Advances in Virology

Furthermore, the viral envelopes fuse with host cell membrane in endosomes [52, 75], but the syncytium formation appears to result from the fusion of cell surface membranes of the Env-expressing and host cells. In addition, the Env glycoprotein of a CD4-independent HIV efficiently induces pH-independent syncytium formation [87], but infection by CD4-independent HIV occurs through acidic endosomes [21] (see below). Multiple interactions between the viral Env and infection receptor proteins in much larger areas of cell-cell contact than virus-cell contact may abrogate the requirement of endocytosis for the membrane fusion. The finding that a cell adhesion molecule, LFA-1, facilitates HIV-mediated syncytium formation but not HIV infection supports this idea [88]. If the syncytium formation by the Env protein is independent of endocytosis, cathepsin proteases would be unnecessary for the syncytium formation. However, cathepsin inhibitors suppress syncytium formation by the ecotropic MLV Env protein [79]. Secreted cathepsin proteases may be involved in the pH-independent syncytium formation by the Env protein. Further study is needed to understand the mechanism of pH-independent syncytium formation by the retroviral Env proteins.

11. Endocytic Pathway of CD4-Dependent and -Independent HIV Entry

There are many controversial reports of the role of endocytosis in CD4-dependent HIV infection [94] (Tables 2 and 3). Early reports indicate that the acidification inhibitors enhance [89-91] or do not affect CD4-dependent HIV infection [92, 93], suggesting that the HIV does not enter into host cells via acidic vesicles. However, recent reports show that dynasore and chlorpromazine attenuate CD4dependent HIV infection [95-97]. In addition, dominant negative mutants of dynamin and Eps15 inhibit CD4dependent HIV infection [98]. Furthermore, analysis of localization of labeled HIV particles revealed that the HIV particles are internalized into intracellular vesicles [95, 99-102]. It has been reported that envelopes of HIV particles fuse with host cell membranes in intracellular vesicles by the following observation [95]. Envelopes of HIV particles were labeled with a hydrophobic fluorescent compound. When fusion of the labeled HIV envelope with host cell membrane occurs, the fluorescent compound is diluted and the fluorescent signals disappear. The vanishing of the fluorescent signals was observed in the intracellular vesicles but not at cell surfaces. These results suggest that HIV entry into the host cell cytoplasm may occur via endosomes.

Interestingly, endosome acidification inhibitors attenuate infections by CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, suggesting that CD4-independent HIV entry may occur through acidic late endosomes, like many animal retroviruses [21]. The CD4-dependent HIVs can infect CD4-negative trophoblastic cells though the infection is 100 times less efficient than CD4-dependent Env-mediated infection [103]. HIV infection of trophoblasts forming the placental barrier may cause the mother-to-child transmission of HIV [104]. This infection

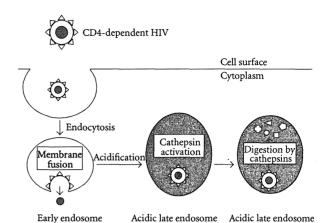


FIGURE 4: Entry pathway of CD4-dependent HIV. Blue area indicates acidic condition.

occurs through an unusual entry pathway that is clathrin-, caveolin-, and dynamin-independent endocytosis requiring free cholesterol [71].

12. Degradation of HIV Particles by Endosome Proteases

Because acidification inhibitors enhance CD4-dependent HIV infection [89–91], HIV entry is independent of low pH, and the viral particles internalized into acidic late endosomes are degraded [105]. In other words, a proportion of HIV particles are internalized into acidic late endosomes although the internalization into late endosomes is not associated with the HIV productive infection. Consistently, the HIV particles appear to be internalized into acidic compartments shortly after inoculation into host cells [100].

In summary, entry pathway of CD4-dependent HIV is considered as follows (Figure 4). The HIV particles are internalized into host cells by endocytosis, and the entry is independent of endosome acidification. HIV entry mainly occurs at early endosomes, and the HIV particles internalized into acidic late endosomes are degraded by endosome proteases.

It has been reported that a cathepsin inhibitor CA-074Me more significantly enhances CD4-independent HIV infection than CD4-dependent infection, and cathepsin protease activity in host cells is reverse-correlated with cellular susceptibility to the CD4-independent HIV infection [21]. These results suggest that CD4-independent HIV entry may occur at acidic late endosomes, and that viral entry competes with virion degradation by cathepsin proteases (Figure 5).

Degradation by endosomal proteases in acidic vesicles following phagocytosis/macropinocytosis/endocytosis functions as an innate immune reaction against microbes to digest them and generate antigen peptides presented to helper T cells on MHC class II [106]. In fact, the activation of toll-like receptor signaling by LPS enhances cathepsin expression [21]. The CD4-dependent HIVs might evolve

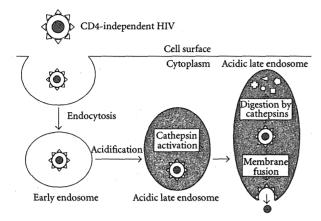


FIGURE 5: Entry pathway of CD4-independent HIV. Blue area indicates acidic condition.

from CD4-independent viruses to overcome the endosome protease-mediated immunity. Some microbes express cystatin-like cathepsin inhibitors to protect themselves from the cathepsin-mediated immunity [107, 108]. Instead of having a cathepsin inhibitor, the CD4-dependent HIVs might gain the acidification-independent entry mechanism to protect from the endosome protease-mediated immunity.

In contrast to the CD4-dependent HIV entry pathway, ecotropic MLVs utilize these cellular innate immune reactions of endocytosis, acidification, and digestion by endosome proteases to enter into the host cell cytoplasm. By the ecotropic virus entry mechanism, the viruses can escape from these host immune reactions. It is suggested that the CD4-dependent HIV entry utilizes endocytosis, but not acidification and proteolysis by endosome proteases. The CD4-dependent HIV particles may be degraded by endosome proteases in acidic endosomes, and the infection titer is reduced [89, 91]. The CD4-dependent HIV Env proteins indeed contain several amino acid motifs that are digested by cathepsins [109, 110]. The ecotropic MLVs also have cathepsin-recognized amino acid motifs, but the digestion may activate the membrane fusion capability of the Env protein.

