J.-i. Wachino, Y. Arakawa / Drug Resistance Updates 15 (2012) 133-148 135

A

A1408

Gentamicin Cla ‘axd/

(B)
¢ |
1400- C
G A
N7-G1405 mCrm A
< C U
16S-RMTase e G
G=-==-C
N1-A1408 G
168-RMTase m5C A Acsite
A A
C-——G
1410- A -----U -1490
G- G
G- G
(3)
G1405

Neomycin B

Fig. 2. (A) Structure of E. coli 70S ribosome [PDB code, 2QB9 and 2QBA] consisting of 165 rRNA (orange), 23S rRNA (gray), and ribosomal proteins (green and cyan). The
position of gentamicin bound to 16S rRNA is shown with a square. The figure was rendered with the PyMol program. (B) A-site decoding region in 16S rRNA. (C and D)
The structure of complexes between aminoglycosides (Gentamicin C1a and Neomycin B) and nucleotides in 165 rRNA (G1405 and A1408). Dashed line indicates probable
hydrogen bonds. The figures were rendered with PDB data (2QB9 and 2QAL) and the PyMol program.

inherently show a high level of resistance to aminoglycosides
including those which are self-produced. In the 2000s, by virtue
of significant progress in the field of genetic analytical techniques,
the gene clusters involved with aminoglycoside synthesis in acti-
nomycetes have been aggressively analyzed (Kharel et al., 2004;
Unwin et al., 2004). At the same time, these genetic analyses
revealed that 165-RMTase genes are mostly placed within amino-
glycoside biosynthesis gene clusters of actinomycetes (Kharel et al.,
2004; Unwin et al., 2004). For example, a 165-RMTase gene, kmr,
was found within the kanamycin biosynthesis gene cluster of Strep-
tomyces kanamyceticus strain DSM40500 (GenBank Accession No.
A}628422), and the other 16S5-RMTase gene, kamA (aiso called
fmrT), was within the istamycin biosynthesis gene cluster of the
Streptomyces tenjimariensis strain ATCC31603. Coexistence of the
genes for aminoglycoside production and aminoglycoside resis-
tance may give actinomycetes some ecological advantage to survive
in an environment where various microbes are competing with one
another.

2.2. Types of intrinsic 165-RMTases

The 16S-RMTases implicated in aminoglycoside resistance
found in aminoglycoside-producing actinomycetes are basically
classified into two subgroups, N7-G1405 16S-RMTases and N1-
A1408 16S-RMTases, depending on the nucleotide position to
be modified at the A-site of 16S rRNA (Fig. 2B) (Beauclerk and
Cundliffe, 1987). The N7-G1405 16S-RMTases like Kmr, FmrO,
and Sgm modify N-7 position of G1405 nucleotide within 16S
rRNA and confer resistance exclusively to 4,6-disubstituted DOS

such as amikacin and gentamicin, but not to 4,5-disubstituted
DOS, apramycin, and streptomycin (Demydchuk et al., 1998; Kojic
et al, 1992; Ohta and Hasegawa, 1993b). On the one hand, a
N1-A1408 165-RMTase like KamA (FmrT) modifies N-1 position
of A1408 nucleotide within 165 rRNA and confers resistance to
structurally diverse aminoglycosides, 4,6- and 4,5-disubstituted
DOS, and apramycin (Ohta and Hasegawa, 1993a). The differ-
ence in the modified nucleotide positions within A-site results
in diversity of the aminoglycoside resistance profiles, which can
be partially predicted by considering the formation of hydrogen
bond networks between each sugar ring of aminoglycosides and
the nitrogenous bases of the nucleotides in bacterial 30S ribo-
some composed of 16S rRNA and ribosomal proteins (Fig. 2C and
D} (Borovinskaya et al., 2007; Yoshizawa et al., 1998). The ring
Il of 4,6-disubstituted DOS like gentamicin Cla forms a hydro-
gen bond to the N7-G1405 position, while the spatial location
of the rings Il and IV of 4,5-disubstituted DOS like neomycin
B is far from the N7-G1405 position. Therefore, the modifica-
tion by N7-G1405 16S-RMTase may well have an effect upon the
interaction with 4,6-disubstituted DOS, not upon 4,5-disubstituted
DOS. Introduction of a methyl group to the N7 position of
G1405 by 16S-RMTase will disturb the formation of hydrogen
bond between the nucleotide and aminoglycoside, and in turn
reduce the binding affinity of aminoglycosides to the A-site.
Regardless of the structural diversity, the ring [ of aminogly-
cosides commonly contacts the N1-A1408 position; accordingly,
N1-A1408 16S-RMTases can confer resistance to a variety of
aminoglycosides including 4,6- and 4,5-disubstituted DOS, and
apramycin.
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Fig. 3. Tree view exhibiting the phylogenic similarities among N7-G1405 165-RMTases and N1-A1408 165-RMTases (A). Tree was constructed using the ClustalW version
1.83 program (http://clustalw.ddbj.nig.ac jp/top-j.html) provided by DNA Data Bank of JAPAN (DDBJ). Proteins (NCBI Accession No.): FmrO (BAA02451); Grm (AAA25338);
Srm1 (AAV28394); GrmA (AAR98546); Sgm (3LCU.A); KgmB (AAB20100); NbrB (AABS5477); Kmr of Streptomyces kanamyceticus (BAD20767). GrmO (AAR98541); RmtA
(BAD12551); RmtB(BAC81971); RmtC (BAE48305); RmtD (AB}53409); RmtD2 (ADW66545); RmtE (ADA63498); NpmA (BAF80809): Kmr of Sorangium cellulosum (ACB88605);
KamA[FmrT] (D13170); KamB (3MQ2-A); CmnU (ABR67761). The “0.1" scale represents a genetic unit reflecting 10% of the amino acid substitutions calculated with the
ClustalW program. Multiple sequence alignments of 7 exogenous and 3 intrinsic N7-G1405 165-RMTases (B), and NpmA and 3 intrinsic N1-A1408 16S-RMTases (C). Kmr
proteins shown in (B) and (C) are different enzymes derived from S. kanamyceticus and S. cellulosum, respectively. The multiple sequence alignments were illustrated by
the Clustalw supported by DDB] (http://www.ddbj.mg.acyp/index-p.htmi). () Indicates positions which have a single, fully conserved residue. (:} Indicates that one of the
following “strong” groups is fully conserved. (STA, NHQK, NDEQ, QHRK, MLIV, MILF, HY, FYW, NECK). (.} Indicates that one of the following “weaker” groups is full yconserved
(CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, HFY).
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Table 1

Chronological order of the first isolation of exogenously acquired 165-RMTase-producing Gram-negative bacteria.

Year of isolation 16S- Bacterial Country Specimen Mobile gene Coexisting Reference and
(deposition to RMTase species or animal element resistance genes Accession No.
the data base)
1996 (2002) armA? C. freundii Poland Clinical isolate  ISCR1 blacrx-m-3. blatem-1. Golebiewski et al. (2007), AF550415
aacC2, aadA2,
dfrA12, sull
1997 (2002) rmtA P. aerugonosa Japan Sputum KY Yokoyama et al. (2003), AB083212
2002 (2003) rmtB S. marcescens Japan Sputum ™3 blayem.1, aadA2 Doi et al. (2004), AB103506
2003 (2004) rmtC P. mirabilis Japan Throat swab ISEcp1 aphAl Wachino et al. (2006b), AB194779
2003 (2006) npmA E. coli Japan Urine 1S26 Wachino et al. (2007), AB261016
2005 (2006) rmtD P. aeruginosa Brazil Urine blaspm Dot et al. (2007b), DQ914960
Unknown (2010) rmtE E. coli USA Cattle aph(3’)-la, aphA7, Davis et al. (2010), GU201947
StrA, strB
2007 (2009) rmtD2 Enterobacter aerogenes  Argentina  Not reported ISCR14 cat, dfrA12, aadA2, Tijet et al. (2011), AM849110
sull

2 Named by Galimand et al. (2003).

3. Acquired 16S-RMTases of pathogenic Gram-negative
bacteria

3.1. Identification history of acquired 165-RMTases

A P. aeruginosa strain AR2 was isolated from sputum in 1997
in Japan, and this isolate showed an extraordinarily high level of
resistance to various aminoglycosides. A plasmid-mediated exoge-
nous 16S-RMTase, RmtA, was first identified from this isolate
(Yokoyama et al., 2003) (Table 1). In 2002, the whole nucleotide
sequence of pCTX-M3 plasmid, encoding CTX-M-3 B-lactamase
gene, of Citrobacter freundii from Poland was deposited in GenBank
(Accession No. AF550415). The data revealed that the pCTX-M3
plasmid carried a probable 165-RMTase gene, but it remained
uncharacterized for its involvement in aminoglycoside resistance
at that time. In 2003, Galimand et al. reported the participa-
tion of armA in aminoglycoside resistance, cloned from a K
pneumoniae clinical isolate (BM4536) showing a high level of
resistance to clinically crucial aminoglycosides. The armA was
found to be identical to the probable MTase gene detected pre-
viously in the pCTX-M3 plasmid. The G+C content of armA was
30%, while that of rmtA was 55%, resulting in only 30% iden-
tity in the alignment of amino acid residues between them.
ArmA and RmtA were the index cases, which revealed the emer-
gence of exogenously acquired 165-RMTases conferring a wide
range and high level of aminoglycoside resistance to pathogenic
Gram-negative bacteria. Three years later, the enzymatic func-
tion of ArmA was characterized in detail by Liou et al., and ArmA
was found to be categorized as a member of N7-G1405 16S-
RMTases (Liou et al., 2006). RmtA was expected to belong to the
same 16S-RMTase group on the basis of amino acid sequence
similarity.

