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Table 1
mRNA expression of Fp isoforms in human cultured cells and tissues.

The expression ratio of the two Fp isoforms was analyzed by RT-PCR-RFLP (restriction
fragment length polymorphism with Avall). Total RNAs were obtained from NIPPON
GENE (Japan) for normal liver, heart, skeletal muscle, brain, kidney and breast tumor,
colon tumor, stomach tumor and uterus tumor. Wako (Japan) for normal pancreas
and fetal tissues. Invitrogen (USA) for normal testes and breast tumor, liver tumor,
kidney tumor, colon tumor, pancreas tumor, cervix tumor, ovary tumor, prostate
tumor. Cells; Fibroblast and Myoblast: kind gift from Dr. Yu-ichi Goto (National Institute
of Neuroscience, Japan) A549, DLD-1 and MCF-7: kind gift from Mr. Yasuyuki Yamazaki
(Taiho pharma ceutical, Japan) Panc-1: kind gift from Dr. Yasuhiro Esumi (National
Cancer Institute, Japan) Raji: kind gift from Dr. Kazurou Shiomi (Kitasato university,
Japan} HT-29, HU-VEC-C, MDA-M-231, BT-20 and T-47D: ATCC (USA). Pancreatic
epithelial and stromal cells: DS pharma (Japan).

Race Gender Age

1 ()
(%)
Tissue Liver® Caucasoid Female 15 70/30
(normal)  Heart™ Caucasoid  Pool of 7 donots 61/39
Skeletgl muscle® - Male 23 80/20
Brain™ Caucasoid Male 50 84/16
Kidney™ Caucasoid  Pool of 8 donors 62/38
Pancreas - Male 44 30/70
Testes Caucasoid Male 19 100/0
Cell (normal) Fibroblast™ Mongoloid —- - 94/6
Myoblast”™ Mongoloid -- - 87/13
HUV-EC-C* - - - 88/12
Pancreatic — - -~ 100/0
epithelial
Pancreatic - — - 100/0
stromal
Tissue (fetal) Brain — Female 22 weeks 100/0
Brain - Male 41 weeks 38/62
Skeletal muscle -~ Male 22 weeks 0/100
Skeletal muscle  -- Female 19 weeks 100/0
Tissue Breast - Female 55 100/0
(cancer) Breast Mongoloid Female Pool of 6 0/100
donors
Liver Caucasoid Male 60 0/100
Kidney Caucasioid Female 54 23/77
Colon Caucasoid Male 75 100/0
Colon — — - 100/0
Pancreas Mongoloid Male 32 100/0
Stomach - - - 100/0
Uterus - Female -- 100/0
Cervix Caucasoid  Female 59 23/77
Ovary Caucasoid Female 32 100/0
Prostate - Male - 100/0
Cell (cancer) HT29" Caucasoid Female 44 92/8
A549* . Caucasoid Male 58 96/4
pLD-1* - Male  — 25/75
MCE-7* Caucasoid Female 69 23/77
Raji* Neglod Male 11 17/83
Panc-1 Caucasoid Male 56 12/88
MDA-M-231 Caucasoid Female 51 100/0
BT-20 Caucasoid Female 78 78/22
T-47D Caucasoid Female 54 53/47

* Tomitsuka, et al. [59,60].

the difference between type I and type Il Fp will bring final conclusion
on this attractive idea.

5. Conclusions

The recent findings described in this review indicate that the re-
spiratory chain plays an important role in responses to changes in
the amount of oxygen in the environment. Complex Il functions as a
fumarate reductase during adaptation to a hypoxic condition to en-
sure the maintenance of oxygen homeostasis. In this connection, the
reports indicating that complex H functions as an oxygen sensor are
of great interest [63].

In addition, direct evidence of fumarate respiration in human mi-
tochondria are quite important in the study of energy metabolism in
hypoxic condition including cancer cells. Differences in energy

metabalism between hosts and parasites and/or cancer cells are
attractive therapeutic targets.
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In the anaerobic respiratory chain of the parasitic
nematode Ascaris suum, complex II couples the reduc-
tion of fumarate to the oxidation of rhodoquinol, a re-
verse reaction catalyzed by mammalian complex II. In
this study, the first structure of anaercobic complex II of
mitochondria was determined. The structure, composed
of four subunits and five co-factors, is similar to that of
aerobic complex II, except for an extra peptide found
in the smallest anchor subunit of the A. suwm enzyme.
We discuss herein the structure—function relationship of
the enzyme and the critical role of the low redox po-
tential of rhodoquinol in the fumarate reduction of
A. suum complex II.

