before the start of IFN/ribavirin combination therapy should help to select better therapeutic regimens, including triple therapy of telaprevir/PEG-IFN/ribavirin [24–26], for those patients who are less likely to achieve SVR.

According to the number of substitutions in ISDR, a previous report showed that levels of viremia were sig-

238

Intervirology 2012;55:231-241

Table 4. Factors associated with SVR in patients who achieved ETR response to 48-week IFN + ribavirin combination therapy in patients infected with HCV-1b, identified by multivariate analysis

Factor	Category	OR (95% CI)	P
Gender	1: Female	1	
	2: Male	4.27 (2.15–8.55)	< 0.001
Ribavirin	1: <11.0		
dose, mg/kg	2: ≥11.0	2.95 (1.48-5.86)	0.002
ISDR of	1: WT	1	
NS5A	2: Non-WT	4.00 (1.35-11.8)	0.012
Core aa 70	1: Gln70 (His70) and Met91	1	
and 91	2: Arg70 and/or Leu91	2.96 (1.16-7.52)	0.023
Platelet count	1: <15.0	1	
$\times 10^4/\text{mm}^3$	2: ≥15.0	2.19 (1.07-4.50)	0.033
α-Fetoprotein	1: ≥10	1	
μg/l	2: <10	2.66 (1.04-6.80)	0.042

Only variables that achieved statistical significance (p < 0.05) on multivariate logistic regression are shown.

Table 5. Comparison of factors associated with efficacy of 48-week IFN + ribavirin combination therapy in patients infected with HCV-1b, identified by multivariate analysis

Factor	ETR response (at 48 weeks)	SVR after ETR response	SVR
IL28B	rs8099917 p < 0.001, 18.2 (6.29-52.6) ^a		rs8099917 p < 0.001, 16.7 (4.54–61.3) ^a
Virus	Core aa 70 $p = 0.004, 4.68 (1.65-13.3)^a$ Level of viremia $p = 0.001, 9.20 (2.59-32.6)^a$	Core aa 70 and 91 $p = 0.023, 2.96 (1.16-7.52)^a$ ISDR $p = 0.012, 4.00 (1.35-11.8)^a$	ISDR p = 0.027, 5.68 (1.22–26.3) ^a
Others	Albumin p = 0.030, 3.08 (1.11-8.47) ^a	α -Fetoprotein $p = 0.042, 2.66 (1.04-6.80)^a$ Platelet count $p = 0.033, 2.19 (1.07-4.50)^a$ Gender $p < 0.001, 4.27 (2.15-8.55)^a$ Ribavirin dose $p = 0.002, 2.95 (1.48-5.86)^a$	Gender p < 0.001, 10.5 (3.47–32.3) ^a

Only variables that achieved statistical significance (p < 0.05) on multivariate logistic regression are shown. ^a OR (95% CI).

nificantly lower in patients with non-WT of ISDR than in those with WT [8]. The present study indicated that substitution of IRRDR and core aa 91, in addition to substitution of ISDR, also significantly influenced levels of viremia. Furthermore, there was a significant positive correlation between the number of aa substitutions in

ISDR and those in IRRDR, and the number of aa substitutions in ISDR/IRRDR of patients with Leu91 was significantly higher than that of patients with Met91. To our knowledge, this is the first report of the relationship between viremia levels and aa substitutions in core region/ISDR/IRRDR. This result might be interpreted to mean

that core as 91/ISDR/IRRDR might be associated with viremia levels involved in resistance to combination therapy. Further studies that examine the functional impact of as substitutions to combination therapy should be conducted to confirm the above finding.

The present results showed that α -fetoprotein, albumin, platelet count, and gender were predictors of virological response to IFN/ribavirin combination therapy. Previous data indicated that absence of advanced liver fibrosis was a positive predictor of SVR to IFN monotherapy and IFN/ribavirin combination therapy [2, 3, 13, 27-29], and that advanced liver fibrosis was usually associated with higher levels of α-fetoprotein, and lower levels of albumin and platelet count [1, 3, 30-32]. Furthermore, gender is also a predictor of treatment response to IFN/ ribavirin combination therapy [2, 3, 14]. In the present study based on a large number of patients, histopathological changes in the liver and gender were identified as independent predictors of virological response, in addition to genetic variation near IL28B and viral factors (core region, ISDR, and level of viremia).

In a previous study, multivariate analysis identified core region, gender, and stage of liver fibrosis as parameters that independently influenced the SVR of patients who achieved early virological response, but ISDR was not entered into uni- and multivariate analysis [3]. To our knowledge, the present study based on multivariate analysis is the first report to identify ISDR as pretreatment

predictor of SVR after ETR to combination therapy. Interestingly, ISDR was not a predictor of ETR, but was a significant predictor of SVR to combination therapy. Thus, the underlying mechanisms of failure to develop SVR in those patients who achieve HCV-RNA negativity remain unclear. Further studies that examine the impact of as substitutions of ISDR to combination therapy should be conducted to confirm the above finding.

One limitation of the present study was that aa substitutions in areas other than the core region and NS5A-ISDR/IRRDR of the HCV genome were not examined. Other limitations were differences in host factors including race [24, 33, 34] and differences in viral factors, such as the distribution of HCV-1a or -1b, and geographic diversities of HCV-1b [35]. Further large-scale prospective studies are necessary to investigate whether the present results relate to the efficacy of 48-week IFN/ribavirin combination therapy, and further understanding of the complex interaction between virus- and host- related factors should facilitate the development of more effective therapeutic regimens.

Acknowledgement

This study was supported in part by a Grant-in-Aid from the Ministry of Health, Labor and Welfare, Japan.

References

- 1 Akuta N, Suzuki F, Sezaki H, Suzuki Y, Hosaka T, Someya T, Kobayashi M, Saitoh S, Watahiki S, Sato J, Matsuda M, Kobayashi M, Arase Y, Ikeda K, Kumada H: Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 1b high viral load and non-virological response to interferon-ribavirin combination therapy. Intervirology 2005;48:372–380.
- 2 Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Arase Y, Ikeda K, Kumada H: Predictive factors of early and sustained responses to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b: amino acid substitutions in the core region and low-density lipoprotein cholesterol levels. J Hepatol 2007;46:403-410.
- 3 Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Arase Y, Ikeda K, Kumada H: Predictors of viral kinetics to peginterferon

- plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b. J Med Virol 2007;79:1686–1695.
- 4 Donlin MJ, Cannon NA, Yao E, Li J, Wahed A, Taylor MW, Belle SH, Di Bisceglie AM, Aurora R, Tavis JE: Pretreatment sequence diversity differences in the full-length hepatitis C virus open reading frame correlate with early response to therapy. J Virol 2007; 81:8211–8224.
- 5 Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Arase Y, Ikeda K, Kumada H: Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology 2007; 46:1357–1364.
- 6 Fishman SL, Factor SH, Balestrieri C, Fan X, Dibisceglie AM, Desai SM, Benson G, Branch AD: Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma. Clin Cancer Res 2009:15:3205–3213.
- 7 Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Izumi N, Marumo F, Sato C: Comparison of fulllength sequences of interferon sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest 1995:96:224-230.
- 8 Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Ogura Y, Izumi N, Marumo F, Sato C: Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 1996; 334:77–81.
- 9 El-Shamy A, Sasayama M, Nagano-Fujii M, Sasase N, Imoto S, Kim SR, Hotta H: Prediction of efficient virological response to pegylated interferon/ribavirin combination therapy by NS5A sequences of hepatitis C virus and anti-NS5A antibodies in pre-treatment sera. Microbiol Immunol 2007;51:471– 482.

