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Furthermore, the viral envelopes fuse with host cell mem-
brane in endosomes [52, 75], but the syncytium formation
appears to result from the fusion of cell surface membranes
of the Env-expressing and host cells. In addition, the Env
glycoprotein of a CD4-independent HIV efficiently induces
pH-independent syncytium formation [87], but infection
by CD4-independent HIV occurs through acidic endosomes
[21] (see below). Multiple interactions between the viral
Env and infection receptor proteins in much larger areas
of cell-cell contact than virus-cell contact may abrogate
the requirement of endocytosis for the membrane fusion.
The finding that a cell adhesion molecule, LFA-1, facilitates
HIV-mediated syncytium formation but not HIV infection
supports this idea [88]. If the syncytium formation by the
Env protein is independent of endocytosis, cathepsin pro-
teases would be unnecessary for the syncytium formation.
However, cathepsin inhibitors suppress syncytium formation
by the ecotropic MLV Env protein [79]. Secreted cathepsin
proteases may be involved in the pH-independent syncytium
formation by the Env protein. Further study is needed to
understand the mechanism of pH-independent syncytium
formation by the retroviral Env proteins.

11. Endocytic Pathway of CD4-Dependent
and -Independent HIV Entry

There are many controversial reports of the role of endocy-
tosis in CD4-dependent HIV infection [94] (Tables 2 and
3). Early reports indicate that the acidification inhibitors
enhance [89-91] or do not affect CD4-dependent HIV
infection [92, 93], suggesting that the HIV does not enter
into host cells via acidic vesicles. However, recent reports
show that dynasore and chlorpromazine attenuate CD4-
dependent HIV infection [95-97]. In addition, dominant
negative mutants of dynamin and Epsl5 inhibit CD4-
dependent HIV infection [98]. Furthermore, analysis of
localization of labeled HIV particles revealed that the HIV
particles are internalized into intracellular vesicles [95, 99~
102]. It has been reported that envelopes of HIV particles
fuse with host cell membranes in intracellular vesicles by
the following observation [95]. Envelopes of HIV particles
were labeled with a hydrophobic fluorescent compound.
When fusion of the labeled HIV envelope with host cell
membrane occurs, the fluorescent compound is diluted
and the fluorescent signals disappear. The vanishing of the
fluorescent signals was observed in the intracellular vesicles
but not at cell surfaces. These results suggest that HIV entry
into the host cell cytoplasm may occur via endosomes.
Interestingly, endosome acidification inhibitors attenuate
infections by CD4-independent HIVs, which are thought
to be prototypes of CD4-dependent viruses, suggesting that
CD4-independent HIV entry may occur through acidic late
endosomes, like many animal retroviruses {21]. The CD4-
dependent HIVs can infect CD4-negative trophoblastic cells
though the infection is 100 times less efficient than CD4-
dependent Env-mediated infection [103]. HIV infection of
trophoblasts forming the placental barrier may cause the
mother-to-child transmission of HIV [104]. This infection

VAN

v N
4> CD4-dependent HIV
A 4]

AV

Cell surface
Cytoplasm

\LEndocytosis £
@\ﬂcidiﬁcaﬁo
fusion —_—
N
]
Early endosome Acidic late endosome  Acidic late endosome

FiGURE 4: Entry pathway of CD4-dependent HIV. Blue area indi-
cates acidic condition.

occurs through an unusual entry pathway that is clathrin-,
caveolin-, and dynamin-independent endocytosis requiring
free cholesterol [71].

12. Degradation of HIV Particles by
Endosome Proteases

Because acidification inhibitors enhance CD4-dependent
HIV infection [89-91], HIV entry is independent of low pH,
and the viral particles internalized into acidic late endosomes
are degraded [105]. In other words, a proportion of HIV
particles are internalized into acidic late endosomes although -
the internalization into late endosomes is not associated with
the HIV productive infection. Consistently, the HIV particles
appear to be internalized into acidic compartments shortly
after inoculation into host cells [100].

In summary, entry pathway of CD4-dependent HIV
is considered as follows (Figure 4). The HIV particles are
internalized into host cells by endocytosis, and the entry is
independent of endosome acidification. HIV entry mainly
occurs at early endosomes, and the HIV particles internalized
into acidic late endosomes are degraded by endosome
proteases.

It has been reported that a cathepsin inhibitor CA-
074Me more significantly enhances CD4-independent HIV
infection than CD4-dependent infection, and cathepsin
protease activity in host cells is reverse-correlated with
cellular susceptibility to the CD4-independent HIV infection
[21]. These results suggest that CD4-independent HIV entry
may occur at acidic late endosomes, and that viral entry
competes with virion degradation by cathepsin proteases
(Figure 5).