Keywords: Ascaris suum/crystal structure/mitochon-
drial respiratory complex II/rhodoquinol—fumarate
reductase (QFR)/reaction mechanism.

Abbreviations: C;gM, n-decyl-B-p-maltoside; C;2M,
n-dodecyl-B-p-maltoside; C,E,,, n-alkyl ethylene
glycol monoether; CybL, cytochrome 4 large subunit
of complex II; CybS, cytochrome & small subunit of
complex II; FAD, flavin adenine dinucleotide; Fp,
flavoprotein subunit; Ip, iron—sulphur subunit;
NADH, nicotinamide adenine dinucleotide; PEG,
polyethyleneglycol; QFR, quinol—fumarate reductase;
RQ, rhodoquinone; RQH,, rhodoquinol; SML,
sucrose monolaurate; SQR, succinate—ubiquinone
reductase.

The anaerobic respiratory chain, known as the
NADH-fumarate reductase (NADH-FRD) system,
plays an essential role in the anaerobic energy metab-
olism of adult Ascaris suum, a parasite that inhabits
the small intestine, an environment with low oxygen
tension (pO; of ~4 mmHg). The NADH-FRD system
comprises two membrane proteins, complexes I and I,
embedded in the mitochondrial inner membrane.
Complex I (NADH-rhodoquinone reductase) reduces
rhodoquinone (RQ) to rhodoquinol (RQH,) using the
reducing equivalent of NADH, and complex II, which
functions as a RQH,—fumarate reductase (QFR), cou-
ples the reduction of fumarate to succinate to the oxi-
dation of RQH,; to RQ, a reverse reaction catalysed by
mammalian complex IT (succinate—ubiquinone reduc-
tase, SQR) of the aerobic respiratory chain. The an-
aerobic NADH-fumarate reductase system is found
not only in A. suum but also in bacteria and many
other parasites, and is thus a promising target for
chemotherapy (7/-3).

Although no structure is currently available for eu-
karyotic QFR-type complex I, structures of SQR-type
complex II from porcine (4), avian (5) and Escherichia
coli (6), as well as those of QFR-type from E. coli (7)
and Wolinella succinogenes (8), have been determined.
Their structures are similar to each other and are gen-
erally composed of four polypeptides, the largest flavo-
protein subunit (Fp, 70kDa), an iron—sulphur cluster
subunit (Ip, 30kDa), and cytochrome b large (CybL,
15kDa), and small (CybS, 13kDa) subunits. In this
study, the first X-ray structural analysis of a eukaryotic
QFR-type complex IT was performed for 4. suum adult
complex II (4. sizem QFR) in order to clarify the fac-
tors responsible for its QFR activity and the mechan-
isms of RQH, oxidation coupled to fumarate
reduction.

Ascaris suum QFR was extracted and purified from
adult 4. suwn muscle mitochondria and crystallized
according to the method described by Osanai er «l.
(9). In brief, ~4kg of 4. suum obtained from a local
slaughterhouse was minced and suspended in
Chappell-Perry medium (100mM KCI, 50mM
Tris—HCI pH 7.4, 5SmM magnesium sulphate, 1 mM
ATP, ImM EDTA). The fraction containing mito-
chondria was separated by differential centrifugation,
and 4. suwn QFR was then solubilized using 1.0%
(w/v) sucrose monolaurate (SML; Dojindo). After
purification with anion-exchange column chromatog-
raphy, SML was exchanged with a mixture of
octaethylene glycol monododecyl ether (C;;Eg) and
dodecyl maltoside (C;,M) by repeated PEG3350 pre-
cipitation and dissolution in a buffer containing 0.6%
(w/v) C2Eg, 0.4% (w/v) C;oM, 200 mM NaCl, 10 mM
TrissHCI pH 7.5 and 1mM sodium malonate.
Crystallization was performed by the dialysis method
using a reservoir solution containing 15% (w/v)
PEG3350, 100mM Tris—HCI pH 8.4, 200mM NaCl,
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ImM sodium malonate, 0.06% (w/v) C;,Eq and
0.04% (w/v) C;;M. Reddish crystals grew to
100—200 um in 2-3 days. Crystals of A. suum QFR
in complex with fumarate were prepared by soaking
crystals in the reservoir solution supplemented
with 1mM of sodium fumarate instead of sodium
malonate.