Intervirology 2012;55:231-241

- 10 El-Shamy A, Nagano-Fujii M, Sasase N, Imoto S, Kim SR, Hotta H: Sequence variation in hepatitis C virus nonstructural protein 5A predicts clinical outcome of pegylated interferon/ribavirin combination therapy. Hepatology 2008;48:38–47.
- 11 Shirakawa H, Matsumoto A, Joshita S, Komatsu M, Tanaka N, Umemura T, Ichijo T, Yoshizawa K, Kiyosawa K, Tanaka E: Nagano Interferon Treatment Research Group: Pretreatment prediction of virological response to peginterferon plus ribavirin therapy in chronic hepatitis C patients using viral and host factors. Hepatology 2008;48:1753-1760.
- 12 Mori N, Imamura M, Kawakami Y, Saneto H, Kawaoka T, Takaki S, Aikata H, Takahashi S, Chayama K: Hiroshima Liver Study Group: Randomized trial of high-dose interferon-α-2b combined with ribavirin in patients with chronic hepatitis C: Correlation between amino acid substitutions in the core/NS5A region and virological response to interferon therapy. J Med Virol 2009;81: 640–649
- 13 Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB: Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009;461:399–401.
- 14 Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami M: Genome-wide association of *IL28B* with response to pegylated interferonα and ribavirin therapy for chronic hepatitis C. Nat Genet 2009;41:1105–1109.
- 15 Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, Riordan S, Sheridan D, Smedile A, Fragomeli V, Müller T, Bahlo M, Stewart GJ, Booth DR, George J: IL28B is associated with response to chronic hepatitis C interferon-a and ribavirin therapy. Nat Genet 2009;41:1100-1104.
- 16 Rauch A, Kutalik Z, Descombes P, Cai T, Di Iulio J, Mueller T, Bochud M, Battegay M, Bernasconi E, Borovicka J, Colombo S, Cerny A, Dufour JF, Furrer H, Günthard HF, Heim M, Hirschel B, Malinverni R, Moradpour D, Müllhaupt B, Witteck A, Beckmann JS, Berg T, Bergmann S, Negro F, Telenti A, Bochud PY: Swiss Hepatitis C Cohort Study; Swiss HIV Cohort Study: Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 2010;138: 1338–1345.

- 17 Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'Huigin C, Kidd J, Kidd K, Khakoo SI, Alexander G, Goedert JJ, Kirk GD, Donfield SM, Rosen HR, Tobler LH, Busch MP, McHutchison JG, Goldstein DB, Carrington M: Genetic variation in *IL28B* and spontaneous clearance of hepatitis C virus. Nature 2009;461:798–801.
- 18 Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Chayama K, Nakamura Y, Kumada H: Amino acid substitution in HCV core region and genetic variation near the interleukin-28B gene predict viral response to telaprevir with peginterferon and ribavirin. Hepatology 2010;52:421-429.
- 19 Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K: Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 1990;87:9524-9528.
- 20 Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y: A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 2001;46:471–477.
- Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M, Ohtsuki M, Furukawa H, Yoshino S, Yukioka M, Tohma S, Matsubara T, Wakitani S, Teshima R, Nishioka Y, Sekine A, Iida A, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K: Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003;34:395–402.
- 22 Kurosaki M, Tanaka Y, Nishida N, Sakamoto N, Enomoto N, Honda M, Sugiyama M, Matsuura K, Sugauchi F, Asahina Y, Nakagawa M, Watanabe M, Sakamoto M, Maekawa S, Sakai A, Kaneko S, Ito K, Masaki N, Tokunaga K, Izumi N, Mizokami M: Pre-treatment prediction of response to pegylated-interferon plus ribavirin for chronic hepatitis C using genetic polymorphism in IL28B and viral factors. J Hepatol 2011;54:439–448.
- 23 Hayes CN, Kobayashi M, Akuta N, Suzuki F, Kumada H, Abe H, Miki D, Imamura M, Ochi H, Kamatani N, Nakamura Y, Chayama K: HCV substitutions and IL28B polymorphisms on outcome of peg-interferon plus ribavirin combination therapy. Gut 2011;60:261-267.
- 24 McHutchison JG, Everson GT, Gordon SC, Jacobson IM, Sułkowski M, Kauffman R, McNair L, Alam J, Muir AJ: PROVE1 Study Team: Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 2009;360:1827–1838.
- 25 McHutchison JG, Manns MP, Muir AJ, Terrault NA, Jacobson IM, Afdhal NH, Heathcote EJ, Zeuzem S, Reesink HW, Garg J, Bsharat M, George S, Kauffman RS, Adda N, Di Bisceglie AM: PROVE3 Study Team: Telaprevir for previously treated chronic HCV infection. N Engl J Med 2010;362:1292-1303.

- 26 Hézode C, Forestier N, Dusheiko G, Ferenci P, Pol S, Goeser T, Bronowicki JP, Bourlière M, Gharakhanian S, Bengtsson L, McNair L, George S, Kieffer T, Kwong A, Kauffman RS, Alam J, Pawlotsky JM, Zeuzem S: PROVE2 Study Team: Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N Engl J Med 2009;360:1839– 1850.
- 27 Jouet P, Roudot-Thoraval F, Dhumeaux D, Metreau JM: Comparative efficacy of interferon alfa in cirrhotic and noncirrhotic patients with non-A, non-B, C hepatitis. Gastroenterology 1994;106:686–690.
- 28 Poynard T, McHutchinson J, Goodman Z, Ling MH, Albrecht J: Is an 'a la carte' combination interferon alfa-2b plus ribavirin regimen possible for the first-line treatment in patients with chronic hepatitis C? The AL-GOVIRC Group. Hepatology 2000;31:211– 218
- 29 Bruno S, Camma C, Di Marco V, Rumi M, Vinci M, Camozzi M, Rebucci C, Di Bona D, Colombo M, Craxi A, Mondelli MU, Pinzello G: Peginterferon alfa-2b plus ribavirin for naïve patients with genotype 1 chronic hepatitis C: a randomized controlled trial. J Hepatol 2004:41:474–481.
- 30 Bayati N, Silverman AL, Gordon SC: Serum α -fetoprotein levels and liver histology in patients with chronic hepatitis C. Am J Gastroenterol 1998;93:2452–2456.
- 31 Chu CW, Hwang SJ, Luo JC, Lai CR, Tsay SH, Li CP, Wu JC, Chang FY, Lee SD: Clinical, virological, and pathologic significance of elevated serum \(\alpha\)-fetoprotein levels in patients with chronic hepatitis C. J Clin Gastroenterol 2001;32:240-244.
- 32 Hu KQ, Kyulo NL, Lim N, Elhazin B, Hillebrand DJ, Bock T: Clinical significance of elevated α-fetoprotein in patients with chronic hepatitis C, but not hepatocellular carcinoma. Am J Gastroenterol 2004;99:860–865.
- 33 McHutchison JG, Poynard T, Pianko S, Gordon SC, Reid AE, Dienstag J, Morgan T, Yao R, Albrecht J: The impact of interferon plus ribavirin on response to therapy in black patients with chronic hepatitis C. The International Hepatitis Interventional Therapy Group. Gastroenterology 2000;119:1317–1323.
- 34 Kaplan DE, Sugimoto K, Ikeda F, Stadanlick J, Valiga M, Shetty K, Reddy KR, Chang KM: T-cell response relative to genotype and ethnicity during antiviral therapy for chronic hepatitis C. Hepatology 2005;41:1365–1375.
- 35 Nakano I, Fukuda Y, Katano Y, Nakano S, Kumada T, Hayakawa T: Why is the interferon sensitivity-determining region (ISDR) system useful in Japan? J Hepatol 1999;30: 1014–1022.

