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Broadening of CD8™ cell responses in vaccine-based
simian immunodeficiency virus controllers

Nami Iwamoto?, Tetsuo Tsukamoto®, Miki Kawada®, Akiko Takeda?,

Hiroyuki Yamamoto®, Hiroaki Takeuchi® and Tetsuro Matano®™

b

Objective: In our prior study on a prophylactic T-cell-based vaccine, some vaccinated
macaques controlled a simian immunodeficiency virus (SIV) challenge. These animals
allowed viremia in the acute phase but showed persistent viral control after the setpoint.
Here, we examined the breadth of postchallenge virus-specific cellular immune
responses in these SIV controllers.

Design: We previously reported that in a group of Burmese rhesus macaques posses-
sing the MHC haplotype 90-720-/a, immunization with a Gag-expressing vaccine
results in nonsterile control of a challenge with SIVmac239 but not a mutant SIV
carrying multiple cytotoxic T lymphocyte (CTL) escape gag mutations. In the present
study, we investigated whether broader cellular immune responses effective against the
mutant SIV replication are induced after challenge in those vaccinees that maintained
wild-type SIVmac239 control.

Methods: We analyzed cellular immune responses in these SIV controllers (n=8).

Results: These controllers elicited CTL responses directed against SIV non-Gag anti-
gens as well as Gag in the chronic phase. Postvaccinated, prechallenge CD8" cells
obtained from these animals suppressed wild-type SIV replication in vitro, but mostly
had no suppressive effect on the mutant SIV replication, whereas CD8" cells in the
chronic phase after challenge showed efficient antimutant SIV efficacy. The levels of in-
vitro antimutant SIV efficacy of CD8™ cells correlated with Vif-specific CD8" T-cell
frequencies. Plasma viremia was kept undetectable even after the mutant SIV super-
challenge in the chronic phase.

Conclusion: These results suggest that vaccine-based wild-type SIV controllers can
acquire CD8" cells with the potential to suppress replication of SIV variants carrying
CTL escape mutations. © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins
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Introduction

Virus-specific CD8" cytotoxic T lymphocyte (CTL)
responses are crucial for the control of HIV and simian
immunodeficiency virus (SIV) replication [1-6]. Cumu-
lative studies on HIV-infected individuals have shown
association of HLA genotypes with rapid or delayed AIDS
progression [7,8]. For instance, most of the HIV-infected

individuals possessing HLA-B*57 have been indicated to
show a better prognosis with lower viral loads, implicating
HLA-B*57-restricted epitope-specific CTL responses in
this viral control [9-11]. Indian rhesus macaques
possessing particular major histocompatibility complex
class I (MHC-I) alleles such as Mamu-B*17 tend to show
SIV control [12—14]. These imply possible HIV control
by induction of particular effective CTL responses.
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Recent trials of prophylactic T-cell-based vaccines in
macaque AIDS models have indicated a possibility of
reduction in postchallenge viral loads [15-20]. We
previously developed a prophylactic AIDS wvaccine
consisting of a DNA prime followed by a boost with a
Sendai virus (SeV) vector expressing SIVmac239 Gag
(SeV-Gag) [21,22]. Our trial showed vaccine-based
control of a SIVmac239 challenge in a group of Burmese
rhesus macaques sharing the MHC-I haplotype 90—120-
Ia; these 90-120-Ia-positive vaccinees dominantly elicited
Gagpoen16  (IINEEAADWDL)  epitope-specific and
Gagpaio49  (SSVDEQIQW)  epitope-specific CTL
responses and contained SIVmac239 replication after
challenge [15,23]. In contrast, 90-120-Ia-positive vacci-
nees failed to control a challenge with a mutant virus,
SIVmac239Gag216S244E247L312V373T (referred to as
SIV-G64723mt), which carries five gag mutations resulting
in escape from recognition by Gag-specific CTLs
including Gagppsn1e-specific and  Gagoyyngo-specific
CTLs. This indicates that these CTL responses play a
crucial role in the vaccine-based primary control of wild-
type SIVmac239 replication [24]. Furthermore, in a
SIVmac239 challenge experiment of 90-120-Ia-positive
rhesus macaques that received a prophylactic vaccine
expressing the Gagayi_nq0 epitope fused with enhanced
green fluorescent protein (EGFP), this single epitope
vaccination resulted in control of SIVmac239 replication
with dominant induction of Gagsyage-specific CTL
responses in the acute phase after challenge [25]. We refer
to these vaccinated animals that controlled viral replication
after wild-type SIVmac239 challenge as SIV controllers in
the present study.