Several N7-G1405 16S-RMTases were subsequently discovered
among pathogenic Gram-negative bacteria, and a total of seven
N7-G1405 16S-RMTases have been reported thus far (Fig. 3A). In
Japan, RmtB and RmtC were identified in clinical isolates of Serratia
marcescens strain S-95 and a Proteus mirabilis strain ARS68, respec-
tively (Doi et al.,2004; Wachino et al., 2006b). RmtD was discovered
inaP. aeruginosaclinical strain (PA0S05)isolated in Brazil (Doi et al.,
2007b). An Enterobacter aerogenes clinical strain (Q4079) producing
RmtD2, which has 9 amino acid substitutions compared to RmtD,
was later reported from Argentina (Tijet et al,, 2011). RmtE was
identified in a commensal Escherichia coli strain originated from
cattle, in the United States (Davis et al., 2010). The above-described
16S-RMTase genes were mostly embedded into plasmids, and could
be experimentally moved to the recipient bacteria by conjugation
and/or transformation.

3.2. Enzymatic function of 165-RMTases

The seven N7-G1405 16S-RMTases, ArmA and RmtA to RmtE,
could commonly confer resistance exclusively to aminoglycosides
belonging to the 4,6-disubstituted DOS group such as amikacin,
tobramycin, and gentamicin (Table 2). The enzymatic function of
RmtB, RmtC, and ArmA was fully characterized in vitro with the
purified proteins, and it was demonstrated that these 165-RMTases
apparently added the methyl group of S-adenosyl-L-methionine
(SAM) as a cofactor to the N-7 position of G1405 within 16S
rRNA of mature 30S ribosomal subunit (Liou et al., 2006; Perichon
et al., 2007; Wachino et al., 2010). However, RmtB, RmtC and
ArmaA failed to transfer the methyl group to the naked 16S rRNA
molecule without ribosomal proteins, indicating that the tertiary
structure composed of the 16S rRNA and ribosomal proteins is
essential for recognition or modification of the target site by
the enzyme (Doi et al., 2004; Liou et al., 2006; Wachino et al.,
2006a.b). '

In contrast to the N7-G1405 16S-RMTase group, acquired
N1-A1408 16S-RMTase is scarcely found in clinically isolated
pathogenic bacteria. NpmA, which we first identified in an E. coli
clinical strain (ARS3)in 2007, is currently a sole acquired N1-A1408
16S-RMTase (Wachino et al., 2007). NpmA could confer a broader
range of aminoglycoside resistance rather than N7-G1405 16S-
RMTases (Table 2). The npmA gene was located on a conjugative
plasmid, and successfully transferred to an E. coli recipient strain.
NpmA could catalyze transfer of the methyl group of SAM to the N-1
position of the A1408 residue in 16S rRNA. The preferred substrate
for NpmA was 30S ribosome composed of 16S rRNA and ribosomal

Table 2
Aminoglycoside resistance profile provided by N7-G1405 and N1-A1408 16S-
RMTases.

Aminoglycoside N7-G1405 16S-RMTase N1-A1408 16S-RMTase

RmtA, RmtB, RmtC, NpmA
RmtD/D2, RmtE
4,6-Disubstituted DOS
Gentamicin R+ R
Amikacin R+ R
4,5-Disubstituted DOS
Neomycin S R+
Ribostamycin S R+
Monosubstituted DOS
Apramycin S R+
No DOS ring
Streptomycin S S

R+, highly resistant; R, resistant; S, susceptible; DOS, 2-deoxystreptamine.

«
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proteins, not naked 16S rRNA, as was observed in the N7-G1405
16S-RMTases, RmtB, RmtC, and ArmaA.

3.3. G+C contents of 165-RMTase genes

The G+C contents of acquired 16S-RMTases genes as described
above are between 30% and 55%, suggesting that their origin is
less likely to be intrinsic 165-RMTase genes of aminoglycoside-
producing actinomycetes because their G+C content is generally
above 60%. The origin of acquired 16S-RMTase genes remains
uncertain. Identification of an intrinsic 16S-RMTase gene of low
G+C content aminoglycoside-producing bacterium like Bacillus cir-
culans, may provide a clue to seek for the origins of acquired
16S-RMTase genes found in Gram-negative pathogens.

4. Genetic platform surrounding 16S-RMTase genes
4.1. RmtA

The 165-RMTase genes found so far in pathogenic bacteria are
mostly located within the transferable plasmid and/or linked to
the bacteria-specific DNA recombination system such as trans-
poson (Fig. 4). The 6.2-kb genetic region inciuding rmtA of P.
aeruginosa was flanked by two copies of a kappa-gamma (k)
element (Yamane et al.. 2004), a 262-bp element possible for
mobile element, that was previously identified within a compos-
ite transposon Tn5041 carrying the genes responsible for mercury
resistance in a Pseudomonas species. The genetic regions outward
two kv elements of P. aeruginosa were identical to those of Tn5041
(Kholodii et al., 1997). Thus, the 6.2-kb genetic region including
rmtA encompassed with two kv elements appeared to be later
inserted into the Tn5041.

4.2. RmtB and RmtC

Almost all rmtB genes are accompanied by Tn3 transposon medi-
ating TEM-1 B-lactamase gene (Doi et al.. 2004). The downstream
region of rmtB is genetically variable, but often associated with
quinolone efflux transporter gene, gepA (Perichon et al., 2007;
Yamane et al.. 2007a). The rmtC gene found in P. mirabilis was
located adjacent to the ISEcpl element that is mainly involved
in translocation of neighboring rmtC gene as well as providing
promoter activity for rmtC expression (Wachino et al.. 2006a).
ISEcp1 is frequently associated with 3-lactamase genes such as
blacrx.m and blacyy that are able to hydrolyze extended-spectrum
cephalosporins and/or several cephamycins, respectively. ISEcpi
was found to be involved in the spread of blacrx.m genes in Enter-
obacteriaceaes (Toleman and Walsh, 2011). The rmtC gene may well
be widely distributed among the family Enterobacteriaceae in the
near future via the transposition activity of ISEcp1, because several
NDM-1-producing isolates have already co-produced RmtC (Islam
et al., in press; Poirel et al., 2011c).

4.3. RmtD, RmtD2 and RmtE

The rmtD gene of P. aeruginosa found in Brazil was followed by
orf494 (a putative transposase gene) and a 3'-conserved segment
consisting of gacEA1 and sull of a class 1 integron (Doi et al., 2008).
Upstream of rmtD, orfA (a putative tRNA ribosyltransferase gene),
AgroEL, and another orf494 were presented. The rmtD gene was
bound with two copies of orf494 with the same direction. The region
adjacent to rmtD of a K. pneumoniae strain was identical with that of
P. aeruginosa, but both copies of orf494 were truncated with 1S26.
The genetic context of rmtD2 found in Argentina was similar to
that of rmtD from Brazil (Tijet et al., 2011). However, the 5'-end of
AgroEL, upstream of rmtD2, was largely deleted compared to that

of rmtD. Tijet et al. described the possibility that the surrounding
region of rmtD flanked by orf494 and that of rmtD2 were sepa-
rately assembled by individual genetic recombination machinery
consisting of orf494, rather than derived from a common ances-
tral structure. The genetic environment of rmtE has not yet been
elucidated.