As mentioned above, the cathepsin inhibitor enhances CD4-independent HIV infection in cells with relatively higher level of cathepsin protease activity [21]. While, treatment of such cells with CA-074Me at higher concentration attenuates the CD4-independent infection. In addition, CA-074Me suppresses the CD4-independent HIV infection in cells with lower cathepsin activity (unpublished data). These results suggest that cathepsin proteases are required for the CD4-independent infection. Therefore, Env glycoproteins of the CD4-independent HIVs may be digested by cathepsin proteases to a fusion-active form, like the ecotropic MLV Env protein. Consistently, cathepsin proteases enhance CD4dependent HIV infection and confer CD4-negative cells susceptible to CD4-dependent HIV infection [111-113]. Cathepsin-mediated digestion of CD4-dependent HIV Env protein may induce membrane fusion without CD4 binding. HIV particles in acidic endosomes are degraded by many endosome proteases including cathepsins. However, when the HIV Env proteins are digested only by a cathepsin, the infectivity may be enhanced.

13. Entry of Targeted Retroviral Vector

Retroviral vectors are valuable tools in molecular biology research and human gene therapy. Several fundamental properties of retroviral vectors remain to be improved for effective gene transfer to specific target cells [114]. The effectiveness will be greatly enhanced, if their infection tropism is artificially modified to target specific cells [115]. There have been various attempts to establish redirecting infection tropism by genetically incorporating heterogenous ligands into the retroviral Env proteins [116-121]. However, retroviral vectors containing such modified Env proteins suffer from very low transduction efficiency or are not infectious. The redirected transductions of retroviral vectors with chimeric Env proteins are enhanced by the endosome acidification inhibitors, suggesting that the targeted vector particles internalized into acidic endosomes are degraded by endosome proteases [120, 122].

Retroviral vectors carrying the ecotropic Env proteins chimeric with SDF-1 α [123] and somatostatin [124] can transduce cells expressing CXCR4 and somatostatin receptor, respectively, as efficiently as retroviral vectors with the wild-type Env protein. It has not been examined whether efficient infections by the redirected retrovirus vectors occur through endosomes. Because the SDF-1 α -chimeric Env protein appears to induce infection by the same mechanism as the wild-type Env protein [125], the redirected infection may occur through endosomes and require endosome acidification, like the wild type MLV Env protein. Elucidation of the entry pathways of these targeted retroviruses will likely contribute to the development of efficient cell lineage-specific retrovirus vectors.

14. Endocytic Entry of Ebola Virus-Pseudotyped Retrovirus Vector

Retrovirus vectors can be pseudotyped with glycoproteins of various enveloped viruses. The pseudotyped retrovirus vectors enter into host cells by the entry mechanisms of the heterologous viral glycoproteins. Because the retrovirus vectors do not produce replication-competent viruses and the protocol is relatively simple, pseudotyped retrovirus vectors are widely used to identify entry pathways of various enveloped viruses [126–128].

A dominant negative mutant of Eps15, siRNA-mediated knockdown of clathrin, and chlorpromazine suppress infection by an HIV vector pseudotyped with Ebola virus glycoprotein (GP), indicating that Ebola virus GP-mediated entry occurs through clathrin-dependent endocytosis [129]. Virion morphologies of the pseudotyped HIV vector and Ebola virus are much different. The pseudotyped HIV vector particles are round and the diameter is around 100 nm regardless of viral envelope glycoproteins. Whereas Ebola

Advances in Virology

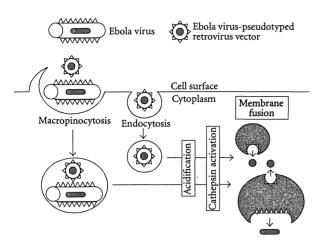


FIGURE 6: Entry pathways of Ebola virus and Ebola viruspseudotyped retrovirus vector. Blue area indicates acidic condition.

virus virions are long and filamentous as the name of filovirus should show. Typical clathrin-coated vesicles are large enough to incorporate the HIV vector particles, but not Ebola virus particles. Therefore, Ebola virus particles cannot be internalized into the endosomes. Does Ebola virus enter into host cells through endosomes? The finding that Ebola virus entry occurs via macropinosomes resolved this problem [130-133] (Figure 6). Macropinosomes have enough size to incorporate Ebola virus particles. However, entry of intact Ebola virus is still dependent on dynamin, which is not involved in classical macropinocytosis [133], and is partially inhibited by inhibitors of clathrin-dependent endocytosis [132]. In addition, it has been reported that the Ebola virus entry through macropinocytosis or endocytosis is dependent on the cell lines used [134]. Therefore, the entry route of Ebola virus is not clear yet. The Ebola virus infections via endocytosis and macropinocytosis both require acidification and cathepsin proteases [80, 135]. Although the pseudotyped retrovirus vector is useful to study the entry mechanism of viral envelope proteins, we should notice the possibility that entry pathway of the pseudotyped retrovirus vector is different from that of the original virus.

