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inhibits telomerase activity and results in progressive telomere
shortening and increased p14*RF expression. A functional rela-
tionship between p53 and sensitivity to AZT has also been sug-
gested (Datta et al, 2006). Ritonavir, developed as a protease
against HIV-1, also has an anti-ATL effect. Ritonavir decreases NF-
kB activity linked to the inhibition of IkBa phosphorylation and
induces the apoptosis of ATL cells. In addition, it very efficiently
prevents tumor growth and leukemic infiltration in various organs
of NOG mice when administered at the same dose as that used in
the treatment of patients with AIDS (Dewan et al., 2006). Together,
several signaling networks are deregulated in leukemic cells, and
these are a specific molecular feature of ATL (Figure 2). At present,
signal interception is the most effective strategy to treat ATL. At
the same time, the occurrence of incidental side effects should be
carefully considered because these signaling pathways are essential
for normal cell function and survival.

CYTOKINES PRODUCTION AND ATL

CD4+ T cells play a central role in the immune response by con-
trolling cells such as B cells, dendritic cells, and cytotoxic cells
and their responses through various cytokines. Deregulation of
the associated signaling pathways leads to abnormal gene expres-
sions, including that of several cytokines. ATL has been implicated
in the production of various cytokines, including IL-1 (Wano
et al., 1987), TGF- (Niitsu et al,, 1988), TNF-a, IFN-y, GM-CSF
(Yamada et al., 1996), and PTHrP (Watanabe et al., 1990). Espe-
cially, an elevated serum C-terminal PTHrP level is a characteristic
marker of the HTLV-1 carrier status, and the determination of
this level in ATL patients could be useful for assessing the prog-
nosis (Yamaguchi et al., 1994). SCID mice model of ATL also
showed clearly elevated serum levels of calcium and C-terminal
PTHIP, resulting in the development of hypercalcemia (Takaori-
Kondo et al., 1998). The high frequency of hypercalcemia is one
of the notable clinical characteristics of ATL, in particular, the
aggressive types of ATL (Kiyokawa et al.,, 1987). Besides PTHrP,
which plays an important role in bone resorption by stimulating
osteoclasts, abnormal expression of the RANK ligand (RANKL)
has also been demonstrated in ATL with hypercalcemia (Nosaka
et al., 2002). Recent studies have revealed that a central region of
HTLV-1 gp46 acts as an antagonist for osteoprotegerin and leads
to hypercalcemia (Sagara et al., 2007, 2009).

SCID mice engrafted with cells from Tax-transgenic mice that
develop lymphoma produced TNF-o, PDGF-BB, sICAM-1, and
SVCAM-1 as factors that may contribute to high levels of organ
infiltration (Watters et al., 2010). PDGE, in particular, the BB iso-
form, is a well-known potent osteotropic factor that stimulates
the osteoclasts and osteoblasts functions (Yi et al., 2002). High
IL-2 production was not observed in previous ATL studies or in
our microarray data (Yamagishi et al., 2012). Nevertheless, IL-2 is
an HTLV-1-induced cytokine associated with the NF-kB pathway
(Hoyos et al., 1989). In contrast, receptor subsets for IL-2 (IL2Rs)
are generally overexpressed in ATL cells.

Interestingly, smoldering/chronic ATL PBMCs spontaneously
proliferate ex vivo in an IL-12-, IL-9-, and IL-15-dependent
manner, whereas acute type ATL PBMCs do not proliferate
or proliferate independent of cytokines. Furthermore, purified
leukemic cells from indolent ATL cases produce IL-2/IL-9

and the downstream JAK-STAT pathway is activated. Thus,
autocrine/paracrine cytokine stimulation of leukemic cell prolif-
eration may occur in patients with smoldering/chronic ATL (Chen
et al, 2010).

CELL SURFACE MARKERS AND THEIR FUNCTIONS

IL-2 receptor o (CD25) was the first marker of ATL and HTLV-1-
infected cells. CD25 expression is dependent on NF-kB activity
(Ruben et al., 1988). Global gene expression analysis has also
validated the high CD25 mRNA level in ATL patient samples
(Yamagishi et al., 2012).

Chemokines and their receptors mainly function in the migra-
tion and tissue localization of lymphocytes. The expression of
the following ATL-specific chemokine receptors has been identi-
fied: CCR4 (Yoshie et al., 2002), CCR7 (Hasegawa et al., 2000),
CCRS8 (Ruckes et al., 2001), and CXCR4 (Twizere et al., 2007). In
addition, other cell surface proteins such as OX40 (Imura et al.,
1997) and TSLC1 (Sasaki et al., 2005) are highly expressed in
ATL cells and are thus the molecular hallmarks of ATL; they may
also participate in leukemogenesis. For example, TSLC1, a well-
known tumor suppressor in various carcinomas, is overexpressed
in ATL. The cytoplasmic domain of TSLC1 directly interacts with
the PDZ domain of TIAM1 and induces the formation of lamel-
lipodia through Rac activation in HTLV-1-transformed and ATL
cell lines. TTAM 1 may integrate signals from TSLC1 to regulate the
actin cytoskeleton through Rac activation (Masuda et al., 2010).

Some ligands are also expressed by ATL cells; therefore,
autocrine/paracrine stimulation is implicated. Tax develops a
strategy based on the activation of the SDF-1a/CXCR4 axis
in infected cells (Twizere et al,, 2007). In Tax-transgenic mice
and their transplantation model, AMD3100, a CXCR4 antago-
nist, inhibits the infiltration of lymphomatous cells into tissues
in vivo, indicating the involvement of the SDF-1a/CXCR4 inter-
action in leukemic cell migration (Kawaguchi et al., 2009). CCR4
expression is clinically considerable. The defucosylated anti-CCR4
monoclonal antibody KW-0761 induces CCR4-specific antibody-
dependent cellular cytotoxicity (ADCC) against CCR4-positive
ATL cells. In view of its molecular functions, CCR4 expression
may also account for the frequent infiltration of ATL cells into the
skin and lymph nodes (Yoshie et al., 2002). Specific surface mark-
ers are therefore worthy of attention to identify concentrations of
leukemic cells as well as minor infected cells in asymptomatic car-
riers. A recent study reported the development of a new method for
concentrating leukemic cells by multi-color flow cytometry. The
majority of leukemic cells are included in the CD4+, CD3-dim,
and CD7-low subpopulations (Tian et al., 2611). Consequently,
characteristic expression of cytokines and their receptors is clearly
required for leukemic cell behavior, which in turn may be used as
landmarks and/or therapeutic motifs.

NEW PARADIGM FROM miRNA

According to the summary of previous ATL studies described
above, we can fight ATL to a certain extent. However, we cannot
cure ATL because of relapse with multidrug resistance, immun-
odeficiency, and strong invasiveness. In addition to the previously
proposed molecular hallmarks (Figure 2), we urgently need a con-
ceptual advance that can promote understanding of the source of

www.frontiersin.org

September 2012 | Volume 3 | Article 334 | 7



Yamagishi and Watanabe

Molecular hallmarks of adult T cell leukemia

disrupted gene expression. Indeed, in the course of our remark-
able progress in researching ATL and other malignancies, new
observations have helped in clarifying and modifying the original
formulations of the hallmark capabilities.