Administration of SIV controllers with a monoclonal anti-
CD8 antibody (i.e., CD8 depletion after the establishment
of primary viral control) has suggested that CD8™ cell
responses play an important role in maintaining the viral
control in the chronic phase [26,27]. Then, it is of great
concern whether these wild-type SIV controllers can
acquire CD8™" cells effective against replication of SIV
variants escaping from dominant CTL responses. In the
present study, we have analyzed 90-120-Ia-positive vacci-
neescontrollinga SIVmac239 challengein order to examine
whether 90-120-Ia-positive animals can elicit cellular
immune responses effective against the mutant SIV, SIV-
G64723mt, carrying multiple CTL escape gag mutations.
Quranalysesin thesevaccine-based SIV controllers revealed
dynamics of virus-specific cellular immune responses
during persistent viral control and suggested postchallenge
induction of CD8™ cells able to suppress replication of SIV
variants carrying CTL escape mutations.

Materials and methods

SIV-G64723mt
The SIV-G64723mt (SIVmac239Gag216S244E247L
312V373T) carries five gag mutations, GagL.216S (leading

to a leucine [L]-to-serine [S] substitution at the 216th
amino acid in Gag, GagD244E (aspartic acid [D]-to-
glutamic acid [E] at the 244th amino acid), Gagl247L
(isoleucine [I] to L at the 247th amino acid), GagA312V
(alanine [A] to valine [V] at the 312th amino acid), and
GagA373T (A to threonine [T] at the 373rd amino acid),
which were selected, at the cost of viral fitness, in a
SIVmac239-infected macaque possessing the MHC-I
haplotype 90-120-Ia, as described previously [23,28].
Gagl216S, GagD244E, Gagl247L, and GagA373T
mutations, which became dominant mostly in SIV-
mac239-infected 90-120-Ia-positive rhesus macaques,
result in viral escape from recognition by Gag206-216-
specific, Gag241-249-specific, and Gag373-380-specific
CTLs, respectively, whereas it remains unclear whether
GagA312V was selected for by CTLs.

Animal experiments

Eight Burmese rhesus macaques (Macaca mulatta) posses-
sing the MHC-I haplotype 90-120-Ia, which showed
vaccine-based control of a SIVmac239 challenge, were
used in this study and divided into two groups (Fig. 1a).
Five macaques, R06-015, R03-014, R03-012, R02-002,
and R02-003, in group I received a prophylactic DNA
prime/SeV-Gag boost vaccine (referred to as DINA/SeV-
Gag vaccine) and contained SIVmac239 challenge as
reported previously [15,24,29]. The DNA used for the
vaccination, CMV-SHIVJEN [15], was constructed from
env-deleted and nef-deleted simian—human immunode-
ficiency virus SHIVypi4yve [30] molecular clone DNA
(SIVGP1) and has the genes encoding SIVmac239 Gag,
Pol, Vif, and Vpx, SIVmac239-HIV chimeric Vpr, and
HIV Tat and Rev. At the DNA vaccination, animals
received 5 mg of CMV-SHIVAEN DNA intramuscularly.
Six weeks after the DNA prime, animals received a single
boost intranasally with 6 x 10° cell infectious units
(CIUs) of F-deleted replication-defective SeV-Gag
[31,32]. At week 1 after SIV challenge, macaque R03-
014 was inoculated with nonspecific immunoglobulin G
(IgG), and macaques R03-012 and R02-002 with IgG
purified from neutralizing antibody-positive plasma of
chronically SIV-infected macaques in our previous study
[29]. Two macaques R04-016 and R06-007 in group II
received a prophylactic prime-boost vaccine eliciting
single Gagpyy 040 epitope-specific CTL  responses
(referred to as DNA/SeV-Gagrae 250-EGFP  vaccine)
and contained SIVmac239 challenge as reported pre-
viously [25]. In this vaccine protocol, animals were
primed with 5mg of pGagyss050-EGFP-N1 DNA
expressing a Gagasg050-EGFP fusion protein, followed
by a boost with 6 x 10° CIU of F-deleted SeV expressing
the Gagose.250-EGFP fusion protein (SeV-Gagozgaso-
EGFP). Macaque R04-015 in group II received a
prophylactic prime-boost vaccine eliciting Gagogs_216
epitope-specific and Gagpsy 40 epitope-specific CTL
responses (referred to as DINA/SeV-Gagaps.21~EGFP
and DNA/SeV-Gagys6.250-EGFP vaccine); this animal
was primed with pGagags216-EGFP-N1 and pGagyse.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Fig. 1. Plasma viral loads in simian immunodeficiency virus controllers. (a) The list of rhesus macaques used in this study. All are
90-120-Ia-positive. SIVmac239-specific neutralizing antibody (anti-SIV NAb) responses just before the mutant SIV superchallenge
were undetectable. (b) Plasma viral loads (SIV gag RNA copies/ml plasma) determined as described previously [15]. The lower
limit of detection is approximately 4 x 102 copies/ml. The arrows indicate the time points of SIV-G64723mt superchallenge. SIV,

simian immunodeficiency virus.