Size of macropinosomes is enough to incorporate not only Ebola virus particles but also pseudotyped HIV vector particles. Therefore, Ebola virus-pseudotyped HIV vector entry can occur through macropinocytosis (Figure 6). There is a report showing that HIV infection occurs through macropinosomes [102]. If host cells have both dynaminindependent macropinocytosis and -dependent endocytosis, the inhibition of dynamin function does not significantly affect the pseudotyped HIV vector infection. If host cells have endocytosis but not macropinocytosis, the inhibition of dynamin function severely suppresses the pseudotyped HIV vector infection. Retrovirus entry may be able to occur through several distinct internalization pathways for productive infection (Figure 7). This may be the reason why the inhibitors differentially affect retrovirus infections in different cells. Pathways of retrovirus internalization into

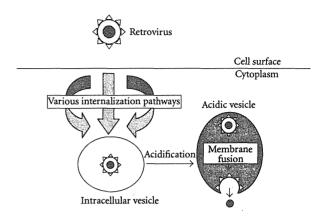


FIGURE 7: Retrovirus particles are internalized into intracellular vesicles by various pathways, and vesicle acidification is necessary for the infections.

intracellular vesicles may be unimportant for the productive infection. The GP of Ebola virus that enters host cells via macropinosomes can use endocytosis for the productive entry, when the retrovirus vector is pseudotyped with the Ebola virus GP. This result strongly supports the idea.

15. Conclusion

Infections by many animal retroviruses occur through endosomes and require endosome acidification. The activation of cathepsin proteases by endosome acidification is required for ecotropic MLV infection. Whereas acidification directly induces conformational changes of several retroviral Env proteins to the fusion active forms. There are several internalization pathways of retrovirus particles, and the viral internalization pathways appear to be different in different cell lines. CD4-independent HIV infection may occur through endosomes and require endosome acidification, like other animal retroviruses. CD4-dependent HIV infection is thought to occur through endosomes but does not require endosome acidification. The CD4-dependent and independent HIV particles are both degraded by endosome proteases, when the viral particles are internalized into acidic late endosomes. Retrovirus vectors pseudotyped with other viral envelope proteins are widely used to understand the entry mechanisms of the envelope proteins. However, entry pathway(s) of the pseudotyped retroviral vector could be different from that of the original virus.

Retroviruses require cellular biological events of internalization, vesicle acidification, and cathepsin proteolysis for their entry into host cells. These biological events, especially in phagocytosis, function to protect host cells from microbe infection. Retroviruses utilize these immune reactions to enter into host cells. This entry mechanism of retroviruses is the best strategy to overcome the host immune attack, and many viruses other than retroviruses also enter into host cells by similar mechanisms [72, 136].

References

- [1] R. S. Harris, J. F. Hultquist, and D. T. Evans, "The restriction factors of human immunodeficiency virus," *Journal of Biological Chemistry*, vol. 287, no. 48, pp. 40875–40883, 2012.
- [2] M. A. Checkley, B. G. Luttge, and E. O. Freed, "HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation," *Journal of Molecular Biology*, vol. 410, no. 4, pp. 582– 608, 2011.
- [3] C. B. Wilen, J. C. Tilton, and R. W. Doms, "Molecular mechanisms of HIV entry," *Advances in Experimental Medicine and Biology*, vol. 726, pp. 223–242, 2012.
- [4] L. Cai, M. Gochin, and K. Liu, "Biochemistry and biophysics of HIV-1 gp41—membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design," *Current Topics in Medicinal Chemistry*, vol. 11, no. 24, pp. 2959–2984, 2011.
- [5] G. B. Melikyan, "Membrane fusion mediated by human immunodeficiency virus envelope glycoprotein," *Current Topics in Membranes*, vol. 68, pp. 82–106, 2011.
- [6] J. G. Sodroski, "HIV-1 entry inhibitors in the side pocket," Cell, vol. 99, no. 3, pp. 243–246, 1999.
- [7] G. B. Melikyan, "Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm," *Retrovirology*, vol. 5, article 111, 2008.
- [8] R. K. Plemper, "Cell entry of enveloped viruses," *Current Opinion in Virology*, vol. 1, no. 2, pp. 92–100, 2011.
- [9] C. L. Hunt, N. J. Lennemann, and W. Maury, "Filovirus entry: a novelty in the viral fusion world," *Viruses*, vol. 4, no. 2, pp. 258–275, 2012.
- [10] C. S. Tailor, D. Lavillette, M. Marin, and D. Kabat, "Cell surface receptors for gammaretroviruses," *Current Topics in Microbiology and Immunology*, vol. 281, pp. 29–106, 2003.
- [11] R. J. O. Barnard and J. A. T. Young, "Alpharetrovirus envelope-receptor interactions," *Current Topics in Microbiology and Immunology*, vol. 281, pp. 107–136, 2003.
- [12] L. M. Albritton, L. Tseng, D. Scadden, and J. M. Cunning-ham, "A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection," *Cell*, vol. 57, no. 4, pp. 659–666, 1989.
- [13] D. G. Miller, R. H. Edwards, and A. D. Miller, "Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus," *Proceedings* of the National Academy of Sciences of the United States of America, vol. 91, no. 1, pp. 78–82, 1994.
- [14] M. Van Zeijl, S. V. Johann, E. Closs et al., "A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 91, no. 3, pp. 1168–1172, 1994.
- [15] J. L. Battini, J. E. J. Rasko, and A. D. Miller, "A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction," *Proceedings of the National Academy of Sciences* of the United States of America, vol. 96, no. 4, pp. 1385–1390, 1999.
- [16] C. S. Tailor, A. Nouri, C. G. Lee, C. Kozak, and D. Kabat, "Cloning and characterization of a cell surface receptor for xenotropic and polytropic marine leukemia viruses," Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 927–932, 1999.