One of the most significant recent advances in biomedical
research has been the discovery of the 22-nt-long class of non-
coding RNA designated miRNA that posttranscriptionally regu-
lates gene expression by binding to the target mRNAs. miRNA is
expressed by all metazoans and plants, as well as by several DNA
viruses; it regulates cellular processes such as development, dif-
ferentiation, growth, homeostasis, stress responses, apoptosis, and
immune activation (Esquela-Kerscher and Slack, 2006). In ATL
filed, some studies have been reported, and several miRNA aber-
rations have been identified in HTLV-1-infected cells and ATL
samples.

Pichler et al. {2008) first identified abnormal miRNA expres-
sion in HTLV-1-infected cells. They explored the interconnections
between HTLV-1 and cellular miRNAs by using several HTLV-
1-transformed cell lines. miR-21, miR-24, miR-146a, and miR-
155 were found to be upregulated and miR-223 was found to
be deregulated in HTLV-1-infected cells. In particular, miR-146a
expression was directly stimulated by Tax through the NF-«k B path-
way. In silico analysis predicts that many candidate genes may be
deregulated by miRNA changes (Pichler et al., 2008).

Yeung et al. (2008) performed miRNA microarray analysis of
327 well-characterized human miRNAs in 7 HTLV-1-related cell
lines and four acute ATL patient samples. They found that miR-
18a, miR-93, and miR-130b were overexpressed in ATL samples.
Of note, these miRNAs were also upregulated by PHA-mediated
T cell activation. Tumor protein p53 inducible nuclear protein 1
(TP53INP1) is a gene targeted by one of miR-93 and miR-130b,
and reduced TP53INP1 expression mediated by miRNA upregu-
lation contributes to cell proliferation and survival (Yeung et al.,
2008).

Bellon et al. (2009) also reported the result of miRNA array
analysis of 7 ATL samples and normal PBMCand CD4+ T cellsand
revealed that miR-150, miR-155, miR-223, miR-142-3p, and miR-
142-5p are upregulated, whereas miR-181a, miR-132, miR-125a,
and miR-146b are downregulated in ATL. They discussed that
miRNAs involved in normal hematopoiesis and immune responses
are profoundly deregulated in ATL tumor cells exvivo (Bellon et al,,
2009).

Each of these studies has identified interesting miRNAs that
are deregulated in ATL-related cells; however, no identical miRNA
patterns have been observed. The amount of cellular miRNAs
may be susceptible to various environmental conditions such as
transcriptional activity, maturation processing, and epigenetic reg-
ulation. The end results appear to be affected by the methodology
employed and the conditions and types of samples used. Very
recently, we established global gene expression analyses of a large
cohort ATL study that included analyses of mRNA expressions,
miRNA levels, and genomic copy number (Yamagishi et al., 2012).
A strict threshold (p <1 x 107°) and two-dimensional hierar-
chical clustering analysis revealed 61 miRNAs with significantly
altered expression levels in ATL cells (n=40) compared with
control CD4+ T cells (n=22). It is most important that pri-
mary ATL samples show global miRNA downregulation, similar to

observations in other cancer researches (Lu et al., 2005; Gaur et al.,
2007). Fifty-nine of the 61 miRNA (96.7%) showed decreased
expression in ATL. The amount of cellular miRNA may be sus-
ceptible to various environments such as transcriptional activity,
maturation processing, and also epigenetic regulation. Among
them, miR-31 is the most profoundly repressed miRNA in all
ATL individuals (fold change, 0.00403). It is a known tumor sup-
pressor that may also be associated with metastatic breast cancer
(Valastyan et al., 2009). Other downregulated miRNAs found in
ATL patients may also be involved in the hallmark capabilities of
ATL, since they are uniformly decreased in tested ATL samples and
each miRNA may regulate a large number of genes.

Several predictions and experimental approaches have defined
a novel miR-31 target gene, MAP3K 14 (also called NIK), which is
a persistent NF-kB activator in various malignancies, including B
cell lymphoma (Pham et al., 2011), multiple myeloma (Annunzi-
ata et al., 2007), breast cancer (Yamamoto et al., 2010), pancreatic
cancer (Nishina et al., 2009), and ATL (Saitoh et al., 2008). Interest-
ingly, all these malignancies have low miR-31 levels. Manipulation
of the miR-31 level clearly indicated that the miR-31 level was
negatively correlated with cellular NF-kB activity. Importantly,
enforced miR-31 expression in B cells attenuated both BAFF and
CD40L-mediated NIK accumulation and subsequent canonical
and non-canonical NF-kB signaling. As discussed above, NF-xB
activity dominates the regulation of apoptosis and subsequent cell
survival. Induced miR-31 expression or NIK knockdown reduces
apoptotic resistant proteins such as BCL-XL and XJAP, result-
ing in strong apoptosis in ATL cell lines as well as in primary
leukemic cells from ATL patients (Yamagishi et al., 2012). Several
lines of evidence definitively support two notions: (1) miR-31 acts
as a tumor suppressor in T cells and (2) NIK-regulated NF-kB
is of pivotal importance to cancer cell survival (Uribesalgo et al.,
2012).

The fact that deregulated miRNA expression predominates NF-
kB activity is a conceptual advance. Regulation of global miRNA
downregulation and each regulatory network may shed light on
our understanding of the next-generation molecular hallmarks of
ATL and of molecules suitable for therapeutic targeting (Figure 4).
Since a single miRNA can regulate the expression of multiple genes,
pleiotropic miRNA may have potential as molecular therapy. Pro-
found miR-31 loss is a characteristic of ATL; however, decreased
miR-31 expression seems to be commonly observed in various
malignancies. The regulatory mechanism of miR-31 had not been
identified until our discovery. In general, down modulation of
gene expression is coordinated by some contents of transcriptional
factors and an epigenetic regulatory mechanism.

EPIGENETIC DEREGULATION OBSERVED IN ATL
Technological advances in genomics and epigenomics have sup-
plied new methods to distinguish one cell type from another. The
epigenetic code consists of the combined on—off states of hundreds
of genes, which coordinately dictate cellular identity and func-
tion. Increasing attention is being paid to global regulatory factors
and molecular mechanisms by which control gene transcription.
This genome programming operates fundamentally through DNA
methylation, histone chemical modification, and protein complex
binding in these environments.
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Classical Molecular Hallmarks

Genomic abnormality

FIGURE 4 | Emerging molecular hallmarks, microRNA deregulation and
epigenetic reprogramming. An increasing body of research suggests that
two additional molecular hallmarks are involved in the pathogenesis of ATL. In
addition to the genomic abnormality, epigenetic imbalance widely governs the

Emerging Molecular Hallmarks

downstream molecular capabilities. Deregulation of the cellular miRNA levels
directly influence hundreds of genes expression. Importantly, cross talking
among each category can attain more complex gene regulatory network that
is indispensable for exercise of various functions at appropriate timing.

Cancer-associated epigenetic reprogramming has been sug-
gested because DNA methylation is a transcriptional regulator.
In ATL, no attempt has been made to determine global epigenetic
statements that can explain deregulated gene expression. Analysis
of epigenetic factors such as DNA methylation and related gene
silencing has been reported, particularly in some tumor suppressor
genes such as the CDK inhibitor family.