X-ray diffraction experiments were performed under
a N, gas stream (100K) at SPring-8 beam line
BL44XU (Bruker DIP-6040 detector) and at Photon
Factory beam line NW12 (ADSC315 CCD detector).
Data were processed and scaled using HKL2000 (10).
The initial structural model of A. suum QFR was
solved by molecular replacement using the structure

of porcine complex 11 (pdb code: 1ZOY) as a search -

model. Molrep (11) was used for molecular replace-
ment. The refinement of the structure and model build-
ing were performed using Refmacs (12) and Coor (13),
respectively. Data processing and refinement statistics
are shown in Supplementary Table SI. All figures were
generated using PyMOL (14). The coordinates have
been deposited in the Protein Data Bank under ID
codes 3VRS8 and 3VRB for the malonate and fumarate
bound forms, respectively.

The X-ray structure of 4. suum QFR (Fig. 1A and
B) is composed of Fp, Ip, CybL and CybS subunits,
with two molecules in the asymmetric unit (chains
A—D and E—H, respectively). As there are no signifi-
cant differences between the overall protein structures
of 3VRS8 and 3VRB, we will focus on chains A—D of
the malonate-bound form to describe the protein struc-
ture as a whole. Fp (chain A) and Ip (chain B) are
hydrophilic, whereas CybL (chain C) and CybS
(chain D) are hydrophobic membrane-integrated sub-
units. Fp comprises four domains: a FAD binding

domain (residues A33—A279 and A384—A465), a cap-
ping domain (A279—A384), a helical domain
(A465—A580) and a  C-terminal  domain
(AS580—A645). A FAD prosthetic group is held in the
FAD binding domain by a covalent bond to His A79
and by hydrogen bonds with highly conserved residues
(Ala A49, Thr A71, Lys A72, Met A73, Ser A78, Thr
A80, Gln A84, Gly A85, Gly A86, Ala A201, Asp
A255, Glu A421, Arg A432, Ser A437, Leu A438)
across amino acid sequences of complex IIs from vari-
ous species. Ip contains an N-terminal plant
ferredoxin-like domain (residues B33—B130) and a
C-terminal bacterial  ferredoxin-like = domain
(B130—B281). Of the three iron—sulphur centres
bound to Ip, [2Fe—2S] is coordinated by four cysteine
residues (B89, B94, B97 and B109) and located in the
N-terminal domain, whereas [4Fe—4S] and [3Fe—4S]
that are coordinated by four (B182, B185, B188 and
B249) and three (B192, B239 and B245) cysteine resi-
dues, respectively, are bound to the C-terminal
domain. These iron—sulphur centres are also sur-
rounded with highly conserved hydrophobic amino
acid residues (Fig. 1C). The structures of Fp and Ip
are similar to those of complex IIs with known struc-
tures, such as E. coli SQR (6), E. coli QFR (7),
W. succinogens QFR (8), porcine SQR (4) and avian
SQR (5).

In contrast to Fp and Ip, the hydrophobic
membrane-spanning part shows diversity among spe-
cies. In W. succinogens QFR, it consists of a single
polypeptide chain and two haem b prosthetic groups,
whereas 4. suwm QFR, like E. coli SQR, porcine SQR

and avian SQR, holds two polypeptide chains (CybL

and CybS) and one haem b. Both CybL and CybS
consist of three membrane-spanning o-helices

FAD

tu.: A
2Fe-25

$ 04i
aFe-4s

I 944
79A

/ 3Fe-as

RQ 784

AN

heme b

Fig. 1 Structure of 4. sunzm QFR. Fp (chain A), Ip (chain B), CybL (chain C) and CybS (chain D) are coloured in green, red. yellow and cyan,
respectively. Colour code for each atom type: C (yellow), N (blue), O (red), S (orange) and Fe (brown). (A) Cartoon representation of the

A. suum QFR structure. FAD, iron—sulphur centres and hacm b are shown as sticks. (B) Surface model of A. suum QFR viewed from a different
dircction from (A) for casy obscrvation of the extra polypeptide attached to the N-terminus of CybS. (C) The arrangement of FAD, [2Fe-28],
[4Fc—48], [3Fc—48], hacm b and RQ. Their cdge-to-cdge distances are also shown. Amino acid residucs within 5 A of the prosthetic groups and
RQ arc shown by a wire modcl. Conserved residucs across amino acid sequences of complex Ils arc coloured in magenta.
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(Fig. 1A and B) and anchor the 4. suum QFR to the
membrane. A haem b is embedded into the interface
between the CybL and CybS, and two conserved His
residues (His C131 and His D95) are ligated to the
haem iron. A distinct cleft, whose location is in agree-
ment with the quinone binding sites proposed for other
complex IIs, is formed by Ip, CybL and CybS, and a
residual electron density probably revealing a bound
RQ is detected in the cleft.