250-EGFP-N1 DNAs, followed by a boost with SeV-
Gagopr216-EGFP  and  SeV-Gagpse 050-EGFP. Both
pGagopr016-EGFP-N1  and  SeV-Gagygo.16-EGFP
express a Gagogo216-EGFP fusion protein [33]. These
vaccinated animals were challenged intravenously with
1000 50% tissue culture infective doses (TCIDsq) of
SIVmac239 [34] approximately 3 months after the boost
and were superchallenged intravenously with 1000
TCIDsy of SIV-G64723mt in the chronic phase. The
challenge virus stocks were prepared by virus propagation
on rhesus macaque peripheral blood mononuclear cells

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

(PBMCs). All animals were maintained in accordance
with the guidelines for animal experiments at the
National Institute of Infectious Diseases.

In-vitro viral suppression assay

To evaluate in-vitro anti-SIVmac239 or anti-SIV-
G64723mt  efficacy of CD8" cells, we examined
SIVmac239 or SIV-G64723mt replication on CD8-
depleted PBMCs in the presence of CD8™ cells positively
selected from macaque PBMCs as described previously
[27,35]. In brief, PBMCs were separated into CD8™ and
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CD8™ cells by using Macs CD8 MicroBeads (Miltenyi
Biotec, Tokyo, Japan). For preparing target cells, the
CD8™ cells selected from PBMCs obtained before
SIVmac239 challenge were cultured in the presence of
2 pwg/ml phytohemagglutinin L and 20 IU/ml recombi-
nant human interleukin-2 (Roche Diagnostics, Tokyo,
Japan) and infected with SIVmac239 at a multiplicity of
infection (MOI) of 1:10>TCIDsq/cell or with SIV-
G64723mt at MOI of 1:10° TCIDsy/cell, using the
virus stocks prepared by virus propagation on HSC-F
cells (herpesvirus saimiri-immortalized macaque T-cell
line) [36]. SIV-G64723mt with lower replicative ability
was added at higher MOI to show similar replication
kinetics with SIVmac239 replication in the control
culture without CD8™ cells. Target cells were cultured for
2 days and then effector CD8™ cells selected from PBMCs
obtained 1 week after boost or at several time points after
the challenge were added to the target cells at an
effector : target (E: T) ratio of 1:4. Reverse transcriptase
activities in these culture supernatants were measured [37]
to determine the peak of viral production in the control
culture of target cells without CD8™ cells. RNA was
extracted from culture supernatants at the peak using the
high pure viral RNA Kit (Roche Diagnostics) and viral
RINA levels were measured by LightCycler system
(Roche Diagnostics) using SIV  gag-specific primers
(GTAGTATGGGCAGCAAATGA and TGTTCCTG
TTTCCACCACTA) and probes (GCATTCACGCA
GAAGAGAAAGTGAAACA-Flu and LCRed-ACTG
AGGAAGCAAAACAGATAGTGCAGAGA) (Nihon
Gene Research Laboratories Inc., Sendai, Japan).
Reduction in viral production by addition of each group
of CD8™ cells was shown as reduction (fold) in viral RINA
level compared with that in the supernatant from virus-
infected CD8™ cell culture without CD8™ cells.

Analysis of virus-specific CD8" T-cell responses
We measured virus-specific CD8" T-cell levels by flow
cytometric analysis of gamma interferon (IFN-vy)
induction after specific stimulation as described pre-
viously [15]. In brief, PBMCs were cocultured for 6h
with autologous herpesvirus papio-immortalized B-
lymphoblastoid cell lines pulsed with 1 wmol/l SIV-
mac239 Gagops-216, Gagas1-249, 0r Gagser.sg1 peptides for
Gagaos-216-specific, Gagoqypgo-specific, or Gagser.zgi-
specific stimulation. Alternatively, PBMCs were cocul-
tured with B-lymphoblastoid cell lines pulsed with
peptide pools using panels of overlapping peptides
spanning the entire SIVmac239 Gag, Pol, Vif, Vpx,
Vpr, Tat, Rev, Nef, and Env amino acid sequences.
Intracellular IFN-vy staining was performed using a
CytofixCytoperm kit (BD, Tokyo, Japan) and fluorescein
isothiocyanate-conjugated antihuman CD4, peridinin
chlorophyll protein-conjugated antihuman CD8, allo-
phycocyanin-conjugated antihuman CD3, and phycoer-
ythrin-conjugated antihuman IFN-y monoclonal anti-
bodies (BD). Specific CD8™ T-cell levels were calculated
by subtracting nonspecific IFN-y* CD8" T-cell fre-

quencies from those after peptide-specific stimulation.
Specific CD8" T-cell levels lower than 100 per million
PBMCs were considered negative.

Analysis of virus-specific neutralizing antibody
responses

SIVmac239-specific neutralizing antibody responses were
examined by determining the end point plasma titers for
inhibiting 10 TCIDso virus replication as described
previously [26]. Serial two-fold dilutions of heat-
inactivated plasma were prepared in quadruplicate and
mixed with 10 TCIDsq of SIVmac239. In each culture,
5 pl of virus was incubated with 5 pl of plasma for 45 min
and was added to 5 x 10* MT4 cells. Reverse transcrip-
tase activities in the culture supernatants on day 12 were
measured to determine the 100% neutralizing endpoint.
The lower limit of detection is a titer of 1:2.