- [17] Y. L. Yang, L. Guo, S. Xu et al., "Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1," *Nature Genetics*, vol. 21, no. 2, pp. 216–219, 1999.
- [18] E. A. Berger, P. M. Murphy, and J. M. Farber, "Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease," *Annual Review of Immunology*, vol. 17, pp. 657– 700, 1999.
- [19] P. Xiao, O. Usami, Y. Suzuki et al., "Characterization of a CD4-independent clinical HIV-1 that can efficiently infect human hepatocytes through chemokine (C-X-C motif) receptor 4," AIDS, vol. 22, no. 14, pp. 1749–1757, 2008.
- [20] B. Zerhouni, J. A. E. Nelson, and K. Saha, "Isolation of CD4-independent primary human immunodeficiency virus type 1 isolates that are syncytium inducing and acutely cytopathic for CD8+ lymphocytes," *Journal of Virology*, vol. 78, no. 3, pp. 1243–1255, 2004.
- [21] H. Yoshii, H. Kamiyama, K. Goto et al., "CD4-independent human immunodeficiency virus infection involves participation of endocytosis and cathepsin B," *PLoS ONE*, vol. 6, no. 4. Article ID e19352, 2011.
- [22] A. L. Edinger, C. Blanpain, K. J. Kunstman, S. M. Wolinsky, M. Parmentier, and R. W. Doms, "Functional dissection of CCR5 coreceptor function through the use of CD4independent simian immunodeficiency virus strains," *Jour*nal of Virology, vol. 73, no. 5, pp. 4062–4073, 1999.
- [23] B. A. Puffer, S. Pöhlmann, A. L. Edinger et al., "CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity," *Journal of Virology*, vol. 76, no. 6, pp. 2595–2605, 2002.
- [24] Y. Kubo, M. Yokoyama, H. Yoshii et al., "Inhibitory role of CXCR4 glycan in CD4-independent X4-tropic human immunodeficiency virus type 1 infection and its abrogation in CD4-dependent infection," *Journal of General Virology*, vol. 88, no. 11, pp. 3139–3144, 2007.
- [25] H. Sato, J. Orenstein, D. Dimitrov, and M. Martin, "Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles," *Virology*, vol. 186, no. 2, pp. 712–724, 1992.
- [26] D. S. Dimitrov, R. L. Willey, H. Sato, L. J. Chang, R. Blumenthal, and M. A. Martin, "Quantitation of human immunodeficiency virus type 1 infection kinetics," *Journal of Virology*, vol. 67, no. 4, pp. 2182–2190, 1993.
- [27] A. Sigal, J. T. Kim, A. B. Balazs et al., "Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy," *Nature*, vol. 477, no. 7362, pp. 95–99, 2011.
- [28] K. F. Ferri, E. Jacotot, J. Blanco et al., "Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases," *Journal of Experimental Medicine*, vol. 192, no. 8, pp. 1081–1092, 2000.
- [29] C. Scheller and C. Jassoy, "Syncytium formation amplifies apoptotic signals: a new view on apoptosis in HIV infection in vitro," *Virology*, vol. 282, no. 1, pp. 48–55, 2001.
- [30] F. Maldarelli, H. Sato, E. Berthold, J. Orenstein, and M. A. Martin, "Rapid induction of apoptosis by cell-to-cell transmission of human immunodeficiency virus type 1," *Journal of Virology*, vol. 69, no. 10, pp. 6457–6465, 1995.
- [31] N. Green, T. M. Shinnick, and O. Witte, "Sequence-specific antibodies show that maturation of Moloney leukemia virus envelope polyprotein involves removal of a COOH-terminal peptide," Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 10 I, pp. 6023–6027, 1981.

- [32] L. E. Henderson, R. Sowder, and T. D. Copeland, "Quantitative separation of murine leukemia virus proteins by reversed-phase high-pressure liquid chromatography reveals newly described gag and env cleavage products," *Journal of Virology*, vol. 52, no. 2, pp. 492–500, 1984.
- [33] J. A. Ragheb and W. F. Anderson, "pH-independent murine leukemia virus ecotropic envelope-mediated cell fusion: implications for the role of the R peptide and p12E TM in viral entry," *Journal of Virology*, vol. 68, no. 5, pp. 3220–3231, 1994.
- [34] A. Rein, J. Mirro, J. G. Haynes, S. M. Ernst, and K. Nagashima, "Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein," *Journal of Virology*, vol. 68, no. 3, pp. 1773–1781, 1994.
- [35] Y. Kubo and H. Amanuma, "Mutational analysis of the R peptide cleavage site of Moloney murine leukaemia virus envelope protein," *Journal of General Virology*, vol. 84, no. 8, pp. 2253–2257, 2003.
- [36] Y. Kubo, C. Tominaga, H. Yoshii et al., "Characterization of R peptide of murine leukemia virus envelope glycoproteins in syncytium formation and entry," *Archives of Virology*, vol. 152, no. 12, pp. 2169–2182, 2007.
- [37] R. E. Kiernan and E. O. Freed, "Cleavage of the murine leukemia virus transmembrane Env protein by human immunodeficiency virus type 1 protease: transdominant inhibition by matrix mutations," *Journal of Virology*, vol. 72, no. 12, pp. 9621–9627, 1998.
- [38] H. C. Aguilar, W. F. Anderson, and P. M. Cannon, "Cytoplasmic tail of moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R peptide," *Journal of Virology*, vol. 77, no. 2, pp. 1281–1291, 2003.
- [39] R. Löving, K. Li, M. Wallin, M. Sjöberg, and H. Garoff, "R-peptide cleavage potentiates fusion-controlling isomerization of the intersubunit disulfide in moloney murine leukemia virus Env," *Journal of Virology*, vol. 82, no. 5, pp. 2594–2597, 2008.
- [40] R. Löving, S.-R. Wu, M. Sjöberg, B. Lindqvist, and H. Garoff, "Maturation cleavage of the murine leukemia virus Env precursor separates the transmembrane subunits to prime it for receptor triggering," *Proceedings of the National Academy* of Sciences of the United States of America, vol. 109, no. 20, pp. 7735–7740, 2012.
- [41] T. Murakami, S. Ablan, E. O. Freed, and Y. Tanaka, "Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity," *Journal of Virology*, vol. 78, no. 2, pp. 1026–1031, 2004.
- [42] M. Bobkova, J. Stitz, M. Engelstädter, K. Cichutek, and C. J. Buchholtz, "Identification of R-peptides in envelope proteins of C-type retroviruses," *Journal of General Virology*, vol. 83, no. 9, pp. 2241–2246, 2002.
- [43] B. A. Brody, S. S. Rhee, and E. Hunter, "Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity," *Journal of Virology*, vol. 68, no. 7, pp. 4620–4627, 1994.
- [44] F. J. Kim, N. Manel, Y. Boublik, J. L. Battini, and M. Sitbon, "Human T-cell leukemia virus type 1 envelopemediated syncytium formation can be activated in resistant mammalian cell lines by a carboxy-terminal truncation of the envelope cytoplasmic domain," *Journal of Virology*, vol. 77, no. 2, pp. 963–969, 2003.