Figure 1C shows the arrangement of the prosthetic
groups bound to 4. suum QFR and their edge-to-edge
distances. [2Fe—2S], [4Fe—4S] and [3Fe—4S] line be-
tween FAD and RQ as observed in other complex
IIs (15). Thus, the disposition of the prosthetic
groups is critical to allow electron transfer from
RQH, to FAD via the iron—sulphur centres. The
hydrophobic environment around the iron—sulphur
centres _and distances between neighbouring centres
(<14 A) suggest that the electron transfer from
RQH, to FAD is carried out by quantum tunneling
(16), as proposed for E. coli SQR (6).

Figure 2A shows that fumarate is bound near the
FAD isoalloxazine ring in a non-planar conformation.
C2, C3 and C4 carboxyl group are in the same plane
parallel to the isoalloxazine ring, whereas the C1 carb-
oxyl group is twisted around the C1 and C2 bond with
a C3—C2—C1-O1A dihedral angle of 83.7¢. The twist-
ing, which is stabilized by hydrogen bonds with Gly
AR5, Thr A288, Glu A289 and Arg A320, suggests that
the uniform distribution of n-electrons over the conju-
gated double bonds of fumarate is broken and a partial
charge separation, C2°" and C3°", is induced. The
contact of C2°F with FAD N5 (4.05 A) suggests that
a hydride (or hydride equivalent) is transferred from
reduced FAD N5 to C2%* in the reduction of fumarate
with the reduced FAD. Arg A320 is a probable candi-
date that supplies a proton to C3°~ to complete the
reduction of fumarate. The twisted conformation of
fumarate is also observed in flavoproteins with fumar-
ate reductase acitivity (1D4E, 1P2E, 1QLB and 2E6D),
and a similar mechanism is proposed for E. coli QFR
(17) and Trypanosoma cruzi dihydroorotate dehydro-
genase (18).

Figure 2B shows the structure of the RQ binding site
proposed for A. suum QFR. The site is formed by Ip,
CybL and CybS, and is in agreement with ubiquinone
binding sites suggested for other complex Ils. [3Fe—4S]
is the nearest iron—sulphur centre to RQ (9.2 and 7.9 A
from RQ O1 and RQ O2, respectively), suggesting that
electrons are first accepted by [3Fe—4S] upon the oxi-
dization of RQH,, and then transferred to FAD via
[4Fe—4S] and [2Fe—-2S].

RQ is surrounded by conserved amino acid residues
(Ser C72, Arg C76, Asp D106 and Tyr D107) and is
involved in hydrogen bond networks, RQ O1-Tyr
D107—Arg C76—Asp D106 and RQ O2-Ser C72—-RQ

N—Arg C76—Asp DI106. Protons abstracted from

RQH, may leave along these networks. It should be
noted that the amino group of RQ, which is replaced
by the methoxy group in ubiquinone, is involved in one
of the hydrogen bond networks.

In this study, the structure of 4. suum QFR, the first
structure of a mitochondrial QFR-type complex II, has

Crystal structure of mitochondrial QFR

Arg Ad32

Fig. 2 Close-up views of active site structures of 4. suum QFR.

(A) Fumarate binding sitc of 4. stnun QFR. The CI carboxyl group
is twisted around the C1 and C2 bond by hydrogen bonds with
nearby residues, which induces partial charge separation, C2°* and
3%~ (B) RQH, binding site of A. suwm QFR. Colour code for each
atom type: C (yellow), N (blue), O (red), S (orange) and Fe (brown).
Fumarate and RQ are coloured in green, FAD in pink. Hydrogen
bonds are drawn with cyan dotted lines.

been determined. A comparison of structures of
A. suwm QFR and SQR-type complex II reveals that
not only are the protein structures essentially identical
to each other, but also the bound prosthetic groups are
surrounded by conserved residues (Fig. 1C). Thus, it
appears that the bound quinone type plays a role in
determining the direction of catalysis, QFR or SQR of
complex II. In fact, 4. suurm QFR, which catalyses the
reduction of fumarate (Em’=+30mV) by oxidizing
RQH,; (Em’ =—63mV) in vivo, displays SQR activity,
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oxidation of succinate (Em’ =+30mV), and reduction
of ubiquinol (Em’=+110mV) in virro.