The CpG island of CDKNZ2A gene is more frequently methy-
lated in fresh tumor cells isolated from patients with acute ATL
(47%) or lymphoma type ATL (73%) than in fresh tumor cells
isolated from patients with chronic (17%) and smoldering (17%)
ATL, which are relatively less malignant (Nosaka et al., 2000).
No CDKNZ2A gene is methylated in asymptomatic carriers or
uninfected individuals. A possible inverse correlation between
CDKNZ2A mRNA expression and gene methylation status is sug-
gested. Methylation-specific polymerase chain reaction (MSP)
also suggested the presence of an additional DNA methylation
in CDKN2B gene (20%; Hofmann et al,, 2001). In addition to
the cell cycle regulators, multifunctional factors involved in cell
proliferation, differentiation, and apoptosis, e.g., bone morpho-
genetic protein (BMP) is deregulated by aberrant DNA methyla-
tion in malignant lymphomas (Daibata et al., 2007) and also ATL
(Taniguchi etal., 2008). Above all, the BMP6 promoter is hyperme-
thylated in ATL: acute (96%), lymphoma (94%), chronic (44%),
and smoldering (20%). BMP6 promoter methylation seems to be
a common epigenetic event at later stages of ATL. The adenoma-
tous polyposis coli (APC) gene is also a tumor suppressor, and its
mRNA level is at least partially regulated by DNA methylation

(Tsuchiya et al., 2000). In ATL, 48% of primary samples have
methylated promoter DNA in the APC region (Yang et al., 2005).
The methylated CpG island amplification/representational dif-
ference analysis method revealed 53 aberrantly hypermethylated
DNA sequences in ATL (Yasupaga et al., 2004). Among them,
kruppel-like factor 4 (KLF4) and early growth response 3 (EGR3)
were found to be responsible for apoptotic resistance in ATL cell
lines, implicating that DNA methylation is involved in leukemo-
genesis. Abnormal DNA demethylation may also be involved.
MELIS, an alternatively spliced form of MELI], is frequently
expressed in ATL cells because of DNA hypomethylation at an
alternative transcriptional start site. Aberrant MELI1S expression
is associated with dysregulation of TGF-B-mediated signaling
(Yoshida et al., 2004). Thus, altered DNA methylation pattern,
including DNA demethylation, is one of the molecular hallmarks
of ATL linking leukemogenesis to gene transcription control.
Histone modifications such as histone acetylation and spe-
cific methylations confer dynamic exchanges of transcription.
Although a global survey of histone modification in ATL (such
as by ChIP-on-chip analysis) has not been reported, experimental
evidence with epigenetic drugs strongly suggests that epigenetic
reprogramming is the background of the molecular hallmarks of
ATL. Histone deacetylase (HDAC) inhibitors effectively inhibit the
proliferation of several cancers (Spiegel et al., 2012) as well as that
of HTLV-1-infected cell lines and primary ATL samples (Nishicka
et al., 2008). Analysis of signaling cascades suggested that HDAC
inhibition can block nuclear translocation of NF-kB components.
Paradoxically, another study implicated that the HDAC inhibitors
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can actively modulate the NF-«xB pathway through RelA acetyla-
tion (Chiechio et al., 2009). Anyway, abnormal histone deacetyla-
tion may be involved in cell survival and cell cycle regulation in
ATL cells.

Histone acetylation and DNA methylation actually cooperate
in regulating a cohort of genes during multiple processes of leuke-
mogenesis. For example, thioredoxin-binding protein-2 (TBP-2)
expression is lost during the transformation step in HTLV-1-
infected T cells (Nishinaka et al., 2004). TBP-2 seems to play a
crucial role in the growth regulation of T cells. Sequential treat-
ment with a DNA methylation inhibitor, 5-Aza-dC, and an HDAC
inhibitor can restore the TBP-2 expression, suggesting that loss of
TBP-2 expression is caused by both DNA methylation and his-
tone deacetylation in transformed infected cell lines (Ahsan et al.,
2006).

Besides acetylation, the N-terminus of histone proteins con-
tains several residues that can be methylated. Integrated histone
modification consequently decides the degrees of chromatin con-
densation and subsequent transcriptional sensitivity. Trimethyla-
tion of the histone H3 Lys27 (H3K27me3) mark plays a central
role in the repression of transcription, mainly in the euchro-
matin region. The Polycomb family is a master regulator of the
H3K27me3 level by inducing and maintaining the histone mark.
Progress over the past decade has defined two main protein
complexes: Polycomb repressive complex 1 (PRC1) and PRC2,
with fundamental roles in Polycomb-mediated gene silencing
(Schuettengruber et ak.,, 2007). PRC2 methylates the histone his-
tone 3 lysine 27 (H3K27). PRC1 is commonly viewed as an
important, direct executor of silencing at target genes. Although
H3K27 methylation is a key chromatin mark, there is ongoing
debate about its molecular consequences. In the context of cancer
research, deregulation by the Polycomb family confers a specific
gene expression pattern responsible for chronic proliferation, sur-
vival, peculiar development, and cancer-associated stemness in
various cancer types, including ATL (Sparmann and van Lohuizen,
2006).

The involvement of the Polycomb family in ATL was first
revealed by global gene expression analysis. Significantly higher
levels of enhancer of zeste homolog 2 (EZH2) as well as RINGI
and YY1 binding protein (RYBP) transcripts with enhanced
H3K27me3 levels were found in ATL cells compared with nor-
mal CD4+ T cells (Sasaki et al., 2011). EZH2 serves as the catalytic
subunit in the PRC2 and mediates gene silencing by catalyzing
the trimethylation of H3K27 at the promoters of target genes.
EZH?2 is highly expressed in many cancer types, including breast
and prostate cancer and lymphomas, and it is often correlated
with advanced stages of tumor progression and a poor progno-
sis. Importantly, EZH2 inhibition by 3-deazaneplanocin A and
the HDAC inhibitor panobinostat showed a synergistic effect in
killing the ATL cell lines. Because the Polycomb family gener-
ally contributes to silencing of tumor suppressor genes, e.g., the
CDKN?2 family, the genes silenced in ATL should be addressed to
elucidate the functional significance of the Polycomb family in the
leukemogenic process.

We recently identified a notable gene silenced by Polycomb.
A human gene that encodes miR-31, hsa-miR-31, is located at
9p21.3, which is adjacent to clusters of the CDKN2 and IFNA

families. In addition to the geneticloss (12.5% of ATL cases), tran-
scription of the miR-31 precursor is completely lost in ATL cells.
Computational predictions and experimental evidence clearly
demonstrated that an assembly of YY1 binding motifs upstream
of the miR-31 region is responsible for the occupancy of the
Polycomb family at the target region, which leads to H3K27me3-
dependent transcriptional repression. Overexpression of EZH2
and suppressor of zeste 12 (SUZ12) homolog, components of
PRC2, in ATL cells can induce and maintain the epigenetic silenc-
ing of miR-31. Of note, given that miR-31 is a master regula-
tor of the ATL-specific gene expression pattern described above,
Polycomb-mediated loss can influence gene expression down-
stream of miR-31 (Figure 4). Indeed, the amount of EZH2 and
SUZ12 directly strengthens cellular miR-31 depletion, which in
turn activates the NF-kB pathway through NIK induction and
confers anti-apoptotic features to T cell (Yamagishi et al., 2012).
It is noteworthy that the molecular and biological interconnec-
tions between Polycomb—miR-31-NF-kB are conserved in breast
cancer cells and B lymphocytes. By organizing the new principle,
various cell types may realize the more complex gene regulatory
network required for maintenance and execution of cellular func-
tions. Imbalance of this network probably switches the cell fate
from one to another.