4.4. ArmA

The genetic surrounding regions of the armA gene deposited in
GenBank are almost identical, despite being widespread among
Enterobacteriaceae and Acinetobacter baumannii isolated from a
variety of sources (Bercot et al., 2008; Doi et al., 2007a; Galimand
et al.. 2005; Granier et al., 2011). The armA gene together with
tnpAcp1 (a transposase-like gene) is typically located downstream
of an ISCR1 element associated with a class 1 integron. Down-
stream of armaA, trpA (a transposase-like gene), and macrolide efflux
gene (mel) and a macrolide phosphotransferase gene (mph), were
often located (Galimand et al.. 2005). Galimand et al. reported
armA existed within a composite transposon Tn1548 flanked by
two copies of IS6, and could be easily transposed to the other DNA
target site (Galimand et al., 2005).

4.5. NpmA

The 9.1-kb genetic region carrying npmA was flanked by the two
copies of IS26, and this region had no significant genetic similarity
to the sequences deposited in GenBank to date (Wachino et al.,
2007). The sequences in both external regions of the 9.1-kb proba-
ble large transposable element demonstrate considerable sequence
similarities to the sequences of a part of various mulitidrug-resistant
plasmids deposited in the databases.

4.6. Characteristics of plasmids mediating 165-RMTase genes

In some instances, as described below, 165-RMTase genes
together with the other antimicrobial resistance genes, such as
NDM-1 gene, have so far been accumulated on various conjuga-
tive plasmids of broad or narrow host ranges (Table 3). Several
mobile genetic elements carrying 16S-RMTase genes were already
embedded into various transferable plasmids belonging to diverse
incompatibility groups, such as IncL/M, IncFll, and IncA/C. Rapid
dissemination of multiple drug-resistance genes including 16S-
RMTase genes mediated by broad-host range plasmids like IncN
and IncA/C groups is of a great concern for human health since it
apparently accelerates acquisition of a multidrug resistant nature
in pathogenic microorganisms.

5. Epidemiology of 165-RMTase producers
5.1. RmtB- and ArmA-producers

Pathogenic microbes that produce 165-RMTases have already
been distributed all over the world (Fig. 5). Among the 8 variants of
exogenous 16S-RMTases described above, RmtB and ArmA are the
predominant 16S-RMTases. The rmtB gene was detected mainly in
the members of Enterobacteriaceae from East Asia, Europe, North
and South America, and Oceania (Bogaerts et al., 2007 Fritsche
etal.,2008; Kangetal., 2008; Poirel etal.,2010; Tianet al.,2011; Wu
etal..2009; Yamane et al., 2008b, 2007b). Of note, RmtB-producing
bacteria have been isolated not only from human specimens in
clinical settings, but also from livestock and pet animals (Table 4),
suggesting probable transmission of the resistance determinants
between human and animals (Chen et al,, 2007; Deng et al., 2011b).
The significant similarity in the genetic context of rmtB between
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Table 3

Characteristics of plasmids that mediate exogenously acquired 16S-RMTase gene, together with clinically crucial antimicrobial resistance genes.

Year of isolation 16S- Bacterial species Plasmid Imcompatibility type Size Coexisting resistance genes Reference and Accession No.
RMTase
gene

2000 armA K. pneumoniae pIP1204 IncL/M ca. 90-kb blacrx-m-3. ant3"9, dfrXll, sull Galimand et al. (2005), AY220558

2002 armA E. coli pMURO50 IncN 57-kb ant3'9", linF, aphAl, mel, mph2, sult Gonzalez-Zorn et al. (2005a), NC007682

2005 armA K. pneumoniae IncN blayim. 1., blarem-y, blacrx-m-3. Samuelsen et al. (201 1b)

2006 armA K. pneumoniae pKP048 IncF 151-kb blagpc.2, blapua-1. gqnrB4, mel, mph2, sull Jiang et al. (2010), FJ628167

2009 armA E. coli pNDM-1.Dok01 IncA/C 196-kb blanpm-1, blacmy.a, blatem-y, dfrAl2, aadA2, Sekizuka et al. (2011), AP012208
mel, mph2, sull

2009 armA E. coli pNDM-HK IncL/M 89-kb blanpm-1. Ablapya-1. blarem-y, aacC2, mel, Hoetal (2011), HQ451074
mph2, sull

Not reported armA E. coli p271B Incl1 110-kb blatem-1, blaoxa-o. blacrx-m-15, aadA1, mph2, Poirel et al (2011a)
mel, dfrA12, arr2, cmlAS, sull

2010 armA S. enterica subsp. enterica IncFNl ~72-kb blacrx-m-3, qnrB2, aac(6')-Ib-cr, dfrAl, Duet al (2012), [N225877

serovar Paratyphi B aadA5, mel, mph2, sull

2011 armA P, stuartii pMRO211 IncA/C 178-kb blanpm-1. blacmy-2. blapxa-o. fIOR, tetA|R, McGann et al. (2012), JN687470
StrA/B, aadA, mel, mph2, cmlIA7, aac(6),
qnrAl, sull, sul2,

2002 rmtB E. coli pHPA IncFH blacrx-m-12. blarem-1. gepA, fosC2, dfrAl7, Yamane et al. (2007a), AB263754
aadA5

Not reported rmtB E. coli p271C IncF 130-kb blatgm.y, blaexa-1. bldoxa-10. aphAI-IAB, Poirel et al (2011a)
ermB, catB4, gepA, sull

2000-2005 rmtB E. coli piP1206 IncFl 168-kb blarem-1, gepA, dfrA17, tetA, catAl, aadA4, Perichon et al. (2008), AM886293

N sull

2006 rmtB E. aerogenes IncFl ca. 120-kb gepA, qnrS1, blargm.1, blagap Park et al. (2009)

2006-2010 rmtB E. coli p3D12T IncFll blacrx-m-ss. fosA3 Hou et al. (2012), JF411007

2009 rmtB E. coli pXD2 IncFl ~181-kb blarem.1, qnrS1, aac(6')-1b-cr, blacrx-m-15 Liet al. (2012),]JN315966

2007-2009 rmtC K. pneumoniae pNDM-KN IncA/C 163-kb blanom-y1, blacmy.s. cmlA7, aadAl, ereC, arr2 Carattoli et al. (2012), JN157804

Not reported rmtC K. pneumoniae pNDM 10469 IncA/C 138-kb blanpm-1., blacwy.s, aac(6')-1b, sull JN861072
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Fig. 4. Genetic context of aminoglycoside resistance 165-RMTase genes. Antimicrobial resistance genes except for 165-RMTase genes are shown with yellow. Genes which

seem to be involved in DNA recombination are shown in greenish yellow.

human and animal sources would support the above possibility.
ArmaA, as well as RmtB, has been widely spread among the family
Enterobacteriaceae including Shigella flexneri, and additionally in
Acinetobacter species (Brigante et al., 2012; Fritsche et al., 2008;
Galimand et al,, 2005; Karah et al,, 2011; Samuelsen et al., 2011a;
Yamane et al, 2007b). ArmA was also detected in Salmonella
enterica from chicken meat sampled in a supermarket in a French
island in the Indian Ocean, suggesting it possibly spread the resis-
tance determinant via food chain (Granier et al., 2011). Recently,
ArmA-producing Salmonella isolates have been increasingly

reported from Algeria and China (Naas et al, 2011; Du et al,
2012) (Table 5). The identification of RmtC had been lim-
ited in P. mirabilis from Japan and Australia before 2009
(Wachino et al, 2006b; Zong et al., 2008), but it has been
recently detected in S. enterica from the United Kingdom and
the United States, K. pneumoniae from Kenya and India, E. coli
from the United Kingdom and Germany, and Providencia

stuartii  from India (Folster et al., 2009; Livermore
et al. 2011; Hopkins et al, 2010; Poirel et al,
2011c,d).
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Fig. 5. Worldwide distribution of aminoglycoside resistance 165-RMTases. Approximate locations of countries or regions where any of the acquired 16S-RMTase-producing
microbes were isolated are indicated with circles in color.