The structure also demonstrates a feature unique to
A. suwm QFR. The additional polypeptide composed
of 27 residues, which is found only at the N-terminus
of A. suum CybS, extends to and forms hydrogen
bonds with CybL, Ip and Fp (Fig. 1B, cyan), indicat-
ing that this unique region probably contributes to the
stabilization of the A. suum QFR structure. In add-
ition, because no such region has been found in
SQR-type complex IIs known to date, this unique fea-
ture could make A. suwm QFR favourable for accept-
ing RQH, and fumarate as substrates, although
further biochemical and biophysical analyses are ne-
cessary to reveal the truth.

Supplementary Data

Supplementary Data are available at JB Online.
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Malaria parasites in human hosts depend on glycolysis for most of their energy production, and the mitochondrion
of the intraerythrocytic form is acristate. Although the genes for all tricarboxylic acid (TCA) cycle members are
found in the parasite genome, the presence of a functional TCA cycle in the intraerythrocytic stage is still controver-
sial. To elucidate the physiological role of Plasmodium falciparum mitochondrial complex Il (succinate-ubiquinone
reductase (SQR) or succinate dehydrogenase (SDH)) in the TCA cycle, the gene for the flavoprotein subunit (Fp) of

Keywords: the enzyme, pfsdha (P. falciparum gene for SDH subunit A, PlasmoDB ID: PF3D7_1034400) was disrupted. SDH is a
Malaria well-known marker enzyme for mitochondria. In the pfsdha disruptants, Fp mRNA and polypeptides were de-

Intraerythrocytic stage
Tricarboxylic acid cycle

creased, and neither SQR nor SDH activity of complex Il was detected. The suppression of complex Il caused growth
retardation of the intraerythrocytic forms, suggesting that complex II contributes to intraerythrocytic parasite

Succinate growth, although it is not essential for survival, The growth retardation in the pfsdha disruptant was rescued by
the addition of succinate, but not by fumarate. This indicates that complex Il functions as a quinol-fumarate reduc-
tase (QFR) to form succinate from furnarate in the intraerythrocytic parasite.

© 2012 Elsevier Ireland Ltd. All rights reserved.

Many aerobic organisms, including humans, depend on oxidative
phosphorylation for most of their energy metabolism. On the other
hand, the intraerythrocytic malaria parasite synthesizes ATP by an-
aerobic glycolysis {1]. All the genes for the glycolytic pathway are
found in the parasite genome, and pyruvate generated from glucose
by glycolysis is converted to lactate with NAD™' generation [2,3].
The role of mitochondria in parasite energy metabolism is unclear.
B-oxidation is absent from the mitochondria and there is no biochem-
ical evidence for a canonical and functional tricarboxylic acid (TCA)
cycle in the intraerythrocytic form [2,4,5].

In mammals, mitochondrial complex 1I functions as a succinate-
ubiquinone reductase (SQR) that catalyzes the oxidation of succinate
in the TCA cycle and supplies electrons to the respiratory chain. Gene-
rally, complex Il is composed of four subunits: a flavoprotein subunit
(Fp) and an iron-sulfur protein subunit (Ip) as catalytic domains, and
two hydrophobic subunits as membrane anchor domains. The genes
for the Fp and Ip, pfsdha (PlasmoDB ID: PF3D7_1034400) and pfsdhb,
have been cloned, and P. falciparum mitochondrial proteins show
both succinate dehydrogenase (SDH) and SQR activities, indicating

* Corresponding authors. Tel.: +81 3 5841 3528; fax: + 81 3 5841 3444,
E-mail addresses: ywatanab@m.u-tokyo.ac.jp (Y. Watanabe), kitak@m.u-tokyo.ac.jp
(K. Kita).
! present address: Laboratory of Malaria and Vector Research, National Institute of
Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892,
United States.

1383-5769/% - see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.parint.2012.06.002

that complex II should have some role in parasite survival [6,7]. On
the other hand, complex Il functions as a quinol-fumarate reductase
(QFR), the reverse action of SQR, for anaerobic respiration in various
anaerobic organisms [8]. Thus, the direction of the reaction suggests
the biological function of complex .