Complicated Relationships of Amino Acid Substitution in Hepatitis C Virus Core Region and *IL28B* Genotype Influencing Hepatocarcinogenesis

Norio Akuta,¹ Fumitaka Suzuki,¹ Yuya Seko,¹ Yusuke Kawamura,¹ Hitomi Sezaki,¹ Yoshiyuki Suzuki,¹ Tetsuya Hosaka,¹ Masahiro Kobayashi,¹ Tasuku Hara,¹ Mariko Kobayashi,² Satoshi Saitoh,¹ Yasuji Arase,¹ Kenji Ikeda,¹ and Hiromitsu Kumada¹

The impact of amino acid (aa) 70 substitution in the core region on hepatocarcinogenesis and survival for liver-related death in patients of hepatitis C virus (HCV) genotype 1b (HCV-1b), who had not received antiviral therapy, is unknown. The relationships among aa 70 substitution, IL28B genotype, and hepatocarcinogenesis are also not clear. A total of 1,181 consecutive HCV-infected patients, who had not received antiviral therapy, were included in a follow-up study to determine predictive factors of hepatocarcinogenesis and survival for liver-related death. The cumulative hepatocarcinogenesis rates in HCV-1b of Gln70(His70) (glutamine (histidine) at aa 70) were significantly higher than those in HCV-1b of Arg70 (arginine at aa 70) and HCV-2a/2b. The cumulative survival rates for liver-related death in HCV-1b of Gln70(His70) were significantly lower than those in HCV-1b of Arg70 and HCV-2a/2b. Multivariate analysis identified gender (male), age (\geq 60 years), albumin (<3.9 g/dL), platelet count (<15.0 \times 10⁴/mm³), aspartate aminotransferase (>67 IU/L), and HCV subgroup (HCV-1b of Gln70(His70)) as determinants of both hepatocarcinogenesis and survival rates for liver-related death. In HCV-1b patients, the cumulative change rates from Arg70 to Gln70(His70) by direct sequencing were significantly higher than those from Gln70(His70) to Arg70. In patients of Arg70 at the initial visit, the cumulative change rates from Arg70 to Gln70(His70) in IL28B rs8099917 non-TT genotype were significantly higher than those in the TT genotype. Conclusion: Substitution of aa 70 in the core region of HCV-1b is an important predictor of hepatocarcinogenesis and survival for liver-related death in HCV patients who had not received antiviral therapy. The IL28B genotype might partly affect changes over time of dominant amino acid in core aa 70 of HCV-1b. (HEPATOLOGY 2012;56:2134-2141)

epatitis C virus (HCV) usually causes chronic infection that can result in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). At present, treatments based on interferon (IFN), in combination with ribavirin, are the mainstay for combating HCV infection. In Japan, HCV genotype 1b (HCV-1b) and high viral loads account for more than 70% of HCV infections, making it difficult to treat patients with chronic hepatitis C.³

Despite numerous lines of epidemiologic evidence connecting HCV infection and the development of

HCC, it remains controversial whether HCV itself plays a direct role or an indirect role in the pathogenesis of HCC.⁴ It has become evident that HCV core region has oncogenic potential through the use of transgenic mice, but the clinical impact of the core region on hepatocarcinogenesis is still unclear.⁵ Previous reports indicated that amino acid (aa) substitutions at position 70 in the HCV core region of patients infected with HCV-1b are pretreatment predictors of poor virological response to pegylated IFN (PEG-IFN)/ribavirin combination therapy and triple therapy

Abbreviations: aa, amino acid; ALT, alanine aminomansferase; AST, aspartate aminotransferase; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; PEG/IFN, hepatitis control interferon.

From the Department of Hepatology, Toranomon Hospital, and Okinaka Memorial Institute for Medical Research, Tokyo, Japan; Liver Research Laboratory, Toranomon Hospital, Tokyo, Japan.

Received May 1, 2012; Revised May 30, 2012; accepted June 17, 2012.

Supported in part by Grants-in-Aid for scientific research and development from the Ministry of Health, Labor and Welfare and Ministry of Education Culture Sports Science and Technology, Government of Japan.

of telaprevir/PEG-IFN/ribavirin, ⁶⁻⁹ and also affects hepatocarcinogenesis. ¹⁰⁻¹³ These reports support the findings of oncogenic potential by core region from the clinical aspect. However, its impact on hepatocarcinogenesis and survival for liver-related death in patients of HCV-1b who had not received antiviral therapy is still unknown.

The *IL28B* genotype is a poor predictor of virological response to PEG-IFN/ribavirin combination therapy and triple therapy of telaprevir/PEG-IFN/ribavirin^{9,14-17} and is reported to be associated with HCC, although its impact on HCC is controversial. ¹⁸⁻²¹ Furthermore, treatment-resistant substitution of core aa 70 (glutamine/histidine at aa 70 (Gln70/His70)), which might affect hepatocarcinogenesis, was significantly more frequent in patients with treatment-resistant genotype (non-TT) than -sensitive genotype (TT) at *IL28B* rs8099917. ²¹⁻²³ Thus, the significant linkage between substitution of aa 70 and *IL28B* genotype had been shown, but it is not clarified whether the existence of a complex interaction between the virus and host might affect hepatocarcinogenesis.

The present study included 1,181 consecutive HCV-infected patients who had not received antiviral therapy. The aims of the study were: (1) To evaluate the impact of aa substitutions in the core region of HCV-1b on hepatocarcinogenesis and survival for liver-related death; and (2) To investigate the association of *IL28B* genotype and time-dependent aa changes in the core region of HCV-1b.

Patients and Methods

Patients. Among 2,799 consecutive HCV-infected patients in whom antiviral therapy (IFN monotherapy or IFN plus ribavirin combination therapy) was not induced between December 1962 and November 2010 at Toranomon Hospital, 1,181 were selected in the present study based on the following criteria. (1) Positive for anti-HCV (third-generation enzyme immunoassay, Chiron, Emerville, CA) and positive for HCV RNA (nested polymerase chain reaction [PCR]), at the initial visit. (2) Patients without HCC at the initial visit. (3) Patients infected with single genotype of

Table 1. Profiles and laboratory data at the initial visit of 1,181 patients infected with HCV, who had not received antiviral therapy

Demographic data	· · · · · · · · · · · · · · · · · · ·
Number of patients	1,181
Sex (male/female)	608/573
Age (years)*	60 (20-93)
History of blood transfusion	526 (49.2%)
Family history of liver disease	201 (20.3%)
Lifetime cumulative alcohol intake (>500 kg)	110 (10.8%)
Laboratory data*	
Total bilirubin (mg/dl)	0.7(0.1-20.0)
Aspartate aminotransferase (IU/I)	71 (13-1,052)
Alanine aminotransferase (IU/I)	88 (4-1,210)
Albumin (g/dl)	4.1 (1.0-5.5)
Hemoglobin (g/dl)	14.0 (7.8-18.0)
Platelet count (× 10 ⁴ /mm ³)	15.3 (2.6-52.9)
HCV genotype (lb / 2a or 2b)	750/431
Levels of viremia (high viral load)	757 (74.4%)
Amino acid substitutions in the HCV genotype Ib	
Core aa 70 (argjnine / glutamine (histidine))	431/319
Core aa 91 (leucine / methionine)	482/268

Data are number and percentages of patients, except those denoted by *, which represent the median (range) values.

HCV-1b, 2a, or 2b. (4) In HCV-1b, patients analyzed aa substitutions of the core region by direct sequencing, one or more times from the initial visit. (5) Patients negative for hepatitis B surface antigen (radioimmunoassay, Dainabot, Tokyo, Japan). (6) Patients free of coinfection with human immunodeficiency virus. (7) Patients free of other types of chronic liver disease, including hemochromatosis, Wilson's disease, primary biliary cirrhosis, alcoholic liver disease, autoimmune liver disease, inherited liver disease including alpha-1 antitrypsin deficiency, and hepatic venous outflow block. (8) Patients who consented to the study.

Table 1 summarizes the profiles and laboratory data at the initial visit of 1,181 patients infected with HCV who had not received antiviral therapy. They did not receive antiviral therapy based on concerns about adverse effects, lack of time for treatment, physician recommendation based on the appearance of depression and cardiopulmonary disease, lower levels of aspartate aminotransferase (AST) / alanine aminotransferase (ALT), or elderly patients. They included 608 males and 573 females, aged 20 to 93 years (median, 60 years). The median follow-up time from the initial visit until death or until the last visit was 9.0 years (range, 0.0-37.7)

Address reprini requests to: Norio Akuta, M.D., Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minaso-ku. Tokyo, 105-0001, Japan. E-mail: akuta-gi@umin.ac.jp; fax: +81-44-860-1623.