The origin of epigenetic reprogramming observed in ATL cells
remains elusive. In addition to self-dysfunction of the epige-
netic machinery, a possible mechanism is viral hijacking; HTLV-
1 Tax can physically associate with the key histone modifiers
HDACI (Ego et al,, 2002), SUV39H1 (Kamot et al., 2006), and
SMYD3 (Yamamoto et al., 2011). However, at present, the possible
influence of the Tax-epigenetic association on gene regulation is
unknown. Governing the epigenetic system by Tax may disrupt
gene expression, leading to chronic proliferation and abnormal
survival of HTLV-1-infected cells. In the context of viral gene
regulation, epigenetic changes, mainly DNA methylation, in the
HTLV-1 provirus may facilitate ATL cell evasion of the host
immune system by suppressing viral gene transcription (Koiwa
et al,, 2002; Taniguchi et al,, 2003). Recent studies using in vivo
models strongly suggested that Tax and also other viral proteins
are directly linked to leukemogenesis, despite viral gene expres-
sion being rare in circulating leukemic cells in patients (Hasegawa
et al,, 2006; Ohsugi et al,, 2007b; Banerjee et al,, 2010; Satou et al,,
2011). Furthermore, not only histone methylation but also other
histone modifications such as phosphorylation and ubiquitination
are intriguing for understanding the molecular and physiological
hallmarks of ATL.

THERAPEUTIC TARGETING OF ATL

To establish more effective molecular-targeted therapies for ATL,
we need to understand the exact molecular underpinnings of ATL.
In addition to classical molecular characteristics, the emerging
hallmarks of miRNA deregulation and epigenetic reprogramming
broaden the scope of conceptualization of the responsible mole-
cular mechanism (Figure 4). As highlighted in this review, ATL
possesses six molecular hallmarks: genomic abnormality, specific
changes in gene expression, sustaining activated signaling, produc-
ing cytokines, miRNA deregulation, and epigenetic reprogram-
ming. These molecular hallmarks confer robustness to leukemic
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cell hallmark capabilities: resisting cell death, promoting cell cycle,
invasiveness, chronic proliferation, replicating immortality, and
drug resistance (Figure 5). Consideration of hallmark principles
should aid in developing future therapeutics. Several studies with
inhibitory agents have clearly indicated that blockade of signal-
ing drivers appears to be both practical and feasible for inducing
leukemic cell apoptosis. However, common clinical traits of ATL
include relapse and drug resistance. Importantly, each of the core
hallmark capabilities is regulated by a partially redundant sig-
naling pathways. Consequently, a targeted therapeutic agent that
inhibits only one key pathway in ATL may not completely shut
off another hallmark capability, allowing some ATL cells to sur-
vive with residual function until they or their progeny eventually
adapt to the selective pressure imposed by the therapy. In this
case, given that the number of parallel signaling pathways sup-
porting a given hallmark is limited, it may become possible to
target all of these supporting pathways therapeutically, thereby
preventing the development of adaptive resistance. However, it is
possible that this could involve critical side effects. Alternatively,

most upstream elements that can act pleiotropically in leukemic
cells, e.g., miRNA and epigenetics, may be heralded as one of
the fruits of remarkable progress into understanding the ATL
mechanism. Moreover, selective co-targeting of multiple core and
emerging molecular hallmarks in mechanism-guided combina-
tions therapies will result in more effective and durable therapies
for aggressive ATL.

CONCLUSION AND FUTURE DIRECTION

We have explored our present understanding of the molecular
aspects of ATL to refine and extend the six specific traits, the
molecular hallmarks of ATL, which have provided a useful con-
ceptual framework for understanding the complex biology of ATL
(Figure 5).

Other areas are currently in rapid flux. In recent years, the
biological importance of several elaborate ATL models, including
the Tax-transgenic model (Hasegawa et al,, 2006), HBZ transgenic
model (Satou et al., 2011),and HTLV-1-infected humanized SCID
mice (Banerjee et al., 2010), has been proposed. ATL-initiating

Genomic
abnormality

Sustaining
activated signaling

microRNA
deregulation

FIGURE 5 | Conceptual illustration of the molecular hallmarks
of ATL. This illustration encompasses the six molecular hallmarks of
ATL. These organized principles provide characteristics of ATL itself.
Because they may be directly associated with the clinical traits of
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ATL, targeting the one outstanding hallmark or co-targeting of
multiple molecular halimarks in mechanism-guided combinations
will result in more effective and durable therapies for

aggressive ATL.
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stem cell theory has also been developed (Yamazaki et al., 2009;
El Haji et al,, 2010). Similar to other lymphomas and solid can-
cers, leukemic cells in tissues may be encompassed by a tumor
microenvironment that contributes to leukemogenesis. The orga-
nized principles of the molecular basis of ATL may be helpful in
the coming decade of ATL study.
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Human Tymphotropic virus type 1 (HTLV-1), a human retrovirus, is the causative agent of
a progressive neurological disease termed HTLV-1-associated myelopathy/tropical spastic
paraparesis (HAM/TSP). HAM/TSP is a chronic inflammatory disease of the central nervous
system and is characterized by unremitting myelopathic symptoms such as spastic para-
paresis, lower limb sensory disturbance, and bladder/bowel dysfunction. Approximately
0.25-3.8% of HTLV-1-infected individuals develop HAM/TSP which is more common in
women than in men. Since the discovery of HAM/TSE significant advances have been made
with respect to elucidating the virological, molecular, and immunopathological mechanisms
underlying this disease. These findings suggest that spinal cord invasion by HTLV-1-infected
T cells triggers a strong virus-specific immune response and increases proinflammatory
cytokine and chemokine production, leading to chronic lymphocytic inflammation and
tissue damage in spinal cord lesions. However, little progress has been made in the devel-
opment of an optimal treatment for HAM/TSFE, more specifically in the identification of
biomarkers for predicting disease progression and of molecular targets for novel therapeu-
tic strategies targeting the underlying pathological mechanisms. This review summarizes
current clinical and pathophysiological knowledge on HAM/TSP and discusses future focus

areas for research on this disease.

Keywords: epidemiology, diagnosis, HAM/TSPE, HTLV-1, pathogenesis, prognosis, retrovirus, treatment

EPIDEMIOLOGY

Human T-lymphotropic virus type 1 (HTLV-1), the first human
retrovirus discovered (Poiesz et al., 1980), infects approximately
10-20 million people worldwide (de Thé and Bomford, 1993).
Endemic areas of HTLV-1 infection include the Caribbean, south-
ern Japan, Central and South America, the Middle East, Melanesia,
and equatorial Africa (Blattner and Gallo, 1985; Gessain and de
Thé, 1996). Although majority of the infected individuals remain
lifelong asymptomatic carriers, approximately 0.25-3.8% develop
a progressive neurological disease termed HTLV-1-associated
myelopathy/tropical spastic paraparesis (HAM/TSP; de Thé et al.,
1985; Osame et al,, 1986a) and 2-5% develop an aggressive mature
T cell malignancy termed adult T cell leukemia/lymphoma (ATLL;
Uchivama et al,, 1977; Hinuma et al.,, 1981). HAM/TSP is two to
three times more common in women than men. In a prospec-
tive cohort analysis, the onset period after infection ranged from
4months to 30years (median, 3.3 years; Maloney et al,, 1998).
HTLV-1 is primarily transmitted by breast feeding, but also spread
via sexual intercourse, blood transfusion, and sharing of needles.
While ATLL is mainly associated with breast feeding, HAM/TSP
can be occurred in infected individuals of any route of trans-
mission (Sugivama et al., 1986; Tajima et al., 1987; Osame et al.,
1990a; Krdmer et al., 1995; Maloney et al,, 1998). In Japan, nation-
wide routine screening of the anti-HTLV-1 antibody for blood
donations is conducted after the high incidence of HAM/TSP in
recipients of blood transfusion reported in 1986 (Osame et al.,