Since mitochondrial complex Il was potentially expected to be essen-
tial for parasite survival, a tetracycline analogue-regulated transgene ex-
pression system in P. falciparum was chosen to establish a conditional
knockout strain for the analysis of this potentially essential gene [9].
Since this is a Tet-Off system, the target gene under control is expressed
in the absence of the tetracycline analogue anhydrotetracycline (ATc),
and the addition of ATc should repress the target gene expression. A con-
ditional knockout of the gene for the Fp subunit in SQR from P. falciparum
was tried with a pTGPI-GFP derived vector, by which the target gene ex-
pression could be controlled with ATc in the parasite (Fig. 1) [9].

As pTGPI-GFP is a ‘Tet-Off system, the transformants were cul-
tured in a medium without AT, to keep pfsdha expression. Stable re-
combinant parasites had been cloned by limiting dilution from
pTSDHA-trunc and pTSDHA-full transformants. The genomic organi-

. zation of the targeted loci was confirmed by Southern blotting (not

shown).

To analyze the pfsdha transcription, total RNAs from the trophozoite/
schizont-rich culture were used for semi-quantitative RT-PCR and
Northern blot analysis. Unexpectedly, the pfsdha disruptant did not ex-
press pfsdha mRNA even in the absence of ATc (not shown). These results
indicate that the established pfsdha disruptants were not conditional
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Fig. 1. (A) Schematic diagrams for ‘pfsdha disruption’ and the control integration into the
target locus. The pfsdha gene (1-537 and full-length), human dihydrofolate reductase
(hDHFR), tetracycline repressor and transactivator fusion protein (TATi3), tetracycline op-
erator sequence (tet0), and the EcoRV site (Eco) are labeled. Thin and thick solid lines in-
dicate the backbone sequences of the plasmid and the 3D7 chromosomal DNA,
respectively. Parasites were cultured following standard protocols [17]. P. falciparum
(3D7 strain) were cultivated according to [ 10] with slight modifications. The parental plas-
mid, pTGPI-GFP, was a kind gift from Dr. B.S. Crabb (Walter and Eliza Hall Institute of Med-
ical Research, Australia) [9]. Since the Rep20 element in pTGPI-GFP is a subtelomeric
repeated region and localizes the plasmid to perinuclear chromosome-end clusters [18],
and it was expected to potentially inhibit plasmid integration into the homologous chro-
mosomal locus, pTGPI-GFPARep20 plasmid was obtained from pTGPI-GFP with Bgill di-
gestion and self-ligation. A DNA fragment of pfsdha (GenBank ID: XM_001347582,
PlasmoDB ID: PF3D7_1034400) corresponding to nucleotide coding region 1-537 with
additional sequences of Sse83871 and Spel sites at each end, allowing for insertion between
the Pstl and Spel sites of pTGPI-GFP, was amplified by PCR from 3D7 genomic DNA pre-
pared with DNAzol (Invitrogen, Life Technologies). The PCR product was digested with
Sse83871 and Spel and then inserted into the digested pTGPI-GFPARep20, resulting in plas-
mid pTSDHA-trunc. As a control, a DNA fragment of full-length pfsdha with additional se-
quences of Sse83871 and Spel sites at each end was amplified by PCR from genomic DNA.
The fragment was cloned between the Pstl and Spel sites of pTGPI-GFPARep20 by the
same method as above, resulting in plasmid pTSDHA-full. The primer sequences were
available from the authors upon request. Plasmid DNA was electroporated to infected
erythrocytes and transfected parasites were selected with 5 nM WR99210 (Jacobus Phar-
maceutical Co., Inc., Princeton, NJ, USA, a kind gift of Dr. David Jacobs} [19] Single-cell
cloning was carried out by limiting dilution.

knockouts, but constitutively pfsdha-repressed strains. In a previous
study, a similar phenomenon was observed in parasites cultured for
prolonged periods (Dr. B.S. Crabb, personal communication). These

mutants were useful for the study on the role of complex Il in intra-
erythrocytic form as constitutively pfsdha-repressed mutants although
the pfsdha disruptants were not expected mutants.

Following the analysis of the transcription of pfsdha gene, the ex-
pression of Fp and Ip peptides was examined by Western blot analysis
with mitochondrial proteins prepared from trophozoite/schizont-rich
culture [10]. The expression of Fp protein in the mitochondrial frac-
tion from the pfsdha disruptant was significantly lower than that of
the other controls (not shown). Interestingly, in spite of the normal
expression of the pfsdhb transcript, repression of Ip protein was ob-
served in the pfsdha disruptant (not shown). Although their expres-
sions were not completely repressed, both of the signal intensities
for the Fp and Ip proteins of the pfsdha disruptant should be low
enough to evaluate its role.