Copyright © 2012 by the American Association for the Study of Liver Diseases.

View this article online at wileyonlinelibrary.com.

DOI 10.1002/hep.25949

Potential conflict of interest: Norio Akuta has received speakers' bureau from MSD K.K., and holds a right to get some loyalty from SRL. Inc.. Hiromitsu Kumada has received speakers' bureau from MSD K.K., Mitsubishi Tanabe Pharma, Dainippon Sumitomo Pharma, Bristol-Myers Squibb, and holds a right to get some loyalty from SRL. Inc.. Funitaka Suzuki has received speakers' bureau from Bristol-Myers Squibb. The other authors have nothing to disclose.

2136 AKUTA ET AL. HEPATOLOGY, December 2012

years). The study protocol was approved by the Human Ethics Review Committee of the institution.

Laboratory Investigations. Blood samples were frozen at -80°C within 4 hours of collection and were not thawed until used for testing. Anti-HCV, HCV RNA, HCV genotype, and aa substitutions of the HCV-1b core region were assayed using stored frozen sera. HCV genotype was determined by PCR using a mixed primer set derived from nucleotide sequences of the NS5 region.²⁴ HCV RNA quantitative analysis was measured by branched DNA assay v. 2.0 (Chiron), AMPLICOR GT HCV Monitor v. 2.0 using the 10fold dilution method (Roche Molecular Systems, Pleasanton, CA), or COBAS TaqMan HCV test (Roche Diagnostics, Tokyo, Japan). High viral load of viremia levels was defined as branched DNA assay ≥ 1.0 Meg/ mL, AMPLICOR GT HCV Monitor $\geq 100 \times 10^3$ IU/mL, or COBAS TaqMan HCV test ≥5.0 log IU/mL. Low viral load was defined as branched DNA assay <1.0 Meg/mL, AMPLICOR GT HCV Monitor $<100 \times 10^3$ IU/mL, or COBAS TagMan HCV test <5.0 log IU/mL.

Detection of Amino Acid Substitutions in Core Regions of HCV-1b. In the present study, aa substitutions of the core region of HCV-1b were analyzed by direct sequencing. HCV RNA was extracted from serum samples and reverse transcribed with random primer and MMLV reverse transcriptase (Takara Syuzo, Tokyo, Japan). Nucleic acids of the core region were amplified by nested PCR using the following primers. The first-round PCR was performed with CE1 (sense, 5'-GTC TGC GGA ACC GGT GAG TA-3', nucleotides: 134-153) and CE2 (antisense, 5'-GAC GTG GCG TCG TAT TGT CG-3', nucleotides: 1096-1115) primers, and the second-round PCR with CC9 (sense, 5'-ACT GCT AGC CGA GTA GTG TT-3', nucleotides: 234-253) and CE6 (antisense, 5'-GGA GCA GTC GTT CGT GAC AT-3', nucleotides: 934-953) primers. All samples were initially denatured at 95°C for 2 minutes. The 35 cycles of amplification were set as follows: denaturation for 30 seconds at 95°C, annealing of primers for 30 seconds at 55°C, and extension for 1 minute at 72°C with an additional 7 minutes for extension. Then 1 μ L of the first PCR product was transferred to the second PCR reaction. Other conditions for the second PCR were the same as the first PCR, except that the second PCR primers were used instead of the first PCR primers. The amplified PCR products were purified by the QIA quick PCR purification kit (Qiagen, Tokyo, Japan) after agarose gel electrophoresis and then used for direct sequencing. Dideoxynucleotide termination sequencing

was performed with the Big Dye Deoxy Terminator Cycle Sequencing kit (Perkin-Elmer, Tokyo, Japan).

With the use of HCV-J (accession no. D90208) as a reference,²⁵ the dominant sequence of 1-191 aa in the core protein of HCV-1b was determined by direct sequencing and then compared with the consensus sequence constructed on 50 clinical samples to detect substitutions at aa 70 of arginine (Arg70) or glutamine/histidine (Gln70/His70) and aa 91 of leucine (Leu91) or methionine (Met91).⁶ Especially, patients were classified into three HCV subgroups according to HCV genotype in combination with aa substitutions in HCV-1b core region (HCV-1b of Arg70, HCV-1b of Gln70(His70), and HCV-2a/2b).

Determination of II.28B Genotype. IL28B rs8099917 was genotyped by the Invader assay, TaqMan assay, or direct sequencing, as described. ^{26,27}

Follow-Up and Diagnosis of HCC. Follow-up of patients was made on a monthly to trimonthly basis after the initial visit. Imaging diagnosis was made one or more times per year with ultrasonography, computed tomography, or magnetic resonance imaging. During this time, liver-related death, which included HCC, cholangiocellular carcinoma, liver failure, or esophageal variceal bleeding, was also evaluated.

Statistical Analysis. The cumulative rates of hepatocarcinogenesis, survival for liver-related death, and amino acid changes in the core region were calculated using the Kaplan-Meier technique; differences between the curves were tested using the log-rank test. Statistical analyses of hepatocarcinogenesis, survival, and amino acid changes, according to groups, were calculated using the period from the initial visit. Stepwise Cox regression analysis was used to determine independent predictive factors that were associated with hepatocarcinogenesis and survival for liver-related death. The hazard ratio (HR) and 95% confidence interval (95% CI) was also calculated. Potential predictive factors associated with hepatocarcinogenesis and survival for liver-related death included the variables: sex, age, history of blood transfusion, family history of liver disease, lifetime cumulative alcohol intake, total bilirubin, AST, ALT, albumin, hemoglobin, platelet count, levels of viremia, and HCV subgroup according to HCV genotype in combination with aa substitution in core region. Variables that achieved statistical significance (P < 0.05) on univariate analysis were tested by multivariate Cox proportional hazard model to identify significant independent factors. Statistical comparisons were performed using the SPSS software (Chicago, IL). P < 0.05 by the two-tailed test were considered significant.

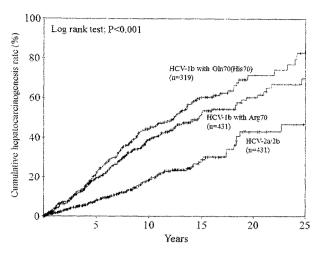


Fig. 1. Cumulative hepatocarcinogenesis rates according to HCV genotype in combination with amino acid substitutions in core region of HCV-1b. The rates were significantly different among the three HCV subgroups (P < 0.001; log-rank test). Especially, the rates in HCV-1b of Gln70(His70) were significantly higher than those in HCV-1b of Arg70 (P = 0.028; log-rank test) and HCV-2a/2b (P < 0.001; log-rank test), and the rates in HCV-1b of Arg70 were also significantly higher than those in HCV-2a/2b (P < 0.001; log-rank test).

Results

Hepatocarcinogenesis Rates and Survival Rates for Liver-Related Death in Patients Infected With HCV Who Had Not Received Antiviral Therapy. During the follow-up, 413 patients (35.0%) developed HCC. The cumulative hepatocarcinogenesis rates were 16.3, 34.3, 48.3, 58.7, and 69.1% at the end of 5, 10, 15, 20, and 25 years, respectively. The median interval between the initial visit and detection of HCC was 6.2 years (range, 0.1-31.7 years).

During the follow-up period, 243 patients (20.6%) died due to liver-related causes, and 97 of 243 (90.5%) developed HCC. The cumulative survival rates for liver-related death were 96.2, 84.8, 68.9, 55.0, and 46.1% at the end of 5, 10, 15, 20, and 25 years, respectively. The median interval between the initial visit and liver-related death was 10.1 years (range, 0.4-35.8 years).