Degradation by endosomal proteases in acidic vesicles
following phagocytosis/macropinocytosis/endocytosis func-
tions as an innate immune reaction against microbes to
digest them and generate antigen peptides presented to
helper T cells on MHC class II [106]. In fact, the activation
of toll-like receptor signaling by LPS enhances cathepsin
expression [21]. The CD4-dependent HIVs might evolve
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from CD4-independent viruses to overcome the endo-
some protease-mediated immunity. Some microbes express
cystatin-like cathepsin inhibitors to protect themselves from
the cathepsin-mediated immunity [107, 108). Instead of
having a cathepsin inhibitor, the CD4-dependent HIVs
might gain the acidification-independent entry mechanism
to protect from the endosome protease-mediated immunity.

In contrast to the CD4-dependent HIV entry path-
way, ecotropic MLVs utilize these cellular innate immune
reactions of endocytosis, acidification, and digestion by
endosome proteases to enter into the host cell cytoplasm.
By the ecotropic virus entry mechanism, the viruses can
escape from these host immune reactions. It is suggested
that the CD4-dependent HIV entry utilizes endocytosis, but
not acidification and proteolysis by endosome proteases.
The CD4-dependent HIV particles may be degraded by
endosome proteases in acidic endosomes, and the infection
titer is reduced {89, 91]. The CD4-dependent HIV Env
proteins indeed contain several amino acid motifs that are
digested by cathepsins [109, 110}. The ecotropic MLVs
also have cathepsin-recognized amino acid motifs, but the
digestion may activate the membrane fusion capability of the
Env protein.

As mentioned above, the cathepsin inhibitor enhances
CD4-independent HIV infection in cells with relatively
higher level of cathepsin protease activity [21]. While, treat-
ment of such cells with CA-074Me at higher concentration
attenuates the CD4-independent infection. In addition, CA-
074Me suppresses the CD4-independent HIV infection in
cells with lower cathepsin activity (unpublished data). These
results suggest that cathepsin proteases are required for the
CD4-independent infection. Therefore, Env glycoproteins of
the CD4-independent HIVs may be digested by cathepsin
proteases to a fusion-active form, like the ecotropic MLV
Env protein. Consistently, cathepsin proteases enhance CD4-
dependent HIV infection and confer CD4-negative cells
susceptible to CD4-dependent HIV infection [111-113].
Cathepsin-mediated digestion of CD4-dependent HIV Env
protein may induce membrane fusion without CD4 binding.
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HIV particles in acidic endosomes are degraded by many
endosome proteases including cathepsins. However, when
the HIV Env proteins are digested only by a cathepsm, the
infectivity may be enhanced.

13. Entry of Targeted Retroviral Vector

Retroviral vectors are valuable tools in molecular biology
research and human gene therapy. Several fundamental
properties of retroviral vectors remain to be improved for
effective gene transfer to specific target cells [114]. The
effectiveness will be greatly enhanced, if their infection
tropism is artificially modified to target specific cells [115].
There have been various attempts to establish redirecting
infection tropism by genetically incorporating heterogenous
ligands into the retroviral Env proteins [116-121]. However,
retroviral vectors containing such modified Env proteins
suffer from very low transduction efficiency or are not
infectious. The redirected transductions of retroviral vectors
with chimeric Env proteins are enhanced by the endosome
acidification inhibitors, suggesting that the targeted vector
particles internalized into acidic endosomes are degraded by
endosome proteases (120, 122].

Retroviral vectors carrying the ecotropic Env proteins’
chimeric with SDF-1a [123] and somatostatin [124] can
transduce cells expressing CXCR4 and somatostatin receptor,
respectively, as efficiently as retroviral vectors with the
wild-type Env protein. It has not been examined whether
efficient infections by the redirected retrovirus vectors occur
through endosomes. Because the SDF-la-chimeric Env
protein appears to induce infection by the same mechanism
as the wild-type Env protein [125], the redirected infection
may occur through endosomes and require endosome acid-
ification, like the wild type MLV Env protein. Elucidation
of the entry pathways of these targeted retroviruses will
likely contribute to the development of efficient cell lineage-
specific retrovirus vectors.