Statistical analysis

Statistical analysis was performed using Prism software
version 4.03 (GraphPad Software Inc., San Diego,
California, USA) with significance levels set at a P value
of less than 0.05. Specific CD8" T-cell frequencies and
in-vitro anti-SIV efficacy levels (fold of reduction in viral
production) were log transformed and correlation was
analyzed by the Pearson test.

Results

Anti-SIVmac239 and anti-SIV-G64723mt
efficacy in vitro of CD8" cells in simian
immunodeficiency virus controllers

We analyzed eight 90-120-Ia-positive rhesus macaques
that showed vaccine-based control of a SIVmac239
challenge (Fig. 1a). These SIV controllers were divided
into group I consisting of five animals (R06-015, R03-
014, R03-012, R02-002, and R02-003) vaccinated with
DNA/SeV-Gag [15] and group II consisting of one
animal (R04-015) vaccinated with DNA/SeV-Gagygs_
216-EGFP and DNA/SeV-Gagysg 050-EGFP and two
(R04-016 and R06-007) vaccinated with DINA/SeV-
Gagnse_250-EGFP [25]. After an intravenous challenge
with SIVmac239, all of these macaques showed viremia in
the acute phase, but then controlled viral replication;
plasma viremia was undetectable after the setpoint

(Fig. 1b).

First, we investigated the potential of macaque CD8*
cells obtained at several time points, after boost but before
SIVmac239 challenge (referred to as postboost) and after
challenge, to suppress SIVmac239 (Fig. 2) or SIV-
G64723mt (Fig. 3) replication by in-vitro viral suppres-
sion assay [27,38—40]. In this assay, PBMC-derived
CD8™ target cells infected with SIVmac239 or SIV-
G64723mt were cocultured with effector CD8" cells
from PBMCs obtained at several time points at an E/T

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Fig. 2. Anti-SIVmac239 efficacy in vitro of CD8" cells in
simian immunodeficiency virus controllers. PBMC-derived
CD8™ (target) cells infected with SIVmac239 were cultured
alone or cocultured with autologous PBMC-derived CD8*
(effector) cells at several time points at an £: T ratio of 1:4.
The ratios of viral RNA levels in the supernatants from the
coculture to those without CD8" cells are shown. ND: not
determined. p-B: 1 week after boost; 5M, 1Y, 2Y, 3Y, and 4Y:
5 months, 1,2, 3, and 4 years after challenge, respectively; p-
SC: 1 or 2 months after superchallenge. Open triangles
indicate the time points of SIVmac239 challenge and closed
triangles SIV-G64723mt superchallenge. PBMC, peripheral
blood mononuclear cell; SIV, simian immunodeficiency
virus.

ratio of 1: 4, and viral production in culture supernatants
was examined to assess suppressive effect of CD8™ cells on
vira] replication in vitro.

CD8" cells 1 week after boost mostly suppressed wild-
type SIVmac239 replication efficiently. In contrast, these
postboost CD8™ cells failed to show efficient suppressive
effect on SIV-G64723mt replication. These results
suggest that Gagoge_nig-specific, Gagpyq_nqo-specific,
and Gagse7_3gi-specific CTL responses play a central
role in the suppression of SIVmac239 replication by
postboost CD8™ cells.

After SIVmac239 challenge, all these animals showed
efficient in-vitro anti-SIV-G64723mt efficacy (more than

£04-015

R06-015

5M 1Y 2y £

R03-014 R04-016

5M 1Y 2Y
R0B-007

167 1 R 107 A

Fold of reduction in SIV RNA copies in supernatants

Fig. 3. Anti-SIV-G64723mt efficacy in vitro of CD8™ cells in
simian immunodeficiency virus controllers. PBMC-derived
CD8~ cells infected with SIV-G64723mt were cultured alone
or cocultured with autologous PBMC-derived CD8™ cells at
several time points at an £: T ratio of 1:4. The ratios of viral
RNA levels in the supernatants from the coculture to those
without CD8" cells are shown. ND: not determined. p-B: 1
week after boost; 5M, 1Y, 2Y, 3Y, and 4Y: 5 months, 1, 2, 3,
and 4 years after challenge, respectively; p-SC: T or 2 months
after superchallenge. Open triangles indicate the time points
of SIVmac239 challenge and closed triangles SIV-G64723mt
superchallenge. PBMC, peripheral blood mononuclear cell;
SIV, simian immunodeficiency virus.

two-fold reduction in viral production) of CD8" cells,
sooner or later, in the chronic phase. The levels of in-vitro
anti-SIV-G64723mt efficacy of CD8™ cells tended to
become higher in the chronic phase. Anti-SIVmac239
efficacy of CD8™ cells was not associated with anti-SIV-
G64723mt efficacy. For instance, some CDS8% cells
efficiently suppressed SIV-G64723mt but not STVmac239
replication. After all, all SIV controllers acquired
CD8™ cells able to suppress the mutant SIV-G64723mt
replication in vitro in the chronic phase.