1986b) and such screening has proven to be an effective way of
curbing transfusion-related infection (Kamihira et al., 1987). In
Japan, the lifetime risk of developing HAM/TSP among approxi-
mately one million HTLV-1-infected individuals is 0.25% (Kaplan
et al., 1990). The lifetime risk of HAM/TSP in the estimated 22,000
HTLV-1-infected individuals in England is 3% (Tosswill et al.,
2000). Seroprevalence of HTLV-I in blood donors in the United
States is 1 per 10,000 individuals. A recent study estimates that
approximately 266,000 individuals are infected with HTLV-1 or
2, and that there are likely more than 3600 people in the United
States with unrecognized HAM/TSP (Orland et al., 2003).

CLINICAL FEATURES

HTLV-1-associated myelopathy/tropical spastic paraparesis mainly
presents as a slowly progressive spastic paraparesis with neurogenic
bladder disturbance (Nakagawa et al., 1995; Aragje et al., 1998).
The first major symptoms are typically gait disturbance, tendency
to fall, stumbling, leg weakness, back pain, bladder/bowel, and sex-
ual dysfunction, which are usually insidious but occasionally occur
abruptly over weeks. Symptoms in the lower limbs are mostly
symmetrical. Neurogenic bladder symptoms such as urinary fre-
quency, urgency, incontinence, and/or retention are very common
and seen very early in the course of the disease; sometimes, these
symptoms precede the development of paraparesis by many years.
The patients have a spastic gait with weakness of the lower limbs,
which is most evident proximally. Hyperreflexia of the lower limbs
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is commonly seen, often accompanied by clonus and Babinski’s
sign, and hyperreflexia of upper limbs is occasionally observed in
some patients. Upper limb power is usually retained throughout
the course of the disease. Sensory disturbance — typically pares-
thesia of the feet and occasionally of the hands — is observed in
some HAM/TSP patients and is generally mild. Sensory level is
occasionally observed at the lower thoracic spinal cord, although
a clear-cut sensory level is unusual. Loss of light touch sensation
and pain in the lower limbs were reported in 27-53% of patients in
three clinical series, with impairment of vibration sense recorded
in 3—48% of the patients (Vernant et al., 1987; Bhigjee et al., 1990;
Aragjo et al., 1993). Pain and numbness, usually at the lumbar
level and lower limbs, is present in approximately 5-50% of the
patients (Gotuzzo et al,, 2004). In some cases, pain is severe and
more distressing than gait disturbance. Back pain, constipation,
and sexual dysfunction are also very common (Verdonck et al.,
2007). The less common signs and symptoms include cerebellar
signs, optic neuritis and atrophy, and nystagmus (Table 1).

Table 1 | Clinical features of HAM/TSP.

Motor Disturbance

Symptoms: gait disturbance, tendency to fall, stumbling, and leg
weakness

Signs: spastic paraparesis, weakness and hyperreflexia of the lower
limbs, clonus, and Babinski's sign

Sensory Disturbance

Symptoms: pain and numbness at the lumbar level and lower limbs and
back pain

Signs: paresthesia of the feet and occasionally of the hands, sensory
level at the lower thoracic spinal cord, loss of light touch sensation
Autonomic Dysfunction

Symptoms: urinary frequency, urgency, incontinence, retention,
constipation, and sexual dysfunction

Signs: neurogenic bladder, overactive bladder, diminished peristalsis,
and erectile dysfunction

Human T-lymphotropic virus type 1 is also associated
with non-neoplastic inflammatory conditions such as HTLV-1-
associated uveitis (Mochizuki, 1992), Sjégren syndrome (Eguchi
et al., 1992), bronchoalveolitis (Nakagawa et al., 1995), arthritis
(Nishioka et al., 1989), and polymyositis (Morgan et al,, 1989), in
which high tissue concentrations of HTLV-1-infected T lympho-
cytes have been observed. Importantly, some HAM/TSP patients
have more than one of these HTLV-1-associated inflammatory
conditions (Nakagawa et al., 1995).

DIAGNOSIS

The diagnosis of HAM/TSP is based upon a combination of
characteristic clinical features and confirmation of HTLV-1 infec-
tion, along with exclusion of other disorders presenting spastic
paraparesis (Figure 1). For confirmation of HTLV-1 infection,
serological screening for HTLV-1 antibodies can be performed
by using a commercially available enzyme immunoassay or parti-
cle agglutination test. Confirmatory testing for screening-positive
individuals is necessary to eliminate false positives and discrimi-
nate between HTLV-1 and HTLV-2. Serological confirmation can
be performed by using a commercially available western blot test.
Polymerase chain reaction analysis on a blood sample may also
be required if the western blot test provides some indeterminate
results.

Diagnostic criteria for HAM/TSP were agreed upon by a World
Health Organization {(WHQO) (1989; Table 2). However, a recent
recommendation proposes a redefinition of the WHO diagnostic
guidelines by formulating levels of ascertainment (definite, prob-
able, and possible), where a patient with definite HAM/TSP man-
ifests non-remitting progressive spastic paraparesis and positive
serology and/or detection of proviral DNA, with other disorders
being excluded (De Castro-Costa et al., 2006).

Detection of anti-HTLV-1 antibodies in cerebrospinal fluid
(CSF) is necessary for the diagnosis of HAM/TSP, based on
the WHO diagnostic guidelines. CSF examination revealed mild
lymphocyte pleocytosis in approximately one-third of cases as
well as mildly elevated protein concentration and increased

Spastic paraparesis with pyramidal signs
(see Table 1 for details)

Suspected HAM/TSP case

Confirmation of HTLV-1 infecﬁorq

Seropositive case

Detection of anti-HTLV-1 antibody
in cerebrospinal fluld

CSF-positive case

Exclusion of other disorders presenting
with spastic paraparesis

PCR, polymerase chain reaction.

FIGURE 1| Flow chart for clinical diagnosis of HAM/TSP EIA, enzyme immuﬁoassay; PA, particle agglutination; PBMCs, peripheral blood mononuclear cells;

Detection of anti-HTLV-1 antibody in blood
by EIA or PA test as a primary screening

=5

Detection of anti-HTLV-1 antibody in blood
by western blotting as a confirmation test
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Detection of HTLV-1 gene in PBMCs
by PCR analysis for further confirmation
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positive

Frontiers in Microbiology | Virology

November 2012 | Volume 3 | Article 389 | 2



Yamano and Sato

Clinical pathophysiology of HAM/TSP

Table 2 | World Health Organization diagnostic criteria for HAM/TSP.