Table 4 :
Identification of exogenously acquired 16S-RMTase-producing Gram-negative microbes recovered from livestock, pet animal or food.
Year of isolation Country 165-RMTase Bacterial species Livestock, pet animal or food Reference
2002 Spain ArmA E. coli Pig - Gonzalez-Zorn et al. (2005b)
2005-2006 China RmtB E. coli Pig Chen et al. (2007)
E. cloacae
2005-2006 China RmtB E. coli Pig Liu et al. (2008)
2008 China ArmA and rmtB E. coli Chicken Du et al. (2009)
Not reported USA RmtE E. coli Cattle Davis et al. (2010)
2008 UK RmtC S. enterica serovar Food (frozen) Hopkins et al. (2010)
Virchow
2004-2007 Korea ArmA E. coli Farm animals (cattle, pig, chicken) Choi et al. (2011)
2002 China RmtB E. coli Pig Deng et al. (2011b)
2006-2008 China ArmA and/or RmtB Enterobacteriaceae Pets (dog or cat) Deng et al. (2011a)
(E. coli,
K. pneumoniae,
E. cloacae,
C. freundii)
2010 China RmtB E. coli, M. morganii, Pig (feces or soil) Yao et al. (2011)
L. adecarboxylata,
E. aerogenes,
E. cloacae
2009 French island in the ArmA S. enterica Chicken meat Granier et al. (2011)
. Indian Ocean
2007 China RmtB E. coli Chicken Xia et al. (2011)
2010 China ArmA S. enterica Chicken Du et al. (2012)
Paratyphi B
2009 China RmtB E. coli Bovine Lietal. (2012)
Table 5

ldentification of 165-RMTases in Salmonella or Shigella spp.

Year of isolation 165-RMTase Bacterial species Country Other resistance factor Reference and Accession No.
Unknown ArmA S. enterica Bulgaria CTX-M-3 Galimand et al. (2005)
S. flexneri :
1999 ArmA S. enterica serotype Stanley USA Folster et al. (2009)
2005 RmtC S. enterica serotype Virchow
2004-2008 RmtC S. enterica serotype Virchow UK Hopkins et al. (2010)
Unknown ArmA S. enterica serotype Oranienburg UK DQ177329
2005 ArmA S. enterica serotype Gambia France CTX-M-3 Moissenet et al. (2011)
2008-2009 ArmA S. enterica serotype Infantis Algeria CTX-M-15 Naas et al. (2011)
2008-2009 ArmA S. enterica serotype Typhimurium Algeria CTX-M-15, CMY-2 Bouzidi et al. (2011)
Salmonella 4,12:-:1,2 CTX-M-15, CMY-2
-S. enterica serotype Enteritidis CTX-M-15
2009 ArmA S. enterica subspecies 1.4,12:i:- France CTX-M-3, CMY-2 Cranier et al. (2011)
2010 ArmA S. enterica serotype Paratyphi B China CTX-M-3, AAC(6')-1b-cr, QnrB2 Du et al. (2012)
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5.2. RmtA-, RmtD- and NpmA-producers

On the other hand, the other 16S-RMTases, RmtA, RmtD, and
NpmA, have been sporadically found. RmtA had been identi-
fied solely in P. aeruginosa from East Asian countries, Japan and
South Korea (Jin et al, 2009; Yamane et al., 2007b), but quite
recently itwasidentified in a K. pneumoniae strain from Switzerland
(Poirel et al,, 2011e). RmtD and RmtD2 were locally distributed
in countries in South America like Brazil, Chile, and Argentina
(Fritsche et al., 2008; Tijet et al., 2011: Yamane et al., 2008a).
RmtE and NpmA were detected in E. coli from the United States
and from Japan, respectively (Davis et al., 2010; Wachino et al,,
2007).

5.3. Epidemiological data from countrywide scale surveys

Epidemiological data from the survey of 165-RMTase-producing
bacteria onacountrywide scale are little available. In Japan, twenty-
six bacterial isolates (0.03%) were positive for the 165-RMTase
genes, among the 87,626 clinical isolates collected from 169 geo-
graphical disparate hospitals in 2004 (Yamane et al., 2007b).
In Argentina, 7 enterobacterial strains (0.7%) were positive for
rmtD2 among 1064 isolates collected from 66 hospitals belong-
ing to the WHONET-Argentina Resistance Surveillance Network
in 2007 (Tijet et al. 2011). In South Korea, the 165-RMTase pro-
duction rate was significantly high, 11.4%, among a total of 413
non-duplicate Enterobacteriaceae isolates including S. marcescens,
E. cloacae, and C. freundii collected from 11 university hospitals
(Park et al., 2006). Livermore et al. exhibited SENTRY Data for
2007-2008 indicating the prevalence of 165-RMTase producers
among Enterobacteriaceae, 10.5% in India, 6.9% in China, 6.1% in
Korea, 5% in Taiwan, and 3.1% in Hong Kong (Livermore et al.,
2011).

5.4. Prevalence data on local scale investigations

In addition, a number of reports describing the prevalence
of 16S-RMTase-producing organisms on a local scale have been
published. The proportion of 165-RMTase positive strains in ESBL-
producing Enterobacteriaceae was low at medical institutes in
European countries, 0.7% in a Turkish medical center and 1.3% in
a French university hospital (Bercot et al., 2008, 2010). Among
the Enterobacteriaceae collected from two Belgian hospitals, the
rate of 165-RMTase producers was 0.12% (Bogaerts et al., 2007).
In a cancer hospital in Bulgaria, 20 out of 1310 (1.5%) Enterobac-
teriaceae isolates were 16S-RMTase producers (Sabtcheva et al.,
2008). On the other hand, several studies published especially
from East Asian study groups reported a slightly higher rate of
prevalence of 16S5-RMTase producers. Thirty-seven E. coli clinical
isolates (5.4%) were positive for the 16S-RMTase genes among
680 strains collected between 2006 and 2008 in a teaching
hospital in China (Yu et al, 2010). Among the 7127 Enterobac-
teriaceae clinical isolates collected in a university hospital in
South Korea, 16S-RMTase genes were detected in 204 isolates
(2.9%) (Kang et al., 2008). There appear to be a hospital to hos-
pital variability in the occurrence of 16S-RMTase-producers, but
on the whole, 165-RMTases seem to be a little more prevalent
in Asian countries than in Europe. Spread of 165-RMTase genes
will likely be escalated considering they can be embedded into
mobile genetic apparatus and in turn associated with transferable
plasmids.

6. .Resistance determinants coexisting with 16S-RMTases
6.1. NDM-1, SPM-1, IMP-type and VIM-type MBLs

One great concern is the multidrug resistance development in
16S-RMTase-producing pathogenic bacteria through further accu-
mulation of various antimicrobial resistance genes (Tables 3 and 6).
Especially, the acquisition of carbapenem resistance via production
of carbapenem hydrolyzing 3-lactamases would be a serious con-
cern in clinical settings, because carbapenems are still important
agents for the treatment of infectious diseases caused by Gram-
negative pathogens. This is certainly warranted, however, for the
emergence of the member of family Enterobacteriaceae coproduc-
ing NDM-1 metallo-f-lactamase (MBL) and 165-RMTases (RmtB,
RmtC, and ArmA) (Livermore et al.. 2011; Poirel et al.. 2071a).
To make matters worse, these two resistance determinants were
often co-located on the same broad-range conjugative plasmid of
the Enterobacteriaceae (Ho et al., 2011; Sekizuka et al., 2011), and
this fact would imply further concern due to rapid evolution of
multidrug resistance in pathogenic microorganisms.

SPM-1 is another MBL associated with a 165-RMTase, RmtD (Doi
et al., 2007b). The coproduction of SPM-1 and RmtD was identified
only in P. aeruginosa clinical isolates in Brazil. Two articles have
reported the variability in the prevalence of P. aeruginosa copro-
ducing SPM-1 and RmtD in Brazil (Castanheira et al.. 2008; Doi
et al. 2007c¢). Interestingly, the SPM-1 and RmtD-coproducing P.
aeruginosa was also identified from an urban river, suggesting its
potential dissemination through the environment (Fontes et al.,
2011). Although the report of SPM-1 and RmtD-coproducing P.
aeruginosa has been limited in Brazil so far, it may be found in differ-
ent geographical areas, given that SPM-1-producing P. aeruginosa
has already spread to a European country (Salabi et al., 2010).

Co-productions of 165-RMTase and IMP- or VIM-type MBL are
not common, and such association was reported from Korea, Greece
and Sweden to date (Galani et al., 2012; Gurung et al.. 2010; Lee
et al., 2007; Samuelsen et al., 2011b).

6.2. OXA-type and KPC-type carbapenemases

Emergence of ArmA-producing A. baumannii was first reported
in Korea (Lee et al., 2006), but co-production of OXA-type carbapen-
emase in the isolate was only suggested by the fact that the isolate
demonstrated nonsusceptibility to carbapenems. Coexistence of
carbapenem-hydrolyzing oxacillinase, OXA-23, and a 165-RMTase,
ArmA, was later identified in multidrug-resistant A. baumannii
(MDRA) in the United States in 2007 (Doi et al., 2007a). After that,
the presence of MDRA co-producing OXA-23 and ArmA was spo-
radically reported from China, India, and South Korea, and a part of
these MDRA additionally produce NDM-1 MBL (Karthikeyan et al.,
2010; Kim et al,, 2008; Zhao et al., 2011). Coproduction of KPC-2
carbapenemase, which is one of the widespread carbapenem-
hydrolyzing class A B-lactamases, and a 165-RMTase, ArmA, were
seen in Enterobacteriaceae from Poland and China (Jiangetal., 2010;
Zacharczuk et al., 2011). Moreover, K. pneumoniae isolates that co-
produce KPC-2 and RmtB were reported from Greece (Galani et al..
2012) and China (Sheng et al., in press).