Control of a mutant simian immunodeficiency
virus superchallenge

These animals were superchallenged with a mutant SIV,
SIV-G64723mt, that has five gag mutations resulting in

2781
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escape from recognition by Gagags 216-specific, Gagoy;.
s49-specific, and Gagag,_3g1-specific CTLs around 1 year
(R06-015, R03-014, and R03-012), 2 years (R04-015,
R04-016, and R06-007), 3 years (R02-002), or 4 years
(R02-003) after SIVmac239 challenge. The replicative
ability of SIV-G64723mt is significantly lower than that of
wild-type SIVmac239, but SIV-G64723mt challenge of
naive 90-120-Ia-negative rhesus macaques can result in
persistent viral replication and AIDS progression [23,28].
It has previously been shown that 90-120-Ia-positive
macaques vaccinated with DNA-prime/SeV-Gag-boost
are unable to contain a SIV-G64723mt challenge,
whereas they can control replication of wild-type
SIVmac239 [24]. Indeed, we confirmed that CD8™ cells
obtained from these 90-120-Ia-positive vaccinees before
challenge efficiently suppressed wild-type SIVmac239
but not SIV-G64723mt replication in vitro. In the present
study, however, all eight wild-type SIV controllers
contained the SIV-G64723mt superchallenge without
detectable viremia (Fig. 1b). SIVmac239-specific neu-
tralizing antibody responses were undetectable around
the superchallenge in any of these controllers (Fig. 1a).
These results indicate that, after SIVmac239 challenge,
the SIV controllers acquired the potential to control SIV-
G64723mt replication in the absence of neutralizing
antibody responses, although to what extent CD8™ cell
responses may contribute to this containment of SIV-
G64723mt superchallenge remains unclear. Postsuper-
challenge CD8™ cells suppressed both SIVmac239 and SIV-
G64723mt replication in vitro efficiently (Figs. 2 and 3).

Simian immunodeficiency virus Gag-specific
cytotoxic T lymphocyte responses in simian
immunodeficiency virus controllers

Then, in these SIV controllers, we examined Gagppe_216-
specific, Gagaq1_a49-specific, and Gagsg7_3s;-specific CTL
responses, which have previously been indicated respon-
sible for control of SIVmac239 replication in 90-120-1a-
positive vaccinees [24] (Fig. 4a). In DNA/SeV-Gag
vaccinated animals (R06-015, R03-014, R03-012, and
R02-002), SIV-specific CTL responses were undetect-
able before SeV-Gag boost (data not shown), but Gagage.
s16-specific, Gagoay nao-specific, and Gagagy_3gi-specific
responses were efficiently induced 1 week after the boost.
After SIVmac239 challenge, these animals showed
efficient responses of these CTLs in the acute phase.
These CTL levels were reduced in the chronic phase, but
Gagoys-pa9-specific CTL responses were detectable even 1
year after challenge. In macaque R04-015 vaccinated
with DNA/SeV-Gagyop016-EGFP  and DNA/SeV-
Gagose.250-EGFP,  Gagagg_a16-specific CTL  responses
were induced dominantly 1 week after boost and 2 weeks
after SIVmac239 challenge, whereas Gagasyq_ns9-specific
CTL responses were detected predominantly in the
chronic phase. In macaques R04-016 and R06-007
vaccinated with DNA/SeV-Gagass_250-EGFP, Gagpa; 240~
specific CTL responses were induced dominantly 1 week
after boost and 2 weeks after SIVmac239 challenge and

were maintained in the chronic phase. No significant
enhancement of these CTL responses was observed after
SIV-G64723mt superchallenge.

We also examined Gag-specific CTL responses in SIV
controllers at several time points by using a panel of
overlapping peptides (Gag peptide pools 1—-10) spanning
the entire SIVmac239 Gag (Fig. 4b). Group I macaques
vaccinated with DNA/SeV-Gag elicited CTL responses
directed against not only Gag peptide pool 5 (including
Gag206«2]6 and Gag241_249) and 7 (including Gag367—381)
but also other Gag peptide pools after boost and after
challenge; some peptide pool-specific CTLs were
diminished, whereas others appeared in the chronic
phase. In contrast, group Il macaques eliciting CTL
responses directed against single Gagonen16 (R04-015) or
Gagogi-249 (R04-016 and RO6-007) epitope after boost
showed predominant Gag peptide pool 5-specific CTL
responses after challenge and accumulated multiple Gag
epitope-specific CTL responses in the chronic phase.
These results indicate dynamics of postchallenge Gag-
specific CTL responses in vaccine-based SIV controllers.
After SIV-G64723mt superchallenge, changes in the
pattern of Gag-specific CTL responses were observed in
some animals.