- [45] D. L. Lerner and J. H. Elder, "Expanded host cell tropism and cytopathic properties of feline immunodeficiency virus strain PPR subsequent to passage through interleukin- 2independent T cells," *Journal of Virology*, vol. 74, no. 4, pp. 1854–1863, 2000.
- [46] E. J. Bowman, A. Siebers, and K. Altendorf, "Bafilomycins; A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 85, no. 21, pp. 7972–7976, 1988.
- [47] T. Yoshimori, A. Yamamoto, Y. Moriyama, M. Futai, and Y. Tashiro, "Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells," *Journal of Biological Chemistry*, vol. 266, no. 26, pp. 17707–17712, 1991.
- [48] M. Forgac, "Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology," *Nature Reviews Molecular Cell Biology*, vol. 8, no. 11, pp. 917–929, 2007.
- [49] M. O. McClure, M. A. Sommerfelt, M. Marsh, and R. A. Weiss, "The pH independence of mammalian retrovirus infection," *Journal of General Virology*, vol. 71, no. 4, pp. 767– 773, 1990.
- [50] M. A. Gilbert, B. Charreau, P. Vicart, D. Paulin, and P. K. Nandi, "Mechanism of entry of a xenotropic MMuLV-derived recombinant retrovirus into porcine cells using the expression of the reporter nlslacZ gene," Archives of Virology, vol. 124, no. 1-2, pp. 57–67, 1992.
- [51] L. J. Katen, M. M. Januszeski, W. F. Anderson, K. J. Hasenkrug, and L. H. Evans, "Infectious entry by amphotropic as well as ecotropic murine leukemia viruses occurs through an endocytic pathway," *Journal of Virology*, vol. 75, no. 11, pp. 5018–5026, 2001.
- [52] H. Kamiyama, K. Kakoki, H. Yoshii et al., "Infection of XC cells by MLVs and Ebola virus is endosome-dependent but acidification-independent," *PLoS ONE*, vol. 6, no. 10, Article ID e26180, 2011.
- [53] M. Côté, Y.-M. Zheng, and S.-L. Liu, "Membrane fusion and cell entry of XMRV are pH-independent and modulated by the envelope glycoprotein's cytoplasmic tail," *PLoS ONE*, vol. 7, no. 3, Article ID e33734, 2012.
- [54] J. M. Gilbert, D. Mason, and J. M. White, "Fusion of Rous sarcoma virus with host cells does not require exposure to low pH," *Journal of Virology*, vol. 64, no. 10, pp. 5106–5113, 1990.
- [55] L. J. Earp, S. E. Delos, R. C. Netter, P. Bates, and J. M. White, "The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH," *Journal of Virology*, vol. 77, no. 5, pp. 3058–3066, 2003.
- [56] G. B. Melikyan, R. J. O. Barnard, R. M. Markosyan, J. A. T. Young, and F. S. Cohen, "Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth," *Journal of Virology*, vol. 78, no. 7, pp. 3753–3762, 2004.
- [57] R. J. Ö. Barnard, S. Narayan, G. Dornadula, M. D. Miller, and J. A. T. Young, "Low pH is required for avian sarcoma and leukosis virus Env-dependent viral penetration into the cytosol and not for viral uncoating," *Journal of Virology*, vol. 78, no. 19, pp. 10433–10441, 2004.
- [58] F. Diaz-Griffero, S. A. Hoschander, and J. Brojatsch, "Endocytosis is a critical step in entry of subgroup B avian leukosis viruses," *Journal of Virology*, vol. 76, no. 24, pp. 12866–12876, 2002.
- [59] L. D. Hernandez, R. J. Peters, S. E. Delos, J. A. T. Young, D. A. Agard, and J. M. White, "Activation of a retroviral membrane