6.3. CTX-M-type, CMY-type f3-lactamases and PMQR

CTX-M-type extended-spectrum [3-lactamases (ESBLs), espe-
cially CTX-M-15, which is a globally prevalent CTX-M-type ESBL,
are frequently combined with ArmA/RmtB in Enterobacteriaceae
(Arpin et al., 2009; Poirel et al., 2011a). Coexistence of RmtB
and another CTX-M group, CTX-M-9 group (including CTX-M-9
and CTX-M-14), was also found (Deng et al., 2011a; Yan et al.,
2004). Besides, plasmid-mediated quinolone resistance (PMQR)
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Table 6

Global dissemination of Gram-negative bacteria harboring exogenously acquired 165-RMTase gene, together with clinically crucial antimicrobial resistance genes.

Year of isolation 165-RMTase gene Bacterial species Country Specimen or animal Coexisting resistance genes Reference
2000 armA K. pneumoniae France Urine blacrx-m-3, blarem-1, aacC2, aadA2, dfrA12, sull Galimand et al. (2003)
2002 rmtB E. coli Japan Urine blayem-1, gepA Yamane et al. (2007a)
2004 armA Providencia sp. Korea Urinary specimen blayim-2, blaper-1 Lee et al. (2007)
2005 rmtD P. aerugonosa Brazil Urine blaspm-1 Doi et al. (2007b)
2006 armA E. coli France Urine blacrx-m-15 Arpin et al. (2009)
Not reported armA A. baumannii India - blanpm-1, blaoxa-23 Karthikeyan et al. (2010)
Not reported armA and rmtB E. coli Australia Urine blanpm-1. blacrx-m-15 Poirel et al. (2010)
Not reported armA E. cloacae China blagpc.2, blasyy-12, blacrx-m-14. blaem- Wu et al. (2010)
2008-2009 armA P. aeruginosa Korea blaywep-1 Gurung et al. (2010)
2008-2010 armA A. baumannii Korea aac(6')-1b, aph(3')-1a, blapxa-23 Sung et al. (2011)
Not reported rmtB E. coli Beigium Pus blanpm-1. blacmy-ss, blacrx-m-15. blarem-1 Bogaerts et al. (2011)
Not reported armA E. coli Hong Kong blanpm-1, blatem-1, aacC2, sull, mel, mph2 Hoet al. (2011)
2009-2010 armA E. coli Switzerland blacmy-30, blaoxa-1, blarem-1 Poirel et al. (2011e)
P. mirabilis blacmy-16. blaoxa-1. blaoxa-10. blatem-1
Not reported armA or rmtC Family Enterobacteriaceae UK blanpm-1, Livermore et al. (2011)
Not reported armA K. pneumoniae Oman blanpwm-1, blasyy-28, bldcrx-m-15, bldoxa-1, blaoxa-s Poirel et al. (2011b)
’ blanpm-1, bldsky-11, bldoxa-1
2007-2009 rmtC K. pneumoniae Kenya blanpm-1, blacuy-s, blacrx-m-1s, blaoxa-1. blaoxa-s. Poirel et al. (2011d)
Not reported armA E. coli Spain blanpm-1, blatem-1. blacrx-m-15 Sole et al. (2011)
2005 armA K. pneumoniae Sweden Sputum blavim-1, blarem-1, blasyy-11, blacrx-m-3 Samuelsen et al. (2011b)
2010 armA K. pneumoniae Norway Catheter urine blanpm-1, blatem-1., blasyy-11, blacrx-m-1s Samuelsen et al. (2011a)
2007-2009 armA A. baumannii Norway blaoxa-ss Karah et al. (2011)
Not reported armA E. coli UK blanpm-1 Mushtaq et al. (2011)
Pakistan blanpm-1
rmtC UK blanpm-1
India blanpm-1
Pakistan blanpm-1
armA and rmtC Pakistan blanpm-1
Not reported armA K. pneumoniae Bangladesh blanpm-1, blacrx-m-1s, Islam et al. (in press)
rmtB C. freundii blanpm-1, blacrx-m-1s, blacmy
2007-2009 rmtB K. pneumoniae Greece blagpc.2, blaoxa-10 Galani et al. (2012)
blapua-1
P. mirabilis blaV(M.] ' blaoxA.m
blaoxa-10
2011 armA P. stuartii Afghanistan Blood blanpm-1. blaoxa-10. sull, aadA, aac(6'), qnrAl McGann et al. (2012)
Not reported armA K. pneumoniae Spain Pus from abdominal abscess blanpm-1, blacrx-m-1s, sull, aac(6')-Ib-cr, qnrB, dfrA12 Oteo et al. (in press)
Not reported armA K. pneumoniae Oman blanpm-1. blacrx-m-1s, blasuv-12, blaoxa-1. blarem- Dortet et al. (in press)

blanpm-1, blacrx-m-1s, blasuy-12, blaoxa-e. blatem-1
blanpm-1, blacrx-m-1s. blasuv-130, blaoxa-1
blanpm-1, blacrx-m-15, blasuyv-12, blaoxa-1.
blanpm-1. blacrx-m-15. blasuy-2, bldoxa-1.
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proteins QnrA, QnrB, and AAC(6')-Ib-cr, and plasmid-mediated
class C B-lactamases like CMY- and DHA-types were coproduced
with 16S-RMTases (Jiang et al., 2010: Liu et al.. 2008; Poirel et al..
2011a). The fluoroquinolone efflux transporter gene, gepA, was
specifically linked to rmtB in the Enterobacteriaceae from sources of
human, pets, and livestock-farming animals (Deng et al., 2011a.b;
Liu et al., 2008:; Yamane et al., 2008b), and this genetic association
is generally observed as shown in Fig. 4. Acquisition of 165-RMTase
gene together with other antimicrobial resistance determinants
is apparently implicated in development of multidrug-resistant
properties in Gram-negative pathogens, and this would limit
antimicrobial therapeutic options in both clinical and veterinary
settings.

7. Screening procedure of 165-RMTase-producing bacteria
7.1. N7-G1405 165-RMTase producers

Development of practical screening techniques for detection
of 16S-RMTase-producing pathogens will be of great assistance
in their epidemiological study and rapid identification in clinical
microbiology laboratories. The hallmark of N7-G1405 165-RMTase-
producing strains is their high resistance to the 4,6-disubstituted
DOS group (Table 2). The high MIC values (=128 pg/ml) of both
amikacin and gentamicin are a good indicator of N7-G1405
16S-RMTase-producers (Doi and Arakawa, 2007). However, their
susceptibility profiles are routinely determined only at around
breakpoint concentrations in clinical microbiology laboratories
when using automated susceptibility testing equipment. Therefore,
it seems economical that only bacterial strains, that are deter-
mined to be resistant to both amikacin and gentamicin by routine
automated susceptibility testing, be subjected to the suscepti-
bility testing method covering a high MIC range for screening
of N7-G1405 16S-RMTase-producers. The disk diffusion method
is available for screening. The N7-G1405 16S-RMTase-producers
can exhibit little or no inhibitory zone around both amikacin
and gentamicin disks. The susceptibility to 4,5-disubstituted
DOS (like neomycin) and streptomycin is less likely to be an
indicator of production of N7-G1405 16S-RMTase, because N7-
G1405 16S-RMTase production cannot confer evident resistance
to these aminoglycosides, whereas aminoglycoside phosphotrans-
ferase and nucleotidyltransferase, that are often coproduced with
16S-RMTase, can afford resistance to these agents. One remaining
issue is to what bacterial species the screening scheme described
above would be applicable. Indeed, the application of the screen-
ing method to the member of family Enterobacteriaceae and a part
of non-fermentative Gram-negative rods such as P. aeruginosa and
A. baumannii has so far been demonstrated to work. However,
the method would also select some member of non-fermentative
Gram-negative rods, e.g., Stenotrophomonas maltophilia, Chry-
seobacterium indologenes, and Achromobacter xylosoxidans that
lack production of the 165-RMTase, since these microbes usually
demonstrate inherent pan-aminoglycoside-resistance phenotype.
No identification of N7-G1405 16S-RMTase gene in a member of
non-fermentative Gram-negative rods with the exception of P.
aeruginosa and A. baumannii has so far been reported. Accordingly,
PCR seems the only confirmatory method for detecting N7-G1405
165-RMTase genes at present. Recommended primers and cycle
condition have been described in the previous literature (Doi and
Arakawa, 2007; Poirel et al., 2011c).