Simian immunodeficiency virus non-Gag
antigen-specific cytotoxic T lymphocyte
responses in simian immunodeficiency virus
controllers

Next, in SIV controllers, we examined CTL responses
directed against SIV non-Gag antigens by using panels of
overlapping peptides spanning the entire SIVmac239
antigens other than Gag (Fig. 5a). These SIV controllers
showed SIV non-Gag-specific CTL responses from the
early phase after challenge. After SIV-G64723mt super-
challenge, broadening or changes in the pattern of these
CTL responses were observed in some animals; Vif-
specific or Nef-specific CTL responses were detected
predominantly, although we did not find common CTL
epitopes in Vif or Nef.

Correlation of antigen-specific cytotoxic T
lymphocyte levels with in-vitro antivirus efficacy
levels

Finally, we analyzed correlation of antigen-specific CTL
levels with in-vitro anti-SIVmac239 or anti-SIV-
G64723mt efficacy levels of CD8™ cells (Fig. 5b). We
found a correlation of anti-SIVmac239 efficacy levels
with Gagope_nie-specific and Gagpyq_pgo-specific CTL
levels but not with total Gag-specific CTL levels. The
anti-SIVmac239 efficacy levels did not correlate with
either Gagyognig-specific or Gagpyy.ogo-specific CTL
levels alone (data not shown), although our previous
study [25] indicated inverse correlation between peak
plasma viral loads and the levels of Gagyyq_a49-specific
CTLs dominantly induced in DNA/SeV-Gagpsis_ns0-
EGFP-vaccinated animals in the acute phase after
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Fig. 4. Gag-specific CD8™ T-cell responses in simian immunodeficiency virus controllers. (a) Gagyos.216-specific (206), Gagpqy.
240-specific (241), and Gagsey_ss1-specific (367) CD8™ T-cell frequencies at several time points are shown. Regarding macaque
R02-003, we confirmed efficient responses of these CTLs after boost and in the acute phase as reported previously {24] but did not
have enough PBMC samples for the analyses in the chronic phase. (b) A panel of 117 overlapping peptides (15-17 amino acid in
length and overlapping by 10-12 amino acid) spanning the entire SIV Gag amino acid sequence was divided into the following 10
pools {each consisting of 11 or 12 peptides): pool 1, first to 65th amino acid in SIV Gag; pool 2, 55th to 114th amino acid; pool 3,
104th to 165th amino acid; pool 4, 155th to 213th amino acid; pool 5, 202nd to 265th amino acid; pool 6, 255th to 316th amino
acid; pool 7, 306th to 364th amino acid; pool 8, 354th to 416th amino acid; pool 9, 406th to 464th amino acid; and pool 10, 453rd
to 510th amino acid. These Gag peptide pool-specific CD8" T-cell frequencies at several time points are shown. ND: not
determined. p-B: 1 week after boost; 2W, 5M, 1Y, and 2Y: 2 weeks, 5 months, 1, and 2 years after challenge, respectively; p-SC: 1
or 2 months after superchallenge. Open triangles indicate the time points of SIVmac239 challenge and closed triangles SIV-
G64723mt superchallenge. CTL, cytotoxic T lymphocyte; PBMC, peripheral blood mononuclear cell; SIV, simian immunode-
ficiency virus.
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Fig. 5. Analysis of correlation between anti-SIVmac239 or anti-SIV-G64723mt efficacy in vitro and simian immunodeficiency
virus antigen-specific CD8™ T-cell levels in simian immunodeficiency virus controllers. (a) SIV non-Gag antigen-specific CD8™ T-
cell responses. Pol-specific, Vif-specific, Vpx-specific, Vpr-specific, Tat-specific, Rev-specific, Nef-specific, and Env-specific
CD8* T-cell frequencies at several time points were measured by using panels of overlapping peptides spanning the entire
SIVmac239 Pol, Vif, Vpx, Vpr, Tat, Rev, Nef, and Env amino acid sequences, respectively. R02-003 PBMC samples were
unavailable. 2M, 5M, 1Y, and 2Y: 2, 5 months, 1, and 2 years after challenge, respectively; p-SC: 1 or 2 months after
superchallenge. Open triangles indicate the time points of SIVmac239 challenge and closed triangles SIV-G64723mt super-
challenge. (b) Analysis of correlation between anti-SIVmac239 (Wt SIV) efficacy (left panels) or anti-SIV-G64723mt (Mt SIV)
efficacy (right panels) levels and Gagyos-216-specific plus Gagaai.249-specific CTL (upper panels) or Gag-specific CTL (lower
panels) levels (7 =30 in each panel). A correlation between anti-SIVmac239 efficacy levels and Gagypg.216-specific plus Gagpyy.
249-specific CTL levels is indicated (P=0.0421, R=0.3735). (c) Analysis of correlation between after challenge anti-SIVmac239
efficacy (left panels) or anti-SIV-G64723mt efficacy (right panels) levels and Vif-specific CTL (upper panels) or Nef-specific CTL
(lower panels) levels (n=19 in each panel). Correlations of anti-SIVmac239 efficacy levels with Vif-specific CTL (P=0.0034,
R=0.6731) and with Nef-specific CTL levels (P=0.0476, R=0.4599) and a strong correlation between anti-SIV-G64723mt
efficacy levels and Vif-specific CTL levels (P=0.0003, R=0.7372) are indicated. CTL, cytotoxic T lymphocyte; SIV, simian
immunodeficiency virus.