- fusion protein: soluble receptor- induced liposome binding of the ALSV envelope glycoprotein," *Journal of Cell Biology*, vol. 139, no. 6, pp. 1455–1464, 1997.
- [60] R. L. Damico, J. Crane, and P. Bates, "Receptor-triggered membrane association of a model retroviral glycoprotein," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2580–2585, 1998.
- [61] R. M. Markosyan, P. Bates, F. S. Cohen, and G. B. Melikyan, "A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle," *Biophysical Journal*, vol. 87, no. 5, pp. 3291–3298, 2004.
- [62] S. Matsuyama, S. E. Delos, and J. M. White, "Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein," *Journal of Virology*, vol. 78, no. 15, pp. 8201–8209, 2004.
- [63] W. Mothes, A. L. Boerger, S. Narayan, J. M. Cunningham, and J. A. T. Young, "Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein," *Cell*, vol. 103, no. 4, pp. 679–689, 2000.
- [64] S. E. Delos, M. B. Brecher, Z. Chen, D. C. Melder, M. J. Federspiel, and J. M. White, "Cysteines flanking the internal fusion peptide are required for the avian sarcoma/leukosis virus glycoprotein to mediate the lipid mixing stage of fusion with high efficiency," *Journal of Virology*, vol. 82, no. 6, pp. 3131–3134, 2008.
- [65] S. R. Ross, J. J. Schofield, C. J. Farr, and M. Bucan, "Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus," *Proceedings of the National Academy* of Sciences of the United States of America, vol. 99, no. 19, pp. 12386–12390, 2002.
- [66] M. Picard-Maureau, G. Jarmy, A. Berg, A. Rethwilm, and D. Lindemann, "Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process," *Journal of Virology*, vol. 77, no. 8, pp. 4722–4730, 2003.
- [67] M. A. Brindley and W. Maury, "Endocytosis and a low-pH step are required for productive entry of equine infectious anemia virus," *Journal of Virology*, vol. 79, no. 23, pp. 14482–14488, 2005
- [68] S. Jin, B. Zhang, O. A. Weisz, and R. C. Montelaro, "Receptor-mediated entry by equine infectious anemia virus utilizes a pH-dependent endocytic pathway," *Journal of Virology*, vol. 79, no. 23, pp. 14489–14497, 2005.
- [69] P. Bertrand, M. Côté, Y. M. Zheng, L. M. Albritton, and S. L. Liu, "Jaagsiekte sheep retrovirus utilizes a pH-dependent endocytosis pathway for entry," *Journal of Virology*, vol. 82, no. 5, pp. 2555–2559, 2008.
- [70] M. Côté; T. J. Kucharski, and S. L. Liu, "Enzootic nasal tumor virus envelope requires a very acidic pH for fusion activation and infection," *Journal of Virology*, vol. 82, no. 18, pp. 9023– 9034, 2008.
- [71] G. Vidricaire and M. J. Tremblay, "A clathrin, caveolae, and dynamin-independent endocytic pathway requiring free membrane cholesterol drives HIV-1 internalization and infection in polarized trophoblastic cells," *Journal of Molecular Biology*, vol. 368, no. 5, pp. 1267–1283, 2007.
- [72] J. Mercer, M. Schelhaas, and A. Helenius, "Virus entry by endocytosis," *Annual Review of Biochemistry*, vol. 79, pp. 803– 833, 2010.
- [73] J. Mercer and A. Helenius, "Virus entry by macropinocytosis," *Nature Cell Biology*, vol. 11, no. 5, pp. 510–520, 2009.
- [74] C. Beer, D. S. Andersen, A. Rojek, and L. Pedersen, "Caveoladependent endocytic entry of amphotropic murine leukemia virus," *Journal of Virology*, vol. 79, no. 16, pp. 10776–10787, 2005.

- [75] S. Lee, Y. Zhao, and W. F. Anderson, "Receptor-mediated Moloney murine leukemia virus entry can occur independently of the clathrin-coated-pit-mediated endocytic pathway," *Journal of Virology*, vol. 73, no. 7, pp. 5994–6005, 1999.
- [76] F. Diaz-Griffero, A. P. Jackson, and J. Brojatsch, "Cellular uptake of avian leukosis virus subgroup B is mediated by clathrin," *Virology*, vol. 337, no. 1, pp. 45–54, 2005.
- [77] M. A. Brindley and W. Maury, "Equine infectious anemia virus entry occurs through clathrin-mediated endocytosis," *Journal of Virology*, vol. 82, no. 4, pp. 1628–1637, 2008.
- [78] H. Yoshii, H. Kamiyama, K. Minematsu et al., "Cathepsin L is required for ecotropic murine leukemia virus infection in NIH3T3 cells," Virology, vol. 394, no. 2, pp. 227–234, 2009.
- [79] P. Kumar, D. Nachagari, C. Fields, J. Franks, and L. M. Albritton, "Host cell cathepsins potentiate moloney murine leukemia virus infection," *Journal of Virology*, vol. 81, no. 19, pp. 10506–10514, 2007.
- [80] K. Chandran, N. J. Sullivan, U. Felbor, S. P. Whelan, and J. M. Cunningham, "Virology: endosomal proteolysis of the ebola virus glycoprotein is necessary for infection," *Science*, vol. 308, no. 5728, pp. 1643–1645, 2005.
- [81] L. Mach, J. S. Mort, and J. Glossl, "Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes," *Journal of Biological Chemistry*, vol. 269, no. 17, pp. 13030–13035, 1994.
- [82] Y. Kubo, A. Ishimoto, and H. Amanuma, "N-linked glycosylation is required for XC cell-specific syncytium formation by the R peptide-containing envelope protein of ecotropic murine leukemia viruses," *Journal of Virology*, vol. 77, no. 13, pp. 7510–7516, 2003.
- [83] J. S. Jones and R. Risser, "Cell fusion induced by the murine leukemia virus envelope glycoprotein," *Journal of Virology*, vol. 67, no. 1, pp. 67–74, 1993.
- [84] K. Kizhatil and L. M. Albritton, "Requirements for different components of the host cell cytoskeleton distinguish ecotropic murine leukemia virus entry via endocytosis from entry via surface fusion," *Journal of Virology*, vol. 71, no. 10, pp. 7145–7156, 1997.
- [85] C. A. Wilson, J. W. Marsh, and M. V. Eiden, "The requirements for viral entry differ from those for virally induced syncytium formation in NIH 3T3/DTras cells exposed to moloney murine leukemia virus," *Journal of Virology*, vol. 66, no. 12, pp. 7262–7269, 1992.
- [86] M. Sha, X. Lee, X. P. Li et al., "Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis," *Nature*, vol. 403, no. 6771, pp. 785–789, 2000.
- [87] J. Dumonceaux, S. Nisole, C. Chanel et al., "Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDK isolate are associated with a CD4independent entry phenotype," *Journal of Virology*, vol. 72, no. 1, pp. 512–519, 1998.
- [88] G. Pantaleo, L. Butini, C. Graziosi et al., "Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIVmediated cell fusion but not for viral transmission," *Journal* of Experimental Medicine, vol. 173, no. 2, pp. 511-514, 1991.
- [89] B. L. Fredericksen, B. L. Wei, J. Yao, T. Luo, and J. V. Garcia, "Inhibition of endosomal/lysosomal degradation increases the infectivity of human immunodeficiency virus," *Journal of Virology*, vol. 76, no. 22, pp. 11440–11446, 2002.