7.2. N1-A1408 165-RMTase producers

A practical screening method to detect the production of
the other kind of 16S5-RMTase, N1-A1408 16S-RMTase, has not

been established yet, because only one isolate was reported to

‘date. However, it is expected to be quite difficult to find N1-

A1408 16S-RMTase producers depending on the result of routine
antimicrobial susceptibility testing alone, because production of
N1-A1408 16S-RMTase has hardly any distinctive outstanding
characteristics like the highly aminoglycoside resistant nature as
seen among N7-G1405 16S-RMTase producers (Table 2). The resis-
tance profile to clinically utilized aminoglycosides conferred by
N1-A1408 165-RMTase was similar to that by co-production of mul-
tiple aminoglycoside-modifying enzymes. The possible hallmark of
N1-A1408 16S-RMTase producers is its high resistance to mono-
substituted DOS, apramycin, a veterinary aminoglycoside used for
the treatment of bacterial infections and growth promotion in some
countries. In fact, an E. coli clinical isolate {(ARS3) producing N1-
A1408 165-RMTase, NpmA, was identified in the selection with
apramycin. On the one hand, the selection with the phenotype of
apramycin resistance reportedly could also enable identification of
another resistance mechanism, aac(3)-1V, which is the most preva-
lent gene for apramycin resistance in E. coli (Jensen et al., 2006).
Further collection of nonclonal N1-A1408 16S-RMTase producers
and substantial additional examination will be necessary to estab-
lish the practical and feasible screening methods for N1-A1408
16S-RMTase producers.

8. Future considerations

8.1. Potential transfer of 165-RMTase gene to Gram-positive
bacteria .

Acquisition of multidrug resistance in Gram-negative pathogens
is becoming one of the most serious problems for human health.
Among the genetic factors responsible for aminoglycoside resis-
tance, the 16S-RMTases can confer a higher and broader spectrum
aminoglycoside resistance than any other resistance determinants
known so far, and they are a major factor contributing to the
very high aminoglycoside resistance among members of the family
Enterobacteriaceae, together with P. aeruginosa and A. bauman-
nii. Identification of 16S-RMTases has been exclusively limited
to Gram-negative pathogens to date, but not in Gram-positive
pathogens such as genus Staphylococcus, Streptococcus and Ente-
rococcus. However, it was confirmed that 16S-RMTases derived
from Gram-negative pathogens have been functional and could
provide a high level of aminoglycoside resistance under the native
promoters in heterologous Gram-positive bacteria, Bacillus subtilis,
and Staphylococcus aureus when artificially expressed under the
appropriate promoters (Liou et al., 2006; Wachino et al., 2010). In
Japan, arbekacin, a semisynthetic aminoglycoside, as well as van-
comycin, has been used as one of the antimicrobial agents effective
for MRSA infections for more than 10 years. Under such clinical cir-
cumstances, the emergence of 165-RMTase-positive MRSA would
become an actual clinical obstruction through limiting the choice
of available antimicrobials in chemotherapy. We should, therefore,
pay careful attention to the emergence and spread of the 16S-
RMTase-producers, hereafter, not only in Gram-negative, but also
in Gram-positive microbes.

8.2. Development of new potent agents against 165-RMTase
producers

Recently, a next-generation aminoglycoside (called neogly-
coside), ACHN-490 (a semi-synthetic aminoglycoside derived
from sisomicin), was developed as a candidate agent to cope
with multidrug-resistant bacteria (Armstrong and Miller, 2010).
In fact, ACHN-490 had potent activity in vitro against both
Gram-negative and -positive pathogens, even amikacin- and/or
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Fig. 6. 165-RMTases posing a new threat to human health. Various Gram-negative pathogenic bacteria belonging to the family Enterobacteriaceae including Salmonella
and Shigella spp.. have acquired the 165-RMTase genes, and they have been disseminated worldwide. These 165-RMTase-producing microbes usually co-produce other
antimicrobial resistance enzymes such as NDM-1 and CTX-M-type ESBL. Moreover, they are also recovered from livestock, pet animals and foods, as well as human. Thus,

their further global spread is a great concern from the viewpoint of human health.

gentamicin-resistant  strains that produce a variety of
aminoglycoside-modifying enzymes (Landman et al., 2010;
Tenover et al.,, 2011). However, ACHN-490 is reportedly less active
against the 16S-RMTase producers (Livermore et al., 2011). This
fact suggests that even newly developed ACHN-490 is already
vulnerable to the defense mechanism provided by 16S-RMTases.
Thus, exploitation of next-generation aminoglycosides or other
antimicrobials not influenced by 16S-RMTase production is
warranted.

One possible way to mitigate obstacles by 165-RMTases and
restore the clinical efficacy of existing aminoglycosides for the
treatment of infectious diseases is to develop potent inhibitors that
can specifically block 165-RMTase activity. To realize the above
objective, it is essential to understand the mode of interaction
between the 16S-RMTase and its substrate including a cofactor
through elucidation of three-dimensional structure provided by X-
ray crystallographic analyses. To date, the structures of N7-G1405
16S-RMTases (Sgm, ArmA, RmtB) and N1-A1408 16S-RMTases
(KamB, NpmA) from aminoglycoside-producing actinomycetes and
pathogenic bacteria have been solved and deposited in the Protein
DataBank (Husainetal., 2010; Macmasteretal.,2010; Schmittetal.,
2009). Interestingly, the overall structures of 16S-RMTases from
actinomycetes and pathogenic bacteria are quite similar, and the key
amino acid residues essential for their activity are well conserved
among them, despite their significant dissimilarity (approximately
less than 30%) in view of the overall alignments of amino acid
residues. Seven N7-G1405 16S-RMTases, ArmA and RmtA to RmtE,
demonstrate a considerable similarity in the amino acid sequence
level. At least 6 amino acid residues are generally conserved
among the seven acquired N7-G1405 16S-RMTases, and the con-
sensus residues are also conserved in GrmO, GrmA, and Kmr of
S. kanamyceticus (Fig. 3B). These conserved residues were initially
speculated to form the active center of the enzymes and play an
important role in the enzyme reactions. Some of these amino acid
residues were later found to locate in the catalytic motifs of the
enzymes involved in the transfer of the methyl group to the N7 posi-
tion of G1405 of bacterial 16S rRNA (Macmaster et al., 2010; Schmitt
et al., 2009). Interestingly, consensus amino acid residues are also
conserved among the N1-A1408 165-RMTases including NpmA, but
no considerable similarity in the amino acid alignments was seen
between N7-G1405 and N1-A1408 16S-RMTases (Fig. 3B and C).

Further determination of fine 3D structures of the 16S-RMTases
would provide additional knowledge useful for development of the
potent specific inhibitors which can be used to establish the screen-
ing method for detection of the 16S-RMTase-producing bacteria
in clinical and veterinary microbiology laboratories, and will be a
useful tool for better antimicrobial chemotherapy.

8.3. Strategic surveillance of 165-RMTase-producers

As described above, the 16S-RMTase-producing Gram-negative
pathogenic bacteria have been disseminated worldwide and these
microbes tend to show multidrug-resistant phenotypes though
acquiring various antimicrobial resistance genes such as blanpy.i
and blacrx-m-15. Moreover, genes for 165-RMTases have been
acquired by highly pathogenic microbes like Salmonella spp. and
Shigella spp. Furthermore, these pathogens have already been
recovered from livestock, pets, and food (Table 4, Fig. 6), as well
as from human. Thereby, it would be very important to continue
monitoring the trend of 165-RMTase producers under countrywide
surveillance programs in both human and animal to prevent their
further global spread.