challenge. Correlations of anti-SIVmac239 efficacy levels anti-SIV-G64723mt  efficacy levels after challenge
after challenge with Vif-specific CTL levels and with strongly correlated with Vif-specific CTL levels, although
Nef-specific CTL levels were indicated. On the contrary, any correlation of these levels with other SIV antigen-
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specific CTL levels was not indicated. These results
suggest that Vifspecific CTL induction may contribute
in part to acquisition of the potential to suppress SIV-
G64723mt replication efficiently.

Discussion

We have previously shown that 90-120-Ia-positive
macaques eliciting Gag-specific CTL responses by
vaccination can control SIVmac239 replication but are
unable to contain a challenge with a mutant SIV, SIV-
G64723mt, carrying multiple gag mutations that result in
escape from recognition by Gagogs nie-specific and
Gagpaypao-specific CTLs [24]. The present study
revealed, by in-vitro viral suppression assay, that those
90-120-Ia-positive vaccinees can acquire, after wild-type
SIVmac239 challenge, CD8" cells able to suppress the
mutant SIV replication. Induction of these CD8™ cell
responses may have some supportive effect on the
maintenance of viral control after the initial viral
containment [4,26,27]. Such dynamics of anti-SIV
responses have not been shown clearly even in live
attenuated SIV infection [41-44]. Recently, HIVs have
been suggested to accumulate mutations escaping from
dominant CTL responses [45—51], but our results imply a
possibility of induction of cellular immune responses
effective against even those HIV variants escaping from
dominant CTL responses.

The group I animals induced multiple Gag epitope-
specific CTL responses after boost (before challenge) and
after challenge, whereas the group II animals elicited only
Gagops-216-specific or Gagoyy_sq9-specific CTL responses
before challenge and showed induction of additional
CTL responses directed against Gag epitopes other than
Gagooe-216 and Gagapaq_nyg after challenge. Furthermore,
both groups elicited SIV non-Gag-specific CTL
- responses after challenge. These results indicate post-
challenge accumulation of broader CTL responses. The
in-vitro anti-SIVmac239 efficacy levels correlated with
Vif-specific and Nef-specific CTL as well as Gagapg-216-
specific and Gagyyq.p49-specific CTL levels but not with
total Gag-specific or total SIV-specific CTL levels,
suggesting that not all but some particular epitope-
specific CTL responses were involved in suppression of
SIVmac239 replication. Nef-specific CTL responses were
detected more frequently than Vif-specific ones, whereas
the latter showed stronger correlation with antiviral
efficacy levels (Fig. 5). We did not find common CTL
epitopes in Vif or Nef. These may imply higher
frequencies of effective CTLs in Vif-specific ones;
conversely, Nef-specific CTLs may include effective
ones but with higher frequencies of ineffective ones.

Postboost CD8* cells able to suppress SIVmac239
replication failed to show suppressive effect on SIV-

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

G64723mt replication. We confirmed it also in two 90-
120-Ia-positive vaccinated animals that had failed to
control the mutant SIV challenge in our previous studies
[24] (data not shown). However, CD8" cells in the
chronic phase suppressed SIV-G64723mt replication
efficiently. This indicates postchallenge induction of
CD8™ cells with the potential to suppress SIV-G64723mt
replication in vaccine-based SIVmac239 controllers,
although it remains unclear whether these CD8™ cells
with antimutant SIV efficacy are responsible for the
control of mutant SIV superchallenge in vivo. The in-vitro
anti-SIV-G64723mt efficacy levels correlated with
Vif-specific CTL levels and CD8" cells with detectable
Vif-specific CTL responses showed suppressive effect on
SIV-G64723mt replication. These results implicate
Vif-specific CTL responses in the suppression of SIV-
G64723mt replication in vitro by CD8™ cells in the
chronic phase, although other factors may also be
involved in this suppression. Preservation of memory
CD4" T cells by vaccine-based SIV control [26] may
contribute to induction of these effective CTL responses.

We found dynamics of cellular immune responses during
viral control in vaccine-based SIV controllers, but the
exact mechanism for broadening or changes in dom-
inance patterns of CTL responses remains unclear. All the
group I animals and macaque R04-015 showed rapid
selection of a CTL escape gag mutation, L216S, at week 5
after challenge, whereas no gag mutations were selected at
week 5 in macaques R04-016 or R06-007 (data not
shown). We failed to recover viral genome cDINAs for
sequencing from plasma after week 5 due to undetectable
viral loads, but selection of viral CTL escape mutations
and reversions [23,28,52—57] under undetectable levels
of viral replication may contribute to induction of
broader CTL responses in SIV controllers.