Age and sex incidence
Onset Usually insidious but may be sudden

Main neurological
manifestations

Mostly sporadic and adult, but sometimes familial; occasionally seen in childhood; females predominant

Chronic spastic paraparesis, which usually progresses slowly, sometimes remaining static after initial progression
Weakness of the lower limbs, more marked proximally

Bladder disturbance usually an early feature; constipation usually occurs later; impotence or decreased libido is common
Sensory symptoms such as tingling, pins and needles, and burning are more prominent than objective physical signs

Low lumbar pain with radiation to the legs is common

Vibration sense is frequently impaired; proprioception is less often affected

Hyperreflexia of the lower limbs, often with clonus and Babinski's sign
Hyperreflexia of the upper limbs, positive Hoffman's and Tromner signs frequent; weakness may be absent

Exaggerated jaw jerk in some patients

Less frequent neurological
findings

Cerebellar signs, optic atrophy, deafness, nystagmus, other cranial nerve deficits, hand tremor, absent, or decreased
ankle jerk. Convulsions, cognitive impairment, dementia, or impaired consciousness are rare

Muscular atrophy, fasciculations (rare), polymyositis, peripheral neuropathy, polyradiculopathy, cranial neuropathy,

meningitis, encephalopathy

Systemic non-neurological
manifestations

Laboratory diagnosis

gammopathy, adult T cell leukemia/lymphoma

Pulmonary alveolitis, uveitis, Sjogren’s syndrome, arthropathy, vasculitis, ichthyosis, cryoglobulinemia, monoclonal

Presence of HTLV-1 antibodies or antigens in blood and CSF
CFS may show mild lymphocyte pleiocytosis

Lobulated lymphocytes may be present in blood and/or CSF
Mild to moderate increase of protein may present in CSF

CSF, cerebrospinal fluid.

concentrations of inflammatory markers such as neopterin (Nak-
agawa et al., 1995; Milagres et al, 2002). These abnormalities
can persist for as long as 10 years or more after symptom onset
(Moreno-Carvatho et al,, 1995).

Spinal cord magnetic resonance imaging (MRI) was abnormal
in 3/21 (14%) patients with HAM/TSP in a small series where
spinal cord atrophy was reported mainly in the thoracic region
(Bagnato et al., 2005). High signal intensity and contrast enhance-
ment with or without associated spinal cord swelling located at
cervical or thoracic levels are occasionally observed (Umechara
et al,, 2007). It has been suggested that patients with more rapidly
progressive disease who are scanned earlier in the disease course
are more likely to show high signal intensity and contrast enhance-
ment in the spinal cord on MRI, possibly because this reflects
highly active spinal cord inflammation.

The differential diagnosis for HAM/TSP includes multiple
sclerosis (MS), neuromyelitis optica (NMO), spinal cord com-
pression (e.g., cervical spondylosis and spinal tumors), transverse
myelitis, collagen vascular disease, Sjogren syndrome, hereditary
spastic paraparesis, primary lateral sclerosis, subacute combined
degeneration secondary to vitamin B12 and folate deficiency,
human immunodeficiency virus-associated vacuolar myelopathy,
neurosyphilis, and Lyme disease, among others. Differentiating,
rapidly progressing HAM/TSP from NMO is important. NMO
shows more rapid progression than HAM/TSP, and HAM/TSP
usually does not present with optic neuritis. Importantly, from
our clinical experience, HAM/TSP patients are negative for a
specific diagnostic antibody for NMO termed NMO-IgG or anti-
aquaporin-4 antibodies (data not published). Furthermore, differ-
entiating HAM/TSP from primary progressive MS is occasionally

a diagnostic challenge, since the two conditions are clinically indis-
tinguishable and the mere presence of positive HTLV-1 serology
does not necessarily lead to neurological disease. This diagnostic
difficulty is compounded by the fact that sometimes, white mat-
ter abnormalities are found on brain MRI of HAM/TSP patients
(Kira et al., 1991; Alcindor et al., 1992; Kuroda et al,, 1995). CSF
pleocytosis, when present, typically falls within a similar range,
and oligoclonal bands may be present in both. A recent study
suggests that a high ratio of proviral DNA load in CSF to periph-
eral blood mononuclear cells (PBMCs) may distinguish HAM/TSP
from HTLV-1-infected patients with MS (Puccioni-Sohler et al,,
2007). In general, HTLV-1 proviral loads measured in the CSF
of HAM/TSP patients are typically greater than twice the provi-
ral load in PBMCs (Nagai et al., 2001; Takenouchi et al., 2003),
whereas the ratio of CSF to peripheral blood HTLV-1 proviral
loads are typically lower in asymptomatic carriers (Lezin et al,,
2005; Puccioni-Sohler et al., 2007), reflecting either recruitment
or expansion of HTLV-1-infected cells in the central nervous
system (CNS).

PATHOPHYSIOLOGY

The primary neuropathological feature of HAM/TSP is chronic
meningomyelitis of the white and gray matter, followed by axonal
degeneration preferentially affecting the middle to lower thoracic
cord. Histopathological studies have shown loss of myelin and
axons in the lateral columns, with variable damage to anterior
and posterior columns in patients with HAM/TSP. The lesions are
associated with perivascular and mild parenchymal lymphocytic
infiltration with the presence of foamy macrophages, prolifera-
tion of astrocytes, and fibrillary gliosis. Later in the course of the
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disease, the process becomes less cellular and more atrophic. Inter-
estingly, patients who underwent prior steroid treatment show a
lesser degree of inflammation (Iwasaki, 1990; Yoshicka et al., 1993;
[zumo et al., 2000). Proinflammatory cytokines such as tumor
necrosis factor (TNF)-q, interferon (IFN)-y, and interleukin (IL)-
1B were detected in perivascular infiltrating cells (Umehara et al.,
1994). There is no direct evidence that HTLV-1 infects neurons,
astrocytes, or microglia, but infected CD4™ T cells have been
observed within spinal cord lesions (Matsuoka et al., 1998), and
CD8* T cells directed against HTLV-1 antigens accumulate in
the CSF of patients with HAM/TSP (Nagai et al., 2001; Kubota
et al., 2002). Immunohistochemical analysis of affected spinal cord
lesions in early-stage HAM/TSP patients revealed the presence of
infiltrating CD4% and CD8* lymphocytes, among which CD8*
cells become increasingly dominant over the duration of the illness
(Umehara etal., 1993). The expression of HLA class I antigens has
also been found in such lesions (Mootre et al., 1989). In addition,
infiltrating CD8% CTLs were positive for TIA-1, a CTL marker
(Umehara et al., 1994). The number of TIA-17 cells was clearly
related to the amount of proviral DNA in sity, and the number of
infiltrating CD8 cells appeared to correlate with the presence of
apoptotic cells.

Human T-lymphotropic virus type 1-1-infected CD4+ T cells
may primarily contribute to development of HAM/TSP, since the
number of HTLV-1-infected T cells circulating in the peripheral
blood is higher in patients with HAM/TSP than in asymptormatic
HTLV-1-infected individuals (Nagai et al, 1998; Yamano et al,
2002); this number is even higher in the CSF of patients with
HAM/TSP (Nagai et al., 2001). Recently, CD4TCD25+CCR4™ T
cells, which mainly include suppressive T cell subsets such as regu-
latory T (Treg) cells under healthy conditions, are the predominant
viral reservoir of HTLV-1 in both ATLL and HAM/TSP (Yoshie
et al,, 2002; Yamano et al., 2009). Interestingly, cells of this T cell
subset become Th1-like cells with overproduction of IFN-y in
HAM/TSP, while in ATLL patients, leukemogenesis develops, and
maintains the Treg phenotype. These results indicate that HTLV-
1-infected T cells are increased and abnormally modified, favoring
the development of HAM/TSP.