Hepatocarcinogenesis Rates and Survival Rates for Liver-Related Death According to HCV Genotype in Combination with Amino Acid Substitutions in Core Region of HCV-1b. During the follow-up, 163 patients (51.3%), 175 (41.2%), and 75 (17.6%) developed HCC in HCV-1b of Gln70(His70), HCV-1b of Arg70, and HCV-2a/2b, respectively. In HCV-1b of Gln70(His70), HCV-1b of Arg70, and HCV-2a/2b, the cumulative hepatocarcinogenesis rates were 21.7, 19.3, 8.0% at the end of 5 years; 44.4, 39.4, 18.2% at the end of 10 years; 60.4, 52.7, 29.1% at the end of

15 years; 71.6, 60.3, 43.1% at the end of 20 years; and 87.1, 69.8, 46.9% at the end of 25 years, respectively. The rates were significantly different among the three HCV subgroups (P < 0.001) (Fig. 1). Especially, the rates in HCV-1b of Gln70(His70) were significantly higher than those in HCV-1b of Arg70 (P = 0.028) and HCV-2a/2b (P < 0.001), and the rates in HCV-1b of Arg70 were also significantly higher than those in HCV-2a/2b (P < 0.001).

During the follow-up, 104 patients (34.4%), 97 (23.4%), and 42 (10.0%) died due to liver-related causes in HCV-1b of Gln70(His70), HCV-1b of Arg70, and HCV-2a/2b, respectively. In HCV-1b of Gln70(His70), HCV-1b of Arg70, and HCV-2a/2b, the cumulative survival rates for liver-related death were 95.2, 95.4, 97.9% at the end of 5 years; 77.7, 83.3, 93.9% at the end of 10 years; 58.4, 68.4, 81.2% at the end of 15 years; 39.3, 58.4, 69.0% at the end of 20 years; and 33.8, 47.5, 59.5% at the end of 25 years, respectively. The rates were significantly different among the three HCV subgroups (P < 0.001) (Fig. 2). Especially, the rates in HCV-1b of Gln70(His70) were significantly lower than those in HCV-1b of Arg70 (P = 0.016) and HCV-2a/2b (P < 0.001), and the rates in HCV-1b of Arg70 were also significantly lower than those in HCV-2a/2b (P < 0.001).

Predictive Factors Associated with Hepatocarcinogenesis and Survival for Liver-Related Death in Patients Infected with HCV Who Had Not Received Antiviral Therapy. The data for the whole population

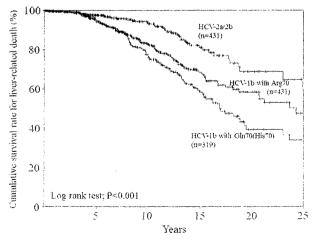


Fig. 2. Cumulative survival rates for liver-related death according to HCV genotype in combination with amino acid substitutions in the core region of HCV-1b. The rates were significantly different among the three HCV subgroups (P<0.001; log-rank test). Especially, the rates in HCV-1b of Gln70(His70) were significantly lower than those in HCV-1b of Arg70 (P=0.016; log-rank test) and HCV-2a/2b (P<0.001; log-rank test), and the rates in HCV-1b of Arg70 were also significantly lower than those in HCV-2a/2b (P<0.001; log-rank test).

2138 AKUTA ET AL. HEPATOLOGY, December 2012

Table 2. Factors associated with hepatocarcinogenesis in patients infected with HCV, who had not received antiviral therapy, identified bymultivariate analysis

[Factors]	[Category]	Hazard ratio (95% confidence interval)	p
Gender	1: female	1	
	2: male	1.78 (1.44-2.21)	< 0.001
Age (years)	1:<60	1	
	2:≥60	1.68 (1.35-2.09)	< 0.001
Albumin (g/dl)	1: ≥3.9	1	
-	2: <3.9	1.94 (1.55-2.42)	< 0.001
Platelet count $(\times 10^4/\text{mm}^3)$	1: ≥15.0	1	
	2:<15.0	2.89 (2.25-3.72)	< 0.001
Aspartate aminotransferase (IU/I)	1:<67	1	
	2:≥67	1.92 (1.47-2.52)	< 0.001
HCV subgroup	1: HCV-2a/2b	1	
	2: HCV-1b with Arg70	1.91 (1.42-2.55)	< 0.001
	3: HCV-1b with Gln70(His70)	1.94 (1.45-2.61)	< 0.001

Cox proportional hazard model

sample were analyzed to determine those factors that could predict hepatocarcinogenesis and survival for liver-related death.

Univariate analysis identified eight parameters that significantly correlated with hepatocarcinogenesis. These included gender (male; P < 0.001), age (≥ 60 years; P < 0.001), total bilirubin ($\geq 1.2 \text{ mg/dL}$; P <0.001), AST (\geq 67 IU/L; P < 0.001), ALT (\geq 85 IU/ L; P < 0.001), platelet count (<15.0 × 10⁴/mm³; P< 0.001), albumin (< 3.9 g/dL; P < 0.001), and lifetime cumulative alcohol intake (\geq 500 kg; P = 0.025). Furthermore, the rates in HCV-1b of Gln70(His70) were significantly higher than those in HCV-1b of Arg70 (P = 0.028) and HCV-2a/2b (P < 0.001). These factors were entered into multivariate analysis, which then identified six parameters that significantly influenced hepatocarcinogenesis independently: gender (male; HR 1.78, P < 0.001), age (≥60 years; HR 1.68, P < 0.001), albumin (<3.9 g/dL; HR 1.94, P < 0.001), platelet count ($<15.0 \times 10^4/\text{mm}^3$; HR 2.89, P < 0.001), AST (\geq 67 IU/L; HR 1.92, P <0.001),and **HCV** subgroup (HCV-1b Gln70(His70); HR 1.94, P = 0.001) (Table 2).

Univariate analysis identified seven parameters that significantly correlated with survival for liver-related death. These included gender (male; P < 0.001), age (≥ 60 years; P < 0.001), total bilirubin (≥ 1.2 mg/dL; P < 0.001), AST (≥ 67 IU/L; P < 0.001), ALT (≥ 85 IU/L; P < 0.001), platelet count ($< 15.0 \times 10^4$ /mm³; P < 0.001), and albumin (< 3.9 g/dL; P < 0.001). Furthermore, the rates in HCV-1b of Gln70(His70)

were significantly lower than those in HCV-1b of Arg70 (P=0.016) and HCV-2a/2b (P<0.001). These factors were entered into multivariate analysis, which then identified six parameters that significantly influenced survival for liver-related death independently: gender (male; HR 1.91, P<0.001), age (≥ 60 years; HR 1.61, P=0.001), albumin (<3.9 g/dL; HR 2.49, P<0.001), platelet count ($<15.0\times10^4/$ mm³; HR 3.69, P<0.001), AST (≥ 67 IU/L; HR 4.16, P<0.001), and HCV subgroup (HCV-1b of Gln70(His70); HR 2.16, P<0.001) (Table 3).

IL28B Genotype and Time-Dependent Amino Acid Changes in Core Region of HCV-1b. Among 1,181 patients, 359 could be evaluated for changes over time of dominant amino acid by direct sequencing in core aa 70 of HCV-1b. Furthermore, among 359 patients, 142 could also be analyzed for the relationship between IL28B rs8099917 genotype and time-dependent changes of core aa 70.

In 199 patients of Arg70 at the initial visit, 34 (17.1%)changed patients from Arg70 Gln70(His70) during the follow-up. Inversely, in 160 patients of Gln70(His70) at the initial visit, eight patients (5.0%) changed from Gln70(His70) to Arg70 during the follow-up. In change from Arg70 to Gln70(His70), and change from Gln70(His70) to Arg70, the cumulative change rates were 3.0, 0% at the end of 5 years; 16.8, 5.8% at the end of 10 years; 27.4, 11.5% at the end of 15 years; and 38.9, 16.7% at the end of 20 years, respectively. The cumulative change rates from Arg70 to Gln70(His70) were significantly higher than those from Gln70(His70) to Arg70 (P = 0.002).