It is difficult to directly compare anti~SIVmac239 and
anti-SIV-G64723mt efficacy of CD8™ cells because of
difference in their replicative ability, but the ratios of the
latter level to the former 1 year after challenge were
higher than those after boost in all animals. Indeed, CD8™
cells 1 year after challenge in macaques R03-012 and
R02-003 showed suppressive effect on SIV-G64723mt
but not on wild-type SIVmac239 replication, although
R03-012 CD8" cells at 5 months and 1 year after
challenge efficiently suppressed SIVmac239 replication at
higher E/T ratio of 1:1 (R02-003 CDS8" cells in the
chronic phase for this analysis were unavailable). Because
no SIV controllers elicited CTL responses specific for
peptides with mutated amino acid sequences (data not
shown), all CTLs specific for SIV-G64723mt antigens in
SIV controllers are expected to recognize SIVmac239
antigens also. Thus, our observation that some post-
challenge CD8™ cells showed efficient suppressive effect
on SIV-G64723mt but not on SIVmac239 replication
in vitro may be explained by higher replicative ability of
SIVmac239 compared with SIV-G64723mt; it could
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be more difficult for CD8™ cells to suppress replication
of the wild-type SIVmac239 than the mutant SIV-
G64723mt, implying a possible requirement of more
potent CTL responses for SIVmac239 control than for
SIV-G64723mt control.

In summary, this study showed dynamics of postchallenge
cellular immune responses in vaccine-based SIV con-
trollers. Our results suggest that, during persistent viral
control, vaccine-based SIV controllers can acquire CD8™
cells with the potential to suppress replication of SIV
variants carrying CTL escape mutations. Elucidation of
the mechanism for induction of broader responses in
these controllers may contribute to development of a
vaccine effective against highly diversified HIV infection.
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Abstract

Background: The Gag capsid (CA) is one of the most conserved proteins in highly-diversified human and simian
immunodeficiency viruses (HIV and SIV). Understanding the limitations imposed on amino acid sequences in CA
could provide valuable information for vaccine immunogen design or anti-HIV drug development. Here, by
comparing two pathogenic SIV strains, SIVmac239 and SIVsmE543-3, we found critical amino acid residues for
functional interaction between the N-terminal and the C-terminal domains in CA.

Results: We first examined the impact of Gag residue 205, aspartate (Gag205D) in SIVmac239 and glutamate
(Gag205E) in SIVsmE543-3, on viral replication; due to this difference, Gagags-216 (IINEEAADWDL) epitope-specific
cytotoxic T lymphocytes (CTLs) were previously shown to respond to SIVmac239 but not SIVsmE543-3 infection. A
mutant SIVmac239, SIVmac239Gag205E, whose Gag205D is replaced with Gag205E showed lower replicative ability.
Interestingly, however, SIVmac239Gag205E passaged in macaque T cell culture often resulted in selection of an
additional mutation at Gag residue 340, a change from SIVmac239 valine (Gag340V) to SIVsmE543-3 methionine
(Gag340M), with recovery of viral fitness. Structural modeling analysis suggested possible intermolecular interaction
between the Gag205 residue in the N-terminal domain and Gag340 in the C-terminal in CA hexamers. The
Gag205D-to-Gag205E substitution in SIVmac239 resulted in loss of in vitro core stability, which was recovered by
additional Gag340V-to-Gag340M substitution. Finally, selection of Gag205E plus Gag340M mutations, but not

Gag205E alone was observed in a chronically SIVmac239-infected rhesus macaque eliciting Gagags-216-specific CTL

responses.

Conclusions: These results present in vitro and in vivo evidence implicating the interaction between Gag residues
205 in CA NTD and 340 in CA CTD in SIV replication. Thus, this study indicates a structural constraint for functional
interaction between SIV CA NTD and CTD, providing insight into immunogen design to limit viral escape options.

Background

One of the characteristics of human immunodeficiency
virus (HIV) is to induce persistent viral replication
resulting in AIDS progression. HIV has enormous capa-
city to mutate and escape from host immune recogni-
tion, driving genetic diversification of the circulating
viruses [1-3]. The Gag capsid (CA), comprising the N-
terminal (NTD) and the C-terminal domains (CTD)
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[4-6], is one of the most conserved proteins in highly-
diversified HIVs [7]. Understanding structural con-
straints in such viral proteins could provide valuable
information for immunogen design in AIDS vaccine
development.

Virus-specific cytotoxic T-lymphocyte (CTL)
responses play a central role in the control of immuno-
deficiency virus infection [7-12]. CTLs exerting strong
suppressive pressure on HIV replication select for viral
mutations resulting in escape from CTL recognition
[13-16]. Escape mutations in viral proteins with struc-
tural constraints are often selected with viral fitness
costs, possibly facilitating subsequent immune control
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