Human T-lymphotropic virus type l-associated myelopa-
thy/tropical spastic paraparesis patients show extremely high cel-
lular and humoral acquired immune responses, such as high fre-
quencies of Tax-specific CD8™ T cells in peripheral blood and CSF
(Jacobson et al., 1990; Nagai et al., 2001); high antibody titer to
HTLV-1 (Ishihara et al,, 1994; Akahata et al,, 2012); and increased
production of proinflammatory cytokines such as IL-6, IL-12, and
IFN-y (Furuya et al., 1999). Recently, overexpression of a subset
of IFN-stimulated genes in HAM/TSP patients was demonstrated
using systems biology approaches (Tattermusch et al., 2012).

While the acquired immune response is accelerated, HAM/TSP
patients demonstrate reductions in the amount and efficacy of
cellular components of innate immunity; this is vital for regu-
lating the immune response against general viral infections and
cancers. The numbers and functions of CD56TCD16" natural
killer (NK) cells in HAM/TSP patients are significantly lower
than those observed in healthy controls (Yu et al., 1991; Aza-
kami et al,, 2009). In addition, HAM/TSP patients also have
a decreased frequency of invariant natural killer T (iNKT)

cells in peripheral blood (Azakami et al., 2009; Ndhlovu et al,,
2009).

Although the exact cellular and molecular events underlying the
induction of chronic inflammation in the spinal cord by HTLV-
1 are still unclear, the most widely accepted hypothesis is that
HAM/TSP is the result of “bystander damage” (fjichi et al., 1993;
Nagai et al,, 2001; Osame, 2002). The sequence of events leading
to bystander damage may be as follows. Activation of HTLV-1-
infected CD4™ T cells induce high-migration activity (Furuya
et al.,, 1997; Kambara et al., 2002) and allows the migration of
infected CD4™" T cells across the blood-brain barrier from the
peripheral blood to the CNS. Migrated HTLV-1-infected CD4™
T cells start to express viral antigens, including Tax, and secrete
proinflammatory cytokines such as IFN-y (Hanon et al, 2001;
Kambara et al., 2002), which stimulate the resident cells to produce
multiple chemokines. These chemokines recruit more proinflam-
matory cells including HTLV-1-infected CD4™ T cells and HTLV-
1-specific CD8" T cells that are preferentially recruited and/or
expanded in the CNS. Thus, HTLV-1-specific immune responses
and secondary inflammations inflated in the CNS may lead to the
subsequent CNS damage (Figure 2).

PROGNOSIS

The symptoms usually begin during adulthood, most frequently
after the age of 40 years (range, 6-75 years). The disease usually
progresses slowly without remission. However, there is a subgroup
of patients with rapid progression who are unable to walk within
2 years, and another subgroup of patients with very mild progres-
sion (Nakagawa et al., 1995; Gotuzzo et al,, 2004; Olindo et al,,
2006; Lima et al,, 2007; Martin et al., 2010). Indeed, in HAM/TSP,
the clinical course and rate of progression may vary greatly among
patients (Figure 3). In astudy of 123 patients with a 14-year follow-
up, the median time from symptom onset to need for unilateral
walking aid was 6 years; bilateral walking, 13 years; and wheel-
chair dependence, 21 years. Nineteen of those 123 patients died

HTLV-1 infected
T cell

invasion

Peripheral blood

FIGURE 2 | Cellular mechanisms underlying pathogenesis of human
T-lymphotropic virus type 1-associated myelopathy/tropical spastic
paraparesis {HAM/TSP). CNS, central nervous system. *HTLV-1.
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FIGURE 3 | A schematic representation of the clinical course of human
T-lymphotropic virus type 1-associated myelopathy/tropical spastic
paraparesis (HAM/TSP).

due to complications of HAM/TSP, and the mean age at death
was approximately 15 years shorter than the life expectancy in the
cohort area (Olindo et al,, 2006). In a study of 48 patients with
a 15-year follow-up, the median time from symptom onset to
the need for unilateral walking aid was 11 years; bilateral walking,
11.2 years; and wheelchair dependence, 18 years. The conditions
of 3 of these 48 patients worsened rapidly, and they were unable
to walk within 2 years, while in six patients, the progression was
slow or the condition did not worsen; 5 of the 48 patients died,
and the median age at death was 57 years (range, 3678 years).
Importantly, a timed 10-m walk was found to be a more sensitive
scale to identify motion deterioration and recognize patients in
need of therapeutic intervention (Martin et al., 2010). In terms of
vital prognosis, it is also important to recognize that HAM/TSP
patients have a risk to develop ATLL (Tamniva et al., 1995).

Since HAM/TSP is a chronic progressive neurological disease,
the progression of clinical disease is usually subtle; this hampers
the evaluation of disease progression even over the course of a
year. Therefore, information about quantitative biomarkers asso-
ciated with disease prognosis and disease activity is important for
assessing the effect of therapy as well as conducting clinical tri-
als of novel therapeutics with statistically significant endpoints.
Although few well-designed studies have evaluated the usefulness
of potential biomarkers as surrogate markers, accumulating evi-
dence supports the relationship between HTLV-1 proviral load and
long-term disease prognosis. Indeed, in a study with 100 untreated
HAM/TSP patients, a significant association was demonstrated
between higher HTLV-1 proviral load and poor long-term prog-
nosis (Olindo et al,, 2005); later, the authors confirmed this result
in a bigger cohort (Olindo et al., 2006). Analysis of observational
studies also showed a relationship between HTLV-1 proviral load
and disease prognosis (Matsuzaki et al., 2001; Takenouchi et al,,
2003). Older age at onset has also been demonstrated to be asso-
ciated with poor long-term prognosis (Nakagawa et al., 1995;
Matsuzaki et al,, 2001; Olindo et al., 2006). In terms of biomarkers
of disease activity, recent work by our research group showed that

CSF cell count, neopterin concentration, and CSF levels of C-X-C
motif chemokine 10 are well correlated with disease progression
over 4years, better even than HTLV-1 proviral load in PBMCs
(manuscript in preparation). A prospective study to determine
whether these indicators are useful as prognostic biomarkers will
be necessary.

TREATMENT

Since the discovery of HAM/TSP, various therapeutic approaches
have been used for HAM/TSP patients. However, no effective
therapeutic strategy has been established thus far. Because induc-
tion of chronic inflammation by HTLV-1-infected T cells in the
spinal cord is considered the major pathogenic mechanism under-
lying HAM/TSP, anti-inflammatory, or antiviral therapies have
been tested. Clinical improvements in open-label studies have
been reported for a number of agents including corticosteroids
(Nakagawa et al., 1996), danazol (Harrington Jr. et al., 1991), pen-
toxifylline (Shirabe et al., 1997),and IFN-B1 (Oh et al., 2005). With
the exception of IFN-a (lzumo et al., 1996), however, these drugs
lack evidence required to merit strong recommendation for their
use in HAM/TSP. The role of IFN-a in HAM/TSP is also not clear,
as no study has conclusively shown its long-term benefit. Here, I
summarize the results of recent trials and discuss the need for the
identification of novel drug targets (Table 3).