9. Conclusion

The era of multidrug-resistant pathogenic Gram-negative bacte-
ria including the members of family Enterobacteriaceae and glucose
non-fermentative bacilli has arrived. These so-called invincible
microbes have been fully armed with various newly emerged
antimicrobial resistance mechanisms such as 16S-RMTases and
MBLs like NDM-1, and spreading worldwide. As described above,
various sets of multifarious antimicrobial resistance genetic deter-
minants have been highly organized and often mediated by diverse
mobile genetic elements and integrons embedded usually into
a variety of transferable large plasmids, predicting further con-
tinuous global proliferation of such stubborn microorganisms.
Therefore, we should confront the stern realities and devote our
utmost knowledge and skill to cope with such threatening super-
bugs.
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Abstract The purpose of this investigation was to control the
post-outbreak prevalence of vancomycin-resistant enterococci
(VRE) in the affected Kyoto region. The study period was
from 2005 to 2010. Faecal samples were subjected to VRE
screening, and vancomycin resistance genes were detected by
polymerase chain reaction (PCR). The genotype was deter-
mined by pulsed-field gel electrophoresis (PFGE) of genomic
DNA digested with Smal and by multilocus sequence typing
(MLST). A VRE control programme was established in 2006,
consisting of a laboratory-based faecal VRE screening system,
annual surveillance of hospital inpatients and the promotion of
adequate infection control measures. vand-Enterococcus
Jfaecium, vanB-E. faecium and vanB-E. faecalis were detected
at 35, 12 and 5 hospitals, respectively. Genotype analysis
revealed that all of the vancomycin-resistant E. faecium
isolates obtained since 2005 belonged to ST78, and that
clonally related vanB-E. faecalis of ST64 had spread to three
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hospitals. The rate of faecal VRE carriage amiong the patients
enrolled in the annual surveillance increased until 2007, when
it reached 24 (1.2%) of the 2,035 enrolled patients. The rate
began to decrease in 2008 and, by 2010, reached a low of 4
(0.17%) of the 2,408 enrolled patients. While VRE did spread
within the Kyoto region, the VRE control programme
succeeded in controlling the overall VRE spread.

Introduction

Vancomycin-resistant enterococci (VRE) infections arose as a
global problem in the 1990s. They rapidly increased the
prevalence in the hospital settings in the United States and
became one of the major nosocomial pathogens by 2000 [1].
VRE-infected patients experience prolonged illness with
extended hospital stays, increased costs of care and increased
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mortality [2, 3]. Because a period of colonisation precedes the
VRE bloodstream infection, the control and prevention of
VRE colonisation are important [4]. In the past several de-
cades, an exponential increase in VRE prevalence has been
observed in the United States, Korea and Greece [1, 5, 6]. In
some countries, including Sweden, the spread of a predo-
minant VRE clone has been reported, which prompted con-
cerns about VRE becoming an endemic hospital pathogen [5].

The first vand-Enterococcus faecium in Japan was
réported in 1996 in Kyoto [7]. According to the Infectious
Diseases Surveillance Center (IDSC), fewer than 90
confirmed cases of VRE infection have occurred per year
[8]. However, the actual prevalence of VRE, including both
symptomaﬁc cases and faecal carriers, is suspected to be
much higher. To date, no major epidemiological studies
have been conducted in Japan. Some studies based on
faecal specimens were conducted following sporadic
- nosocomial outbreaks in early the 2000s; however, the
regional spread of VRE was not proven [9].

In 2005, a large nosocomial outbreak of vand-E. faecium
occurred in a single Kyoto hospital, and more than 100
faecal vand-E. faecium carriers were identified. A task
force was formed in order to establish a regional VRE
control programme. Vancomycin-resistant E. faecium and
E. faecalis did spread in the Kyoto region; however, our
infection control programme successfully controlled their
spread.

Materials and methods
Study settings

The study period was from the beginning of 2005 to the
end of 2010. The region of interest in this study is the
Kyoto Prefecture, which, in 2010, contained 177 hospitals
and a population of ~2.6 million. Kyoto City (population
~1.5 million) is located in the middle of the Prefecture.

VRE definition

VRE was defined as an £. faecium or E. faecalis isolate
positive for the vand or vanB gene.

Microbiology

The screening of clinical faecal specimens or routine faecal
surveillance samples (e.g. screening on admission) was
performed by spreading the sample on a VRE selective agar
plate (Nippon Becton Dickinson Company, Tokyo, Japan).
For increased sensitivity, faccal swab samples, taken during
the annual regional surveillance, were enriched with liquid
media and spread on VRE selective agar plates {10].

@ Springer

Samples were suspended in 1 ml of phosphate-buffered
saline (137 mM NaCl, 2.7 mM KCl, 10 mM sodium
phosphate dibasic, 2 mM potassium phosphate monobasic,
pH 7.4), and 0.5 ml of each sample was inoculated into
10 ml of bile esculin azide broth containing 15 mg of
vancomycin per litre (Nissui Pharmaceutical Co., Ltd.,
Tokyo, Japan). After incubation at 35°C for 48 h, broth
samples with dark brown or black discolouration were
inoculated onto VRE selective agar plates and incubated at
35°C for 48 h. Discrete colonies with enterococci-consistent
morphologic features were transferred to heart infusion agar
plates supplemented with 5% sheep blood (Eiken Chemical
Co., Ltd., Tokyo, Japan). Species were identified using the
API 20 Strep system (bioMérieux, St. Louis, MO, USA).

Molecular methods

Total bacterial DNA was extracted using a Qiagen DNA
mini kit (Qiagen, Hildesheim, Germany), according to the
manufacturer’s instructions. Glycopeptide resistance genes
(vand, vanB, vanCI and vanC2/3) and E. faecalis-specific,
E. faecium-specific and 16S rDNA genes were detected by
multiplex polymerase chain reaction (PCR), as previously
described [11].

Pulsed-field gel electrophoresis (PFGE)

The first vancomycin-resistant E. faecium isolate obtained
from each facility was genotyped by the PFGE of genomic
DNA digested with Smal (Takara Bio, Otsu, Japan), as
previously described [12, 13]. FN-1, a vand-E. faecium
isolate obtained in Kyoto in 1996 [7], was also analysed.
Electrophoresis was performed using a GenePath system
(Bio-Rad Laboratories, Tokyo, Japan), with pulse times
increasing from 1.0 to 14.0 s for 18.5 h at 200 V (6 V/cm).
Genetic relatedness was analysed using GelCompar II
software (Applied Maths, Kortrijk, Belgium). Isolates were
considered to be related when their PFGE banding patterns
were >80% 1n similarity [14].

Multilocus sequence typing (MLST)

MLST .was performed as previously described [15, 16]. The
eBURST V3 program (http://efaccium.mlst.net/ or http:/
efaecalis.mlst.net/) was used to assign a sequence type (ST)
to each isolate according to its allelic profile.

VRE control programme

A task force comprising hospital personnel, clinical
laboratory chiefs and public health workers was organised
and supported by the local authority to establish a VRE
control programme.

—263—



Eur J Clin Microbiol Infect Dis (2012) 31:1095-1100

1097

The faccal VRE screening system started in 2006.
Every faecal specimen, with or without an order from
clinicians, was screened with VRE selective agar plates
supplied by the task force. Positive plates were sent to
the task force for further microbiology and molecular
analyses.

Regional VRE control guidelines, based on previously
published guidelines [17, 18], werc established to promote
adequate infection control mecasures. The guidelines
emphasised good hand hygiene and barrier precaution in
the caring for patients who were positive for VRE and
emphasised on-admission surveillance cultures to detect
VRE introduced into the hospitals. On-admission screening
was cspecially recommended for patients transferred from
other hospitals or non-hospital care facilities, because
facility-to-facility transfer has been one of the main routes
of VRE spread in the United States [19]. Precise informa-
tion (i.c. species, vancomycin resistance type, and first and
last date of positive tests) was sent from one facility to the
next upon patient transfer. Task force members visited
facilitiecs where VRE was detected and gave practical
infection control advice.

Annual regional surveillance began in 2005 with the
approval of the cthics committee of Kyoto University. The
purpose was to identify patients with VRE colonisation
missed by the routine faecal screening system. Participating
hospitals were recruited throughout the region. Patient
criteria included those with a history of VRE carriage
who had been hospitalised for more than 7 days and who
met at least one of the following: urinary and/or faecal
incontinence, tube feeding, use of a urethral catheter.
reccived antimicrobial chemotherapy (>2 weeks) or under-
went a surgical procedure (<1 month). Oral informed
consent was obtained and each participant was anonymised
by facility personnel. Surveillance was carried out once per
year from 2005 to 2008, and was reduced in 2010 to once
every 2 years.

Results
Regional spread of VRE

By the end of 2010, VRE was detected in 44 (25%) of 177
hospitals. Thirty-five (80%) of these 44 hospitals recog-
nised the first cases of VRE colonisation by faecal VRE
screening and the other nine (20%) recognised them by
annual surveillance. vanA-E. faecium was isolated in 35
hospitals, and 31 (89%) of these hospitals were located in
Kyoto. vanB-E. faecium was isolated in 12 hospitals, with
six (50%) of these hospitals located in Kyoto and four
located (33%) in northem districts: vanB-E. faecalis was
detected in five hospitals.