In 78 patients of Arg70 and TT genotype at the initial visit, nine (11.5%) changed from Arg70 to Gln70(His70) during the follow-up. In 11 patients of Arg70 and non-TT genotype at the initial visit, seven (63.6%) changed from Arg70 to Gln70(His70) during the follow-up. In TT and non-TT genotype, the cumulative change rates were 0, 9.1% at the end of 5 years; 3.2, 65.4% at the end of 10 years; 14.8, 65.4% at the end of 15 years; and 29.0, 65.4% at the end of 20 years, respectively. The cumulative change rates in non-TT genotype were significantly higher than those in TT genotype (P < 0.001) (Fig. 3A).

In 30 patients of Gln70(His70) and TT genotype at the initial visit, three patients (10.0%) changed from Gln70(His70) to Arg70 during the follow-up. In 23 patients of Gln70(His70) and non-TT genotype at the initial visit, no patients changed from Gln70(His70) to Arg70 during the follow-up. In TT and non-TT genotype, the cumulative change rates were 0, 0% at

Table 3. Factors associated with survival for liver-related death in patients infected with HCV, who had not received antiviral therapy, identified by multivariate analysis

		•	
[Factors]	[Category]	Hazard ratio (95% confidence interval)	P
Gender	1: female	1	
	2: male	1.91 (1.45-2.52)	< 0.001
Age (years)	1:<60	1	
	2:≥60	1.61 (1.21-2.12)	0.001
Albumin (g/dl)	1:≥3,9	1	
	2:<3.9	2.49 (1.87-3.31)	< 0.001
Platelet count $(\times 10^4/\text{mm}^3)$	1:≥15.0	1	
	2:<15.0	3.69 (2.65-5.13)	< 0.001
Aspartate aminotransferase (IU/I)	1:<67	1	
(, .,	2:>67	4.16 (2.43-7.11)	< 0.001
HCV subgroup	1: HCV-2a/2b	1	
3 **1	2: HCV-1b with Arg70 3: HCV-1b with Gln70(His70)	1.83 (1.25-2.68) 2.16 (1.48-3.16)	
		(=: 10 0.10)	

Cox proportional hazard model

the end of 5 years; 9.1, 0% at the end of 10 years; 20.5, 0% at the end of 15 years; and 20.5, 0% at the end of 20 years, respectively. The cumulative change rates in TT genotype were not significantly higher than those in non-TT genotype (P = 0.114) (Fig. 3B).

Discussion

This is the first report to indicate that aa substitution in the core region might affect hepatocarcinogenesis and survival for liver-related death in HCV patients who had not received antiviral therapy. The treatment-

resistant mechanism and oncogenic potential of HCV core region are still unclear. Moriishi et al. 28,29 showed that a knockout of the PA28y gene induces the accumulation of HCV core protein in the nucleus of hepatocytes of HCV core gene transgenic mice and disrupts development of both hepatic steatosis and HCC. Hu et al. 13 indicated that the point-mutations of the core gene, including core aa 70 and aa 91, might change the secondary structure of not only RNA but also protein. As a result, the functions of both RNA and protein of the core region, such as an interaction with other DNA/RNA or proteins, might change and lead to hepatocarcinogenesis. Funaoka et al.30 recently reported that treatment-resistant substitutions of core aa 70 and aa 91 (Gln70/His70 and Met91) were resistant to interferon in vitro, and the resistance might be induced by interleukin 6-induced upregulation of SOCS3. Further studies should be performed to investigate the treatment-resistant mechanism and oncogenic potential of aa substitution in the core region.

The association between HCV genotype and the risk of HCC is not clear. A previous report indicated that hepatocarcinogenesis rates in patients infected with HCV-1b were significantly higher than those in patients infected with HCV-2a/2c, based on an Italian cohort, ³¹ and this finding might be partly explained by distribution of HCV-1b of Arg70 or Gln70(His70). In fact, the hepatocarcinogenesis rates in HCV-1b of Gln70(His70) were significantly higher than those in HCV-1b of Arg70 and HCV-2a/2b in the present study based on a Japanese cohort. The present study is the first report to indicate that substitution of aa 70 in

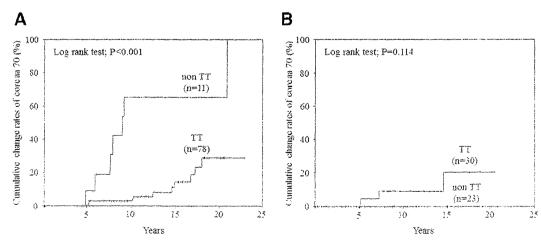


Fig. 3. Changes over time of dominant amino acid by direct sequencing in core aa 70 of HCV-1b, according to IL28B rs8099917 genotype. (A) In HCV-1b patients of Arg70 at the initial visit, cumulative change rates from Arg70 to GIn70(His70) during follow-up. The rates in non-TT genotype were significantly higher than those in TT genotype $(P < 0.001; \log_{10} t_{10} t_{10})$ log-rank test). (B) In HCV-1b patients of GIn70(His70) at the initial visit, cumulative change rates from GIn70(His70) to Arg70 during follow-up. The rates in TT genotype were not significantly higher than those in non-TT genotype $(P = 0.114; \log_{10} t_{10})$ rank test).

the core region of HCV-1b is not only an important predictor of hepatocarcinogenesis, but also of survival for liver-related death in HCV patients who had not received antiviral therapy. The reason for the higher rates of liver-related death in HCV-1b of Gln70(His70) might be due to the higher rates of HCC. In conclusion, reducing the risk of hepatocarcinogenesis by HCV RNA eradication and/or ALT normalization by antiviral therapy should be recommended, especially in HCV-1b of Gln70(His70) as a high-risk group for hepatocarcinogenesis.³²

The significant linkage between substitution of aa 70 and IL28B genotype had been shown, 21-23 but the mechanism of complex interaction between the virus and host is not clear. In the present study, the cumulative change rates from Arg70 to Gln70(His70) were significantly higher than those from Gln70(His70) to from Arg70 the rates Arg70. Especially, Gln70(His70) in IL28B rs8099917 non-TT genotype were significantly higher than those in TT genotype. Although the molecular mechanisms of their relationship remain unknown, it could be speculated that IL28B genotype has an influence on the time-dependent changes of core aa 70, and refractory factors for treatment might accumulate in HCV-1b patients with non-TT. Hence, elucidating the relationship between substitution of aa 70 and IL28B genotype is an important step in understanding the mechanism of HCV treatment-resistance and disease progression.

The impact of *IL28B* genotype on hepatocarcinogenesis is controversial. ¹⁸⁻²¹ In this study, the effect of IL28B rs8099917 genotype on HCC was assessed in 515 of 2,799 consecutive HCV-infected patients who had not received antiviral therapy. Interestingly, the cumulative hepatocarcinogenesis rates in TT of the treatment-sensitive genotype was not significantly lower than those in non-TT of the treatment-resistant genotype (P = 0.930; log-rank test) in a preliminary study based on a small numbers of patients (Fig. 4). This result suggests that core aa 70 as a predictor of hepatocarcinogenesis might not only be influenced by IL28B genotype, but also by other factors strongly related to hepatocarcinogenesis independent of IL28B genotype. As a whole, it is regrettable that its impact on hepatocarcinogenesis in HCV patients who had not received antiviral therapy could not be investigated in this study. Further comprehensive studies should be performed to disclose the molecular mechanisms for the complicated relationships among core aa 70, IL28B genotype, and hepatocarcinogenesis.