The enzyme activities of complex Il and dihydroorotate dehy-
drogenase (DHOD) were examined with mitochondrial proteins
isolated from the parasites according to {10]. DHOD is the fourth
enzyme of the de novo pyrimidine synthetic pathway. P. falciparum
DHOD localizes on the mitochondrial membrane and transfers
electrons to ubiquinone in the respiratory chain [11]. Both SDH
and SQR activities in mitochondria from the pfsdha disruptant, examined
according to {7,10], were repressed to undetectable levels, while mito-
chondria from the controls showed 3.84 to 6.15 nmol/min/mg of SDH
and 3.11 to 5.45 nmol/min/mg of SQR activities. On the other hand,
there was no difference in DHOD activities between the controls (13.9
to 18.9 nmol/min/mg) and the pfsdha disruptant (15.7 nmol/min/mg).

To examine the effect of Fp repression, parasite growth was ana-
lyzed after a 48-h culture, one intraerythrocytic growth cycle. As
shown in Fig. 24, the growth retardation was detected in experiments
started at 0.2% parasitemia (gray bars). The parasitemia of the con-
trols was 1.78 £ 0.14% (wild type), 1.73 +0.15% (control of plasmid
transfection), and 1.70 £0.15% (control of integration). Meanwhile,
the parasitemia of the pfsdha disruptant was 0.94% 4 0.09%, half of
that for the controls (Fig. 2A).

Succinate and fumarate are substrates for SQR and QFR, respec-
tively. The direction of the complex II reaction was examined by the
addition of the substrates to the pfsdha disruptant. The maximum
concentration of succinate and fumarate used was 5 mM, because
the intraerythrocytic parasite cannot survive in a culture medium
with >50 mM succinate or fumarate (not shown). As a result, 5 mM
of succinate rescued the growth retardation of the pfsdha disruptant,
but fumarate did not (Fig. 2B). The growth of the controls was not af-
fected by the substrate addition. To examine the dose response, the
parasites were incubated with between 5 mM and 50 nM of succinate
or fumarate. Growth retardation rescue was observed in the pfsdha
disruptant with >50 uM of succinate, but fumarate did not rescue
the parasite growth retardation (Fig. 2B). These findings suggest
that complex I catalyzes succinate production by fumarate reduction
in the intraerythrocytic forms.

If the volume of cell and protein concentration [12] is taken ac-
count, the concentrations of succinate and fumarate in human cell
[13] could be equivalent to those in the parasite (10~ ! mM) [14].
Thus, under physiological condition, growth retardation of the dis-
ruptant in the intraerythrocytic stages may not be observed.

Complex II appears to function as a QFR, and the produced succi-
nate is required in other metabolic pathways. Heme biosynthesis
might be a potential pathway that needs the produced succinate, be-
cause succinate could be a precursor of succinyl-CoA for the first step
of heme biosynthesis. Moreover, QFR has been proposed to couple
with protoporphyrinogen IX oxidase in the heme biosynthesis path-
way of P. falciparum [15]. Our previous observation showing function-
al link between dihydroorotate-dependent respiration and QRF [7] is
consistent with this idea. Considering that a recent report suggested
branched TCA cycle metabolism in the parasite [16], further biochem-
ical analysis is indispensable to understand the real nature of the en-
ergy metabolism of the parasite. -
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Fig. 2. (A) Growth retardation of the pfsdha disruptant and growth rescue by sub-
strates. Gray, white, and black bars indicate no additives, 5 mM of succinate, and
5 mM of fumarate, respectively. (B) Dose dependency of succinate on growth rescue
in the pfsdha disruptant (pTSDHA-trunc clonal line). White and black bars indicate suc-
cinate (Suc) and fumarate (Fum) addition to the pfsdha disruptant, respectively. 3D7,
wild-type 3D7 strain; trunc, pTSDHA-trunc clonal line (‘pfsdha disruptant’); full,
pTSDHA-full clonal line; GFP, pTGPI-GFPARep20 transformant. Synchronized parasites,
prepared according to [20}], at 0.2% starting parasitemia were triplicated with 1 ml each
of complete medium containing 0.5% (w/v) AlbuMAX 1 (Gibco, Life Technologies).
Giemsa-stained smears were prepared after a 48-h incubation without media change,
and the parasitemia was evaluated by optical microscopy.
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Introduction