14. Endocytic Entry of Ebola
Virus-Pseudotyped Retrovirus Vector

Retrovirus vectors can be pseudotyped with glycoproteins
of various enveloped viruses. The pseudotyped retrovirus
vectors enter into host cells by the entry mechanisms of
the heterologous viral glycoproteins. Because the retrovirus
vectors do not produce replication-competent viruses and
the protocol is relatively simple, pseudotyped retrovirus
vectors are widely used to identify entry pathways of various
enveloped viruses [126-128].

A dominant negative mutant of Eps15, siRNA-mediated
knockdown of clathrin, and chlorpromazine suppress infec-
tion by an HIV vector pseudotyped with Ebola virus
glycoprotein (GP), indicating that Ebola virus GP-mediated
entry occurs through clathrin-dependent endocytosis [129].
Virion morphologies of the pseudotyped HIV vector and
Ebola virus are much different. The pseudotyped HIV vector

- particles are round and the diameter is around 100nm

regardless of viral envelope glycoproteins. Whereas Ebola
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virus virions are long and filamentous as the name of
filovirus should show. Typical clathrin-coated vesicles are
large enough to incorporate the HIV vector particles, but
not Ebola virus particles. Therefore, Ebola virus particles
cannot be internalized into the endosomes. Does Ebola
virus enter into host cells through endosomes? The finding
that Ebola virus entry occurs via macropinosomes resolved
this problem [130-133] (Figure 6). Macropinosomes have
enough size to incorporate Ebola virus particles. However,
entry of intact Ebola virus is still dependent on dynamin,
which is not involved in classical macropinocytosis [133],
and is partially inhibited by inhibitors of clathrin-dependent
endocytosis [132]. In addition, it has been reported that the
Ebola virus entry through macropinocytosis or endocytosis
is dependent on the cell lines used [134]. Therefore, the
entry route of Ebola virus is not clear yet. The Ebola
virus infections via endocytosis and macropinocytosis both
require acidification and cathepsin proteases [80, 135].
Although the pseudotyped retrovirus vector is useful to study
the entry mechanism of viral envelope proteins, we should
notice the possibility that entry pathway of the pseudotyped
retrovirus vector is different from that of the original virus.
Size of macropinosomes is enough to incorporate not
only Ebola virus particles but also pseudotyped HIV vector
particles. Therefore, Ebola virus-pseudotyped HIV vector
entry can occur through macropinocytosis (Figure 6). There
is a report showing that HIV infection occurs through
macropinosomes [102]. If host cells have both dynamin-
independent macropinocytosis and -dependent endocytosis,
the inhibition of dynamin function does not significantly
affect the pseudotyped HIV vector infection. If host cells
have endocytosis but not macropinocytosis, the inhibition
of dynamin function severely suppresses the pseudotyped
HIV vecior infection. Retrovirus entry may be able to
occur through several distinct internalization pathways for
productive infection (Figure 7). This may be the reason why
the inhibitors differentially affect retrovirus infections in
different cells. Pathways of retrovirus internalization into
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FiGure 7: Retrovirus particles are internalized into intracellular
vesicles by various pathways, and vesicle acidification is necessary
for the infections.

intracellular vesicles may be unimportant for the productive
infection. The GP of Ebola virus that enters host cells via
macropinosomes can use endocytosis for the productive
entry, when the retrovirus vector is pseudotyped with the
Ebola virus GP. This result strongly supports the idea.

15. Conclusion

Infections by many animal retroviruses occur through endo-
somes and require endosome acidification. The activation
of cathepsin proteases by endosome acidification is required
for ecotropic MLV infection. Whereas acidification directly
induces conformational changes of several retroviral Env
proteins to the fusion active forms. There are several
internalization pathways of retrovirus particles, and the viral
internalization pathways appear to be different in differ-
ent cell lines. CD4-independent HIV infection may occur
through endosomes and require endosome acidification, like
other animal retroviruses. CD4-dependent HIV infection
is thought to occur through endosomes but does not
require endosome acidification. The CD4-dependent and -
independent HIV particles are both degraded by endosome
proteases, when the viral particles are internalized into acidic
late endosomes. Retrovirus vectors pseudotyped with other
viral envelope proteins are widely used to understand the
entry mechanisms of the envelope proteins. However, entry
pathway(s) of the pseudotyped retroviral vector could be
different from that of the original virus.

Retroviruses require cellular biological events of inter-
nalization, vesicle acidification, and cathepsin proteolysis for
their entry into host cells. These biological events, especially
in phagocytosis, function to protect host cells from microbe
infection. Retroviruses utilize these immune reactions to
enter into host cells. This entry mechanism of retroviruses
is the best strategy to overcome the host immune attack, and
many viruses other than retroviruses also enter into host cells
by similar mechanisms [72, 136].
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