- [90] E. Schaeffer, V. B. Soros, and W. C. Greene, "Compensatory link between fusion and endocytosis of human immunodeficiency virus type 1 in human CD4 T lymphocytes," *Journal of Virology*, vol. 78, no. 3, pp. 1375–1383, 2004.
- [91] B. L. Wei, P. W. Denton, E. O'Neill, T. Luo, J. L. Foster, and J. V. Garcia, "Inhibition of lysosome and proteasome function enhances human immunodeficiency virus type 1 infection," *Journal of Virology*, vol. 79, no. 9, pp. 5705–5712, 2005.
- [92] M. O. McClure, M. Marsh, and R. A. Weiss, "Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism.," *EMBO Journal*, vol. 7, no. 2, pp. 513–518, 1988.
- [93] B. S. Stein, S. D. Gowda, J. D. Lifson, R. C. Penhallow, K. G. Bensch, and E. G. Engleman, "pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane," Cell, vol. 49, no. 5, pp. 659–668, 1987.
- [94] M. Permanyer, E. Ballana, and J. A. Esté, "Endocytosis of HIV: anything goes," *Trends in Microbiology*, vol. 18, no. 12, pp. 543–551, 2010.
- [95] K. Miyauchi, Y. Kim, O. Latinovic, V. Morozov, and G. B. Melikyan, "HIV enters cells via endocytosis and dynamindependent fusion with endosomes," *Cell*, vol. 137, no. 3, pp. 433–444, 2009.
- [96] B. Bosch, B. Grigorov, J. Senserrich et al., "A clathrindynamin-dependent endocytic pathway for the uptake of HIV-1 by direct T cell-T cell transmission," *Antiviral Research*, vol. 80, no. 2, pp. 185–193, 2008.
- [97] G. C. Carter, L. Bernstone, D. Baskaran, and W. James, "HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1," *Virology*, vol. 409, no. 2, pp. 234–250, 2011.
- [98] J. Daecke, O. T. Fackler, M. T. Dittmar, and H. G. Kräusslich, "Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry," *Journal of Virology*, vol. 79, no. 3, pp. 1581–1594, 2005.
- [99] M. de la Vega, M. Marin, N. Kondo et al., "Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion," *Retrovirology*, vol. 8, p. 99, 2011.
- [100] K. Miyauchi, M. Marin, and G. B. Melikyan, "Visualization of retrovirus uptake and delivery into acidic endosomes," *Biochemical Journal*, vol. 434, no. 3, pp. 559–569, 2011.
- [101] C. D. Pauza and T. M. Price, "Human immunodeficiency virus infection of T cells and manocytes proceeds via receptor-mediated endocytosis," *Journal of Cell Biology*, vol. 107, no. 3, pp. 959–968, 1988.
- [102] V. Maréchal, M. C. Prevost, C. Petit, E. Perret, J. M. Heard, and O. Schwartz, "Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis," *Journal of Virology*, vol. 75, no. 22, pp. 11166–11177, 2001.
- [103] G. Vidricaire, S. Gauthier, and M. J. Tremblay, "HIV-1 infection of trophoblast is independent of gp120/CD4 interactions but relies on heparan sulfate proteoglycans," *Journal of Infectious Diseases*, vol. 195, no. 10, pp. 1461–1471, 2007.
- [104] G. Vidricaire, M. R. Tardif, and M. J. Tremblay, "The low viral production in trophoblastic cells is due to a high endocytic internalization of the human immunodeficiency virus type 1 and can be overcome by the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1," *Journal* of Biological Chemistry, vol. 278, no. 18, pp. 15832–15841, 2003.
- [105] L. A. Gobeil, R. Lodge, and M. J. Tremblay, "Differential HIV-I endocytosis and susceptibility to virus infection in human

- macrophages correlate with cell activation status," *Journal of Virology*, vol. 86, no. 19, pp. 10399–10407, 2012.
- [106] H. A. Chapman, "Endosomal proteolysis and MHC class II function," Current Opinion in Immunology, vol. 10, no. 1, pp. 93–102, 1998.
- [107] E. Espagne, V. Douris, G. Lalmanach et al., "A virus essential for insect host-parasite interactions encodes cystatins," *Journal of Virology*, vol. 79, no. 15, pp. 9765–9776, 2005.
- [108] B. Manoury, W. F. Gregory, R. M. Maizels, and C. Watts, "Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing," *Current Biology*, vol. 11, no. 6, pp. 447– 451, 2001.
- [109] B. Yu, D. P. A. J. Fonseca, S. M. O'Rourke, and P. W. Berman, "Protease cleavage sites in HIV-1 gp120 recognized by antigen processing enzymes are conserved and located at receptor binding sites," *Journal of Virology*, vol. 84, no. 3, pp. 1513–1526, 2010.
- [110] G. J. Clements, M. J. Price-Jones, P. E. Stephens et al., "The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion?" AIDS Research and Human Retroviruses, vol. 7, no. 1, pp. 3–16, 1991.
- [111] K. Ei Messaoudi, L. Thiry, N. Van Tieghem et al., "HIV-1 infectivity and host range modification by cathepsin D present in human vaginal secretions," *AIDS*, vol. 13, no. 3, pp. 333–339, 1999.
- [112] K. El Messaoudi, L. F. Thiry, C. Liesnard, N. Van Tieghem, A. Bollen, and N. Moguilevsky, "A human milk factor susceptible to cathepsin D inhibitors enhances human immunodeficiency virus type 1 infectivity and allows virus entry into a mammary epithelial cell line," *Journal of Virology*, vol. 74, no. 2, pp. 1004–1007, 2000.
- [113] H. Moriuchi, M. Moriuchi, and A. S. Fauci, "Cathepsin G, A neutrophil-derived serine protease, Increases susceptibility of macrophages to acute human immunodeficiency virus type 1 infection," *Journal of Virology*, vol. 74, no. 15, pp. 6849–6855, 2000.
- [114] C. Frecha, J. Szécsi, F. L. Cosset, and E. Verhoeyen, "Strategies for targeting lentiviral vectors," *Current Gene Therapy*, vol. 8, no. 6, pp. 449–460, 2008.
- [115] K. Morizono and I. S. Y. Chen, "Receptors and tropisms of envelope viruses," *Current Opinion in Virology*, vol. 1, no. 1, pp. 13–18, 2011.
- [116] A. H. Lin, N. Kasahara, W. Wu et al., "Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein," *Human Gene Therapy*, vol. 12, no. 4, pp. 323–332, 2001.
- [117] B. W. Wu, J. Lu, T. K. Gallaher, W. F. Anderson, and P. M. Cannon, "Identification of regions in the Moloney murine leukemia virus SU protein that tolerate the insertion of an integrin-binding peptide," *Virology*, vol. 269, no. 1, pp. 7–17, 2000.
- [118] C. A. Benedict, R. Y. M. Tun, D. B. Rubinstein, T. Guillaume, P. M. Cannon, and W. F. Anderson, "Targeting retroviral vectors to CD34-Expressing cells: binding to CD34 does not catalyze virus-cell fusion," *Human Gene Therapy*, vol. 10, no. 4, pp. 545–557, 1999.
- [119] F. Martin, J. Kupsch, Y. Takeuchi, S. Russell, F. L. Cosset, and M. Collins, "Retroviral vector targeting to melanoma cells by single-chain antibody incorporation in envelope," *Human Gene Therapy*, vol. 9, no. 5, pp. 737–746, 1998.