The limitations of the present study are that patients who had received treatment besides IFN-

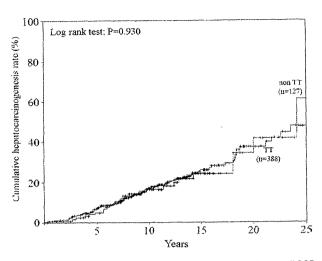


Fig. 4. Cumulative hepatocarcinogenesis rates according to IL28B rs8099917 genotype. The rates in TI genotype were not significantly lower than those in non-TI genotype (P=0.930; log-rank test) in a preliminary study based on a small number of 515 patients.

related therapy (such as ursodeoxycholic acid, branched chain amino acid, and phlebotomy) could not be excluded. Furthermore, the clinical impact of metabolic factors (such as diabetes, insulin resistance, hepatocyte steatosis, and obesity) on hepatocarcinogenesis could also not be investigated. Further studies should be performed to investigate the clinical impact of treatment besides IFN-related therapy and metabolic factors on hepatocarcinogenesis. 33-37

In conclusion, substitution of aa 70 in the core region of HCV-1b is the important predictor of hepatocarcinogenesis and survival for liver-related death in HCV patients who had not received antiviral therapy. This study emphasizes the importance of antiviral therapy to reduce the risk of hepatocarcinogenesis, especially in HCV-1b of Gln70(His70) as a high-risk group for hepatocarcinogenesis. Furthermore, IL28B genotype might partly affect changes over time of dominant amino acid in core aa 70. This result should be interpreted with caution because races other than Japanese populations and patients infected with HCV-1a were not included. Any generalization of the results should await confirmation by studies of patients of other races and HCV-1a. Further prospective studies of a larger number of patients matched for race and HCV genotype are required to explore the relationship between core aa 70, IL28B genotype, and hepatocarcinogenesis.

References

 Niederau C, Lange S, Heintges T, Erhardt A, Buschkamp M, Hürter D, et al. Progress of chronic hepatitis C: results of a large, prospective cohort study. Hepatology 1998;28:1687-1695.

- Kenny-Walsh E. Clinical outcomes after hepatitis C infection from contaminated anti-D immune globulin. Irish Hepatology Research Group. N Engl J Med 1999;340:1228-1233.
- Tsubota A, Arase Y, Someya T, Suzuki Y, Suzuki F, Saitoh S, et al. Early viral kinetics and treatment outcome in combination of highdose interferon induction vs. pegylated interferon plus ribavirin for naive patients infected with hepatitis C virus of genotype 1b and high viral load. J Med Virol 2005;75:27-34.
- Koike K. Molecular basis of hepatitis C virus-associated hepatocarcinogenesis: lessons from animal model studies. Clin Gastroenterol Hepatol 2005;3:S132-S135.
- Moriya K. Fujie H. Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K. et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998;4:1065-1067.
- Akura N, Suzuki F, Sezaki H, Suzuki Y, Hosaka T, Someya T, et al. Association of amino acid substitution pattern in core protein of hepatitis C virus genotype1b high viral load and non-virological response to interferon-ribavirin combination therapy. Intervirology 2005;48:372-380.
- 7. Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, et al. Predictive factors of early and sustained responses to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b: amino acid substitutions in the core region and low-density lipoprotein cholesterol levels. J Hepatol 2007;46:403-410.
- Donlin MJ, Cannon NA, Yao E, Li J, Wahed A, Taylor MW, et al. Pretreatment sequence diversity differences in the full-length hepatitis C virus open reading frame correlate with early response to therapy. J Virol 2007;81:8211-8224.
- Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, et al. Amino acid substitution in hepatitis C virus core region and genetic variation near the interleukin 28B gene predict viral response to telaprevir with peginterferon and ribavirin. HEPATOLOGY 2010;52:421-429.
- Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology 2007;46: 1357-1364.
- 11. Fishman SL. Factor SH, Balestrieri C, Fan X, Dibisceglie AM, Desai SM, et al. Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma. Clin Cancer Res 2009;15:3205-3213.
- Nakamoto S, Imazeki F, Fukai K, Fujiwara K, Arai M, Kanda T, et al. Association between mutations in the core region of hepatitis C virus genotype 1 and hepatocellular carcinoma development. J Hepatol 2010;52:72-78.
- Hu Z, Muroyama R, Kowatari N, Chang J, Omata M, Kato N. Characteristic mutations in hepatitis C virus core gene related to the occurrence of hepatocellular carcinoma. Cancer Sci 2009;100:2465-2468.
- 14. Ge D. Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009;461:399-401.
- Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, et al. Genome-wide association of IL28B with response to pegylared interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009;41:1105-1109.
- Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 2009;41:1100-1104.
- 17. Rauch A, Kutalik Z, Descombes P, Cai T, di Iulio J, Mueller T, et al., Swiss Hepatitis C and HIV Cohort Studies. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure — a genome-wide association study. Gastroenterology 2010;138:1338-1345.
- Fabris C, Falleti E, Cussigh A, Bitetto D, Fontanini E, Bignulin S, et al. IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J Hepatol 2011;54:716-722.
- Bochud P, Bibert S. Kutalik Z, Patin E, Guergnon J, Nalpas B, et al. IL28B alleles associated with poor HCV clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology 2012;55:384-394.

- Joshita S, Umemura T, Katsuyama Y, Ichikawa Y, Kimura T, Morita S, et al. Association of IL28B gene polymorphism with development of hepatocellular carcinoma in Japanese patients with chronic hepatitis C virus infection. Hum Immunol 2012;73:298-300.
- 21. Miura M, Maekawa S, Kadokura M, Sueki R, Komase K, Shindo H, et al. Analysis of viral amino acids sequences and the IL28B SNP influencing the development of hepatocellular carcinoma in chronic hepatitis C. Hepatol Int 2011 Aug 17 [Epub ahead of print].
- 22. Abe H, Ochi H, Maekawa T, Hayes CN, Tsuge M, Miki D, et al. Common variation of IL28 affects gamma-GTP levels and inflammation of the liver in chronically infected hepatitis C virus patients. J Hepatol 2010:53:439-443.
- Kobayashi M, Suzuki F, Akuta N, Sezaki H, Suzuki Y, Hosaka T, et al. Association of two polymorphisms of the IL28B gene with viral factors and treatment response in 1,518 patients infected with hepatitis C virus. J Gastroenterol 2012;47:596-605.
- Chayama K, Tsubota A, Arase Y, Saitoh S, Koida I, Ikeda K, et al. Genotypic subtyping of hepatitis C virus. J Gastroenterol Hepatol 1993;8:150-156.
- Kato N. Hijikata M, Ootsuyama Y, Nakagawa M. Ohkoshi S, Sugimura T, et al. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A 1990;87:9524-9528.
- Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 2001;46:471-477.
- Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginie deminase 4, are associated with theumatoid arthritis. Nat Genet 2003;34:395-402.
- Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K, Murata S, et al. Proteasome activator PA28γ-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 2003;77:10237-10249.
- Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T, et al. Critical role of PA28γ in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci U S A 2007;104:1661-1666.
- Funaoka Y, Sakamoto N, Suda G, Itsui Y, Nakagawa M, Kakinuma S, et al. Analysis of interferon signaling by infectious hepatitis C virus clones with substitutions of core amino acids 70 and 91. J Virol 2011; 85:5986-5994.
- Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E. Mondelli MU. Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: a seventeenyear prospective cohort study. Hepatol.ogv 2007;46:1350-1356.
- 32. Ikeda K, Saitoh S, Arase Y, Chayama K, Suzuki Y, Kobayashi M, et al. Effect of interferon therapy on hepatocellular carcinogenesis in patients with chronic hepatitis type C: a long-term observation study of 1643 patients using statistical bias correction with proportional hazard analysis. Hepatology 1999;29:1124-1130.
- Tarao K, Fujiyama S, Ohkawa S, Miyakawa K, Tamai S, Hirokawa S, et al. Ursodiol use is possibly associated with lower incidence of hepatocellular carcinoma in hepatitis C virus-associated liver cirrhosis. Cancer Epidemiol Biomarkers Prev 2005;14:164-169.
- Kawaguchi T, Sata M. Importance of hepatitis C virus-associated insulin resistance: therapeutic strategies for insulin sensitization. World J. Gastroenterol. 2010;16:1943-1952.
- 35. Kawaguchi T, Taniguchi E, Itou M, Sumie S, Yamagishi S, Sata M. The pathogenesis, complications and therapeutic strategy for hepatitis C virus-associated insulin resistance in the era of anti-viral treatment. Rev Recent Clin Trials 2010;5:147-157.
- Kawaguchi T, Izumi N, Charlton MR, Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. HEPATOLOGY 2011;54:1063-1070.
- 37. Sumida Y, Kanemasa K, Hara T, Inada Y, Sakai K, Imai S, et al. Impact of amino acid substitutions in the hepatitis C virus genotype 1b core region on liver steatosis and glucose tolerance in non-cirrhotic patients without overt diabetes. J Gastroenterol Hepatol 2011;26:836-842.