Genotype analysis

Four clusters of clonally related isolates were identified
among the 35 vand-E. faecium isolates. The largest cluster
(15 1solates) was obtained between 2006 and 2009. KRO1
belonged to the cluster consisting of nine isolates obtained
by the end of 2006. Therc were another two clusters: onc
consisted of four isolates obtained since 2009 and the other
consisted of two isolates obtained in 2006 and 2007. Two
clusters were identified among the 12 vanB-E. faecium
isolates. The MLST type of all £. faecium isolates obtained
since 2005 was ST78, which was different from the FN-I
isolates (ST16). Both ST78 and ST16 belonged to clonal
complex 17 (Fig. 1a).

One cluster, consisting of three isolates. was identified
among the five vanB-E. faecalis isolates. The ST of these
isolates was 64, a member of clonal complex 8. The STs of
the other two isolates were 4 and 390, neither of which
belonged to the major clonal complexes (Fig. 1h).

VRE contro] programme

Faecal VRE screening began in 2006, with participation
from 98 (55%) of the 177 regional hospitals. By the end of
2010, the number of hospitals reached 116 (66%), holding
78% of beds in the area. In 2005, three hospitals recognised
their first cases of VRE colonisation by clinically ordered
microbiological testing (before the faccal screening system
began). Thirty-two (78%) of the 41 hospitals affected by
VRE after 2006 detected their first VRE by the faecal
screening system and the other nine (22%) hospitals
detected them by annual surveillance.

In 2005 (9 months after the hospital outbreak of KRO1),
vanB-E. faecalis carriage was identified by the annual
surveillance i only 1 of 2.253 patients (0.044%) in 108
hospitals. The number of faecal carriers detected by this
surveillance significantly incrcased to 14 (0.71%) of 1,961
patients from eight hospitals in 2006, and reached 24
(1.2%) of 2,035 patients from eight hospitals in 2007. This
number then decreased to 12 (0.50%) of 2.379 patients
from six hospitals in 2008, and. further, to 4 (0.17%) of
2,408 patients from three hospitals in 2010 (Fig. 2).

Discussion

While no regional spread of vancomycin-resistant bacteria
had been reported in Japan prior to 2005, VRE has become
a major hospital pathogen in many other countries.
However, vand-E. faecium isolates were detected in three
hospitals in urban Kyoto City in 2005, and one of them
experienced a large outbreak that affected more than 100
patients. This resembled a situation reported from the
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Fig. 1 Genotype analysis of vancomycin-resistant Enterococcus fae-
cium and Enterococcus faecalis isolates. a Pulsed-field gel electropho-
resis (PFGE) and multilocus sequence typing (MLST) analysis of
vancomycin-resistant E. faecium isolates. Thirty-five vand-positive
isolates and 12 vanB-positive isolates were included in the analysis.
The dendrograms was created using an UPGM (unweighted pair group
method, Dice coefficient) algorithm, with optimisation 0.54% and band-
tolerance 0.91%. This analysis revealed four and two clusters of
genetically related isolates (PFGE pattern >80% similarity) among the
vanA- and vanB-positive isolates, respectively. FN-1, a vand-type E.
faecium (Kyoto, 1996) was included as a control. Both ST78 and ST16
belonged to clonal complex 17. b PFGE and MLST analysis of
vancomycin-tesistant E. faecalis isolates. The dendrogram was created
with an optimisation of 0.75% and a band-tolerance of 1.0%. One
cluster of genetically related isolates, consisting of three ST64 isolates,
was identified among the five vanB-E. faecalis isolates. Abbreviations,
ST: sequence type; Van: the type of vancomycin resistance gene; City:
Kyoto City; Southern: Southern districts; Northern: Northem districts
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Fig. 2 Number of patients enrolled and faecal carriers of vancomycin-
resistant enterococci (VRE) in the annual regional surveillance
programme. VRE was identified by the annual surveillance in 2005
in only 1 of 2,253 enrolled patients (0.044%). The number of faecal
carriers significantly increased to 14 (0.71%) of 1,961 patients in 2006
(*p<0.001, Fisher’s exact probability test) and reached 24 (1.2%) of
2,035 patients in 2007. This number then decreased to 12 (0.50%) of
2,379 patients in 2008 (**p<0.05, Chi-square test), and, further, to 4
(0.17%) of 2,408 patients in 2010 (***p<0.05, Fisher’s exact
probability test). Regional surveillance was skipped in 2009. The
solid squares represent enrolled patients and the bars represent faecal
VRE carriers for each year

United States in the 1990s, where vanA-E. faecium had broken
out in limited facilities, while the majority of the hospital-
acquired enterococci remained vancomycin-susceptible {20].
The prevalence of VRE in the United States then rose
exponentially in the following years [21, 22], prompting the
urgent need for an effective control programme in Kyoto
following initial reports of increasing VRE.

The dissemination of vancomycin-resistant E. faecium
with preferred hospital association was, as Bonten et al.
described, the pattern of VRE increase in the United States,
and this pattern was recently reported from many countries,
including those where VRE had not been a major problem
[1, 23, 24]. MLST analysis revealed the predominance of
strains belonging to CC17 among these nosocomial isolates
worldwide [15]. The spread of CC17 vancomycin-resistant
E. faecium is considered to be based on a high prevalence
of CC17 vancomycin-susceptible ampicillin-resistant isolates
that have adapted well to the hospital settings [25, 26]. CC17
vancomycin-resistant E. faecium may become more apparent
in Japan in the future, because the ampicillin resistance rate
among E. faecium isolates has become already high [27].

We also found that ST64 E. faecalis (belonging to
CC8) was distributed to three facilities in the City area.
Vancomycin-resistant E. faecalis belonging to CC2 and
CC9 have, so far, been reported to be associated with
high-risk clonal complexes, which are especially well
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adapted to the hospital environment [28]. Our observation,
together with a report from Cuba that there were three
isolates of ST64 obtained from hospital clinical specimens,
suggests that CC8 may be, at least in some countries, another
high-risk clonal complex [29]. Further epidemiological and
molecular study is needed. This observation is consistent
with the report that these pathogens have increased ability to
infect human hosts, which confer selective advantages for
different genogroups [30].

Both the number of VRE-affected hospitals and patients, as
determined by the annual surveillance, increased linearly until
2007. In addition, most of the vand-E. faecium isolates
obtained by the end of 2007 belonged to the two largest
genetic clusters. These observations suggest that faecal VRE
carriers had not been adequately identified until 2007, and
that unnoticed hospital-to-hospital spread had continued.
This study indicates that, since 2008, the VRE control
programme has worked effectively. The laboratory-based
faecal screening system detected the faecal carriers earlier,
and the annual regional surveillance worked as a safety net
to detect the cases from whom no clinical faecal specimens
had been taken or from whom no VRE was detected by the
routine screening. These two surveillance systems may have
also led to a Hawthorne effect (a form of reactivity whereby
subjects improve their behaviour simply in response to the
fact that they are being studied, not in response to any
particular intervention) among hospital caregivers, resulting
in better infection control practices.

Limitations in this study should be noted. First, the
enrichment broth in this study used a comparably high
vancomycin concentration of 15 mg of vancomycin per litre.
Although Novicki et al. reported that bile esculin azide broth
with this concentration of vancomycin supported the growth
of E. faecalis ATCC 51299, a strain having a measured
vancomycin minimum inhibitory concentration (MIC) of
16 pg/ml, we might have missed some isolates with lower
MICs [31]. Another limitation of our method is that we
defined VRE in this study as the isolates that were positive
for the vand or vanB gene by PCR. We might have missed
some PCR-negative isolates, as molecular testing may not
always detect VRE.

Second, not all hospitals were prospectively recruited to
participate in the faecal screening system or in the annual
surveillance. Unrecognised faecal carriers may still exist,
particularly in non-participating hospitals. The spread of
VRE from these hospitals can still be monitored indirectly
by the on-admission screening of transferred patients to the
participating hospitals.

Third, only 6 years have passed since the initial spread
of VRE, and VRE prevalence has remained low during
these years. This observation may partially account for the
success of our “passive” faecal screening system and our
on-admission screening of patients transferred from other

facilities in controlling VRE spread; however, these
methods may be insufficient in upcoming years. Since
more than 25% of hospitals are affected by VRE, an
exponential increase in infection prevalence could occur.

In conclusion, VRE has spread in the Kyoto region of
Japan since 2005; however, our regional programme has
succeeded in its efforts toward VRE control.
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