- [120] F. L. Cosset, F. J. Morling, Y. Takeuchi, R. A. Weiss, M. K. L. Collins, and S. J. Russell, "Retroviral retargeting by envelopes expressing an N-terminal binding domain," *Journal of Virology*, vol. 69, no. 10, pp. 6314–6322, 1995.
- [121] T. J. Gollan and M. R. Green, "Selective targeting and inducible destruction of human cancer cells by retroviruses with envelope proteins bearing short peptide ligands," *Journal of Virology*, vol. 76, no. 7, pp. 3564–3569, 2002.
- [122] T. Yajima, T. Kanda, K. Yoshiike, and Y. Kitamura, "Retroviral vector targeting human cells via c-Kit-Stem cell factor interaction," *Human Gene Therapy*, vol. 9, no. 6, pp. 779–787, 1998
- [123] M. Katane, E. Takao, Y. Kubo, R. Fujita, and H. Amanuma, "Factors affecting the direct targeting of murine leukemia virus vectors containing peptide ligands in the envelope protein," *EMBO Reports*, vol. 3, no. 9, pp. 899–904, 2002.
- [124] F. Li, B. Y. Ryu, R. L. Krueger, S. A. Heldt, and L. M. Albritton, "Targeted entry via somatostatin receptors using a novel modified retrovirus glycoprotein that delivers genes at levels comparable to those of wild-type viral glycoproteins," *Journal* of Virology, vol. 86, no. 1, pp. 373–381, 2012.
- [125] M. Katane, R. Fujita, E. Takao, Y. Kubo, Y. Aoki, and H. Amanuma, "An essential role for the His-8 residue of the SDF-1α-chimeric, tropism-redirected Env protein of the Moloney murine leukemia virus in regulating postbinding fusion events," *Journal of Gene Medicine*, vol. 6, no. 3, pp. 260–267, 2004.
- [126] G. Simmons, J. D. Reeves, A. J. Rennekamp, S. M. Amberg, A. J. Piefer, and P. Bates, "Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 101, no. 12, pp. 4240–4245, 2004.
- [127] M. J. Moore, T. Dorfman, W. Li et al., "Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2," *Journal of Virology*, vol. 78, no. 19, pp. 10628–10635, 2004.
- [128] A. Yonezawa, M. Cavrois, and W. C. Greene, "Studies of Ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha," *Journal of Virology*, vol. 79, no. 2, pp. 918–926, 2005.
- [129] S. Bhattacharyya, K. L. Warfield, G. Ruthel, S. Bavari, M. J. Aman, and T. J. Hope, "Ebola virus uses clathrin-mediated endocytosis as an entry pathway," *Virology*, vol. 401, no. 1, pp. 18–28, 2010.
- [130] A. Nanbo, M. Imai, S. Watanabe et al., "Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner," *PLoS Pathogens*, vol. 6, no. 9, Article ID e01121, 2010.
- [131] M. F. Saeed, A. A. Kolokoltsov, T. Albrecht, and R. A. Davey, "Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes," *PLoS Pathogens*, vol. 6, no. 9, Article ID e01110, 2010.
- [132] P. Aleksandrowicz, A. Marzi, N. Biedenkopf et al., "Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis," *Journal of Infectious Diseases*, vol. 204, supplement 3, pp. S957–S967, 2011.
- [133] N. Mulherkar, M. Raaben, J. C. de la Torre, S. P. Whelan, and K. Chandran, "The Ebola virus glycoprotein mediates entry

- via a non-classical dynamin-dependent macropinocytic pathway," Virology, vol. 419, no. 2, pp. 72–83, 2011.
- [134] C. L. Hunt, A. A. Kolokoltsov, R. A. Davey, and W. Maury, "The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus," *Journal of Virology*, vol. 85, no. 1, pp. 334–347, 2011.
- [135] K. Schornberg, S. Matsuyama, K. Kabsch, S. Delos, A. Bouton, and J. White, "Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein," *Journal of Virology*, vol. 80, no. 8, pp. 4174–4178, 2006.
- [136] F. L. Cosset and D. Lavillette, "Cell entry of enveloped viruses," Advances in Genetics, vol. 73, no. C, pp. 121–183, 2011