ORIGINAL ARTICLE—LIVER, PANCREAS, AND BILIARY TRACT

Long-term efficacy of interferon therapy in patients with chronic hepatitis B virus infection in Japan

Fumitaka Suzuki · Yasuji Arase · Yoshiyuki Suzuki · Norio Akuta · Hitomi Sezaki · Yuya Seko · Yusuke Kawamura · Tetsuya Hosaka · Masahiro Kobayashi · Satoshi Saito · Kenji Ikeda · Mariko Kobayashi · Hiromitsu Kumada

Received: 5 October 2011 / Accepted: 5 January 2012 / Published online: 24 February 2012 © Springer 2012

Abstract

Background Few studies have investigated the long-term effects of interferon (IFN) therapy for chronic hepatitis B (CHB). In this retrospective study, we investigated the efficacy of and predictors of response to IFN therapy in CHB patients.

Methods We analyzed data for 615 Japanese CHB patients (hepatitis B e antigen [HBeAg]-positive 414, HBeAg-negative 201) treated with IFN, and conducted follow up for a median duration of 8.1 years (range 0.5–23.2). Responders were defined as patients who showed continuously normalized alanine transaminase (ALT) levels, HBeAg clearance, and low hepatitis B virus (HBV) DNA levels at 6 months post-treatment or for a span of more than 6 months until each test point at 1, 3, 5, and 10 years.

Results The IFN response rates of all patients were 21, 18, 21, 23, and 25% at 6 months and 1, 3, 5, and 10 years, respectively. On multivariate analysis, significant determinants of the outcome of IFN therapy were as follows: at 6 months and 1 year, young age, low HBV DNA levels, and long duration of treatment; at 3 years, long duration of

treatment, young age, and high level of albumin; at 5 years, high level of albumin, female, and pretreated with IFN; and at 10 years, HBeAg-negative. Sixty-nine of the 615 patients (11%) achieved seroclearance of hepatitis B surface antigen (HBsAg). On multivariate analysis, age ≥30 years, HBV genotype A, and male were all independent factors predicting the achievement of HBsAg seroclearance.

Conclusion HBeAg, HBV DNA level, age, sex, albumin, duration of treatment, pretreatment with IFN, and HBV genotype were important factors in determining long-term response to IFN therapy.

Keywords Interferon · Hepatitis B virus · Chronic hepatitis B · Genotype · Hepatitis B surface antigen

Abbreviations

CHB Chronic hepatitis B HBV Hepatitis B virus IFN Interferon

HBeAg Hepatitis B e antigen ALT Alanine transaminase

MU Million units

HBsAg Hepatitis B surface antigen

CLEIA Chemiluminescent enzyme immunoassay bDNA Branched-chain DNA probe assay

TMA-HPA Transcription-mediated amplification and

hybridization protection assay

PCR Polymerase chain reaction

ELISA Enzyme-linked immunosorbent assay

AST Aspartate transaminase

AFP α Fetoprotein OR Odds ratio

CI Confidence interval HCC Hepatocellular carcinoma

F. Suzuki (🖾) · Y. Arase · Y. Suzuki · N. Akuta · H. Sezaki

Y. Seko · Y. Kawamura · T. Hosaka · M. Kobayashi

S. Saito · K. Ikeda · H. Kumada

Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan

e-mail: fumitakas@toranomon.gr.jp

M. Kobayashi

Research Institute for Hepatology, Toranomon Hospital, Tokyo, Japan

2 Springer

Introduction

Hepatitis B virus (HBV) infection is a common disease that can induce a chronic carrier state and is associated with the risk of developing progressive disease and hepatocellular carcinoma [1]. Interferon (IFN) and several nucleoside/nucleotide analogues such as lamivudine, adefovir dipivoxil. entecavir, and tenofovir disoproxil fumarate are currently approved as treatments for chronic hepatitis B (CHB) in most countries [2–5]. Successful treatment of CHB with clearance of hepatitis B e antigen (HBeAg), reduction in serum HBV DNA levels, and normalization of alanine transaminase (ALT) levels is associated with a favorable long-term outcome, independent of the antiviral drug used [6, 7].

A meta-analysis of IFN therapy published in 1993 reviewed 15 randomized controlled studies involving 837 adult patients who received IFN- α at doses of 5–10 million units (MU) administered at intervals ranging from daily to three times weekly for 4-6 months [8]. Clearance of HBeAg was noted in 33% of the treated patients compared with 12% of controls. Elimination of detectable HBV DNA and normalization of ALT levels were also more common in the treated patients than in the controls. The major pretreatment factors that correlated with a response were high ALT levels [9-11], low HBV DNA levels [9, 10], female sex, and elevated liver activity and fibrosis on liver biopsy [8]. Another recent meta-analysis of 24 randomized controlled trials concluded that the rates of persistent ALT normalization, clearance of HBeAg, and sustained elimination of HBV DNA (determined by hybridization) induced by IFN therapy were approximately 25% greater than the rates for controls. A more recent meta-analysis report showed that IFN increased the incidence of HBeAg and hepatitis B surface antigen (HBsAg) seroclearance after long-term follow up of 3-7 years [12].

However, specific data on the long-term effects of IFN therapy (median follow-up duration of 8.1 years), particularly among the Japanese, are limited. Moreover, few reports have investigated factors predicting the achievement of HBsAg seroclearance. To further evaluate factors influencing clinical outcome, we performed a retrospective cohort study on CHB patients treated with IFN in our hospital.

Patients and methods

Patients

We retrospectively examined 615 Japanese patients (151 females and 464 males) who commenced IFN treatment between June 1984 and April 2008 in the Department of

Table 1 Characteristics of patients at commencement of interferon therapy

)
)
3.2)
0)
578)
.8)
.3)
00)
62/72/11
5 to >7.6)
/1/1/1/47

Values are expressed as medians and ranges (in parentheses) or as numbers and percentages (in parentheses)

HBV hepatitis B virus, HBeAg hepatitis B e antigen, ND not done

Hepatology at Toranomon Hospital (Table 1). Several of the patients have been included in previous reports [13–15].

All enrolled patients were followed up for a range of 0.5–23.2 years from completion of IFN treatment, with a median follow-up duration of 8.1 years. Before the commencement of IFN treatment, all patients had been positive for HBsAg in the serum for more than 6 months, and all were confirmed to have hepatitis caused by HBV and not by another vector, such as infection with hepatitis C virus or autoimmune hepatitis. None had a history of drug abuse or alcoholic hepatitis, and none had received nucleoside/nucleotide analogue therapy. The study was conducted in accordance with the ethical principles of the Declaration of Helsinki and was approved by the Toranomon Hospital Ethics Committee. Informed consent was obtained from each patient.

Interferon therapy and assessment of response to therapy

Patients received 3–12 MU of IFN- α or IFN- β (Sumiferon: Dainippon Sumitomo Pharma. Osaka, Japan; Canferon A: Takeda Chemical Industries, Osaka, Japan; Intron A: Schering-Plough MSD KK, Osaka, Japan; and Feron: Toray, Tokyo, Japan). The durations and regimens of treatment were as follows: 4 weeks (89 patients; daily for