Soon after the definition of HAM/TSP, corticosteroids were
reported to decelerate the progression of this disease (Osame
et al,, 1990b). In a large-scale case series study (Nakagawa et al,,
1996), oral prednisolone was effective in 81.7% of 131 patients,
with 69.5% of the 131 patients showing more than one grade of
improvement, as determined by Osame’s motor disability scale.
Furthermore, oral prednisolone therapy decreased the concentra-
tion of neopterin, which is an inflammatory marker of HAM/TSP,
in CSF (Nakagawa et al, 1996). A recent open-cohort study of
39 patients with HAM/TSP with a mean follow-up of 2.2 years
showed an improvement in overall disability following pulsed
intravenous methylprednisolone (Croda et al., 2008). However, a
few studies reported no such benefit (Kira et al,, 1991; Aratjo et al,
1993), and there has been no randomized clinical trial. Although
steroidal therapy is not recognized as a radical therapy since it
does not eliminate the HTLV-1-infected cells, in practice, steroids
are the most commonly prescribed drug, despite the poor evi-
dence for their efficacy. This is probably because some patients
experience highly active inflammation or there is a significant
inflammatory phase relatively early in disease. Since the clinical
course and disease activity of HAM/TSP vary among patients
(Figure 3), the treatment plan should be designed based on the
patient’s background such as activity or phase of the disease.

It is also notable that some patients’ condition worsened after
the dose of prednisolone was reduced, and hence, these patients
remain dependent on drug administration (Nakagawa etal., 1996).
In my research group, we had similar experiences; we found that
such patients usually have high inflammatory levels in CSE, which
increase even more as the clinical situation worsens after the
dose of prednisolone is decreased. Since long-term use of pred-
nisolone therapy is not desirable due to its variety of side effects,
the development of steroid-sparing agents is urgently required
for these patients. Candidate steroid-sparing agents could be
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Table 3 | Summary of reports on treatment for HAM/TSP.

Authors Country Study design Reagents Treatment regimen Study No. of Rate of Note
period patients Efficacy
Osame et al. {(1990b)  Japan Open-label Prednisolone 60-80 mg god for 2 month 11 Month 65 90.8% (59/65) Incidence of side effects: 20% {13/65)
- 10 mg off/month for 6 month 56.9% (>1)
-5mg god for 3month
Croda et al, {2008) Brazil Case series Methylprednisolone 1 g x 3days/month for 3-4 month  2.2VYears 39 24.5% Transient effect
Nakagawa et al. (1996) Japan Open-label Prednisolone 1-2 mg/kg ad or god for 6-12 Month 131 81.7% Decrease of CSF neopterin
1-2 month — tapering 69.5% (>1)
Methylprednisolone 500 mg-1g x 3 days 10 30.0% For rapid progression
Interferon-a 3MU/day x 30 days 1-3Month 32 62.5% Transient effect
21.9% (>1) Incidence of side effects: 65.6% (21/32)
Martin et al. {2012} UK Open-label Cyclosporine A 2.5-5 mg/kg/day bd for 48 week  72Week 7 71.4% (5/7) Clinical failure: two patients
after 3 Month
lzumo et al. (1996) Japan Multicenter Interferon-a 0.3 MU/day x 28 days 8Week 15 71% Incidence of side effects: 26.7% (4/15)
double-blind 1 MU/day x 28 days 17 23.5% 29.4% (5/17)
RCT 3MU/day x 28 days 16 66.7% 50.0% (8/16)
Yamasaki et al. (1997)  Japan Case series Interferon-o 6 MU/day x 14 days — 6 Month 7 71.4% (5/7) Clinical failure: two patients
6 MU/3 times/week x 22 week
Arimura st al, (2007) Japan Phase IV Interferon-a 3 MU/day x 4-793 days (median 6 Month 167 66.2% Side effects: 87.4%
30 days) 29.2% (>1) Serious side effects: 7.0%
Taylor et al. (2006) UKand  Double-blind Zidovudine + famivudine AZT 300 mg + 3TC 150 mg bd 48Week 16 No clinical No change in proviral load
Japan RCT improvement
Macehi et al. (2011) UK Case series Tenofovir 245 mg/day 2-16 Month 6 No clinical No change in proviral load
improvement

> 1, improvement of more than one grade in the Osame’s motor disability score.

No., number; god, every other day; mo: month(s); yr, vear(s); qd, every day; MU, million unit; wk, week(s)’ bd, twice daily; RCT, randomized controlled trial; AZT, zidovudine; 3TC, lamivudine.
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anti-inflammatory and/or antiviral in nature. In fact, there is a
recent report on the high efficacy of cyclosporine A therapy tar-
geted at early phase or progressive HAM/TSP patients. In this
study, clinical improvement was observed in five of seven patients,
with reduction of provirus DNA load observed in the CSF (Martin
etal., 2012).

Type I IFNs (o and ), which have immunomodulatory and
antiviral properties (Borden et al., 2007), have been tested as anti-
HAM/TSP drugs. IFN-a demonstrated clinical benefits in a mul-
ticenter, randomized, double-blind, controlled trial of HAM/TSP
patients in Japan (Izumo et al,, 1996). In this study, 3 million
units (MU) of human lymphoblastoid natural IFN-a given daily
by intramuscular injection for 28 days showed better clinical ben-
efit than 0.3 or 1 MU of IFN-a. The reduction of proviral DNA
load and memory CD8" cells in PBMCs (Saito et al., 2004) and
the reduction of CD4/CD8 ratio and CD4TCCR5™* cells in CSF
(Kambara et al., 2002) after short-term IFN-a therapy was demon-
strated. However, the benefit of long-term IFN-a therapy has not
been well demonstrated. A small study extending IFN-a treat-
ment for 24 weeks reported sustained clinical response (Yamasaki
et al.,, 1997). In a post-marketing surveillance of IFN-« in Japan,
sustained improvements in motor disability for 5months after
cessation of IFN-o administration were observed in 11 of 30
patients, and a high adverse event rate (536 events reported in 146
patients; 46 classified as serious) was indicated (Arimura et al,,
2007). In this surveillance study, it is notable that IFN-a treatment
was more effective in patients with lower motor disability and
shorter duration of illness and progression phase, suggesting the
existence of therapeutic windows of opportunity in the treatment
of HAM/TSP. It is also notable that rapidly progressing HAM/TSP
patients showed no response and dropped out from the IFN-a

_ therapy (Yamasaki et al., 1997; Arimura et al., 2007). Therefore,
well-designed controlled clinical trials to guide the clinician with
regard to the appropriate target, time of initiation, and the dose
or duration of IFN-a therapy in HAM/TSP will be important for

- future studies.

Thus, corticosteroids and IFN-a may have therapeutic efficacy
for HAM/TSP to some extent; however, the effect may not be suf-
ficient for avoiding long-term disability. Moreover, in some cases,
it might be difficult to continue therapy because of the side effects
of these drugs and their insufficient benefit. Therefore, it is essen-
tial that revolutionary drugs that can lead to a paradigm shift
in the therapeutic strategies for HAM/TSP be developed. Con-
sidering the pathogenesis of HAM/TSP, therapies to eliminate
HTLV-1-infected cells from the peripheral blood and CNS should
be developed. However, antiviral therapy has not been successful
in the clinical trial for HAM/TSP. A randomized, double-blind,
placebo-controlled, 6-month study of zidovudine and lamivudine
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