Macroautophagy (simply referred to as autophagy hereafter) is a
fundamental cellular process, by which cytoplasmic components
including proteins and organelles are delivered to the lysosome (or
vacuole in yeasts and plants) for degradation. Autophagy is
involved in many cellular functions such as adaptation to
starvation, cell differentiation, quality control of proteins and
organelles, aging, and degradation of invading microbes
[1,2,3,4,5,6]. It is also implicated in human diseases such as
cancer, inflammatory diseases, and neurodegeneration. Autopha-
gy involves complex membrane dynamics; a membrane cisterna
termed the isolation membrane (or phagophore) elongates on the
endoplasmic reticulum (ER) and forms a double membrane-bound
autophagosome, which contains cytoplasmic materials. Then, the
autophagosome fuses with a lysosome to degrade the enclosed
materials. Autophagosome formation is the central event of this
process and is governed by autophagy-related (Atg) proteins,
which were originally identified in yeast [7,8]. The genetic
hierarchy of these Atg proteins has been determined and. they
are classified into at least six functional groups: the starvation-
responsive  Atgl kinase complex (Atgl-Atgl3-Atgl7-Atg29-
Atg31), the multi-membrane spanning protein Atg9, the class III
phosphatidylinositol 3 (PtdIns 3)-kinase complex (Atg6-Atgld—
Vps15-Vps34), the Atg2-Atgl8 complex, the Atgl2 ~ Atg5-Atgl6

PLOS ONE | www.plosone.org

complex (“~” denotes a covalent attachment), and the Atg8—
phosphatidylethanolamine (PE) conjugate (Figure 1A) [8,9,10].
These core Atg proteins are highly conserved in most
eukaryotes including fungi, animals, and plants [11]. However,
recent genome-wide analyses have revealed that they are only
partially present in protozoa [12,13]. It is interesting that their
conservation pattern is not random; the members belonging to the
Atg8 conjugation systems are highly conserved in almost all
protozoans, whereas potential homologs of other Atg proteins are
only found sporadically (Figure 1A) [12]. The ubiquitin-like
protein Atg8 can be covalently conjugated to PE through a
sequential reaction that is mediated by a ubiquitin E1-like enzyme,
Atg7, and an E2-like enzyme Atg3 [14]. Atg4 cleaves the C-
terminal extension of the proform of Atg8 to expose a glycine
residue, to which PE is conjugated. Atg4 also catalyzes deconjuga-
tion of the PE moiety from Atg8 — PE to release Atg8 from the
membrane after completion of autophagosome formation [15].
Although the precise function of Atg8 and its PE conjugation in
autophagy remains unclear, it is suggested that Atg8 — PE is
important for membrane tethering and hemifusion [16], determi-
nation of the autophagosome size [17], and expansion and closure
of the isolation membrane [18,19,20]. The partial conservation of
the ATG genes in protozoans might imply that the smaller set of
Atg proteins is sufficient to constitute the autophagosome in these
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Figure 1. Atg protein sets are only partially conserved in P. falciparum. (A) List of Atg proteins in S. cerevisiae, Homo sapiens and P. falciparum.
-, no ortholog found. It has been suggested that the mammalian FIP200-Atg101 complex and the yeast Atg17-29-31 complex are functional
counterparts (dashed boxed) although they do not show significant sequence similarities. None of these factors seems to be conserved in P.
falciparum. The tag of locus in the P. falciparum genome is indicated in parentheses. (B) Alignment of the full sequences of S. cerevisiae Atg8, H.
sapiens LC3B (one of the Atg8 homologs), and P. falciparum Atg8. Identical amino acid residues are indicated with filled boxes.

doi:10.1371/journal.pone.0042977.g001

organisms. Alternatively, these organisms may use the Atg8 system
for other purposes.

To date, several functional and morphological analyses of
autophagy have been performed in protozoan parasites [13].
Entamoeba invadens possesses the Atg8 system, but lacks the Atgl2
system. Atg8-positive vacuolar structures are generated in a PtdIns
3-kinase-dependent manner during encystation, but its ultrastruc-
ture is unknown [21}. In Tyypanosoma cruzi, autophagosome-like
double-membrane structures are formed in epimastigotes and
implicated in differentiation into metacyclic trypomastigotes
[22,23). Leishmania major seems to have both Atg8 and Atgl2
systems [24], and Atg8-positive punctate structures are observed
during metacyclogenesis [25]. Accordingly, Atg4-deficient L. major
shows a defect in differentiation into metacyclic promastigotes
[25]. A more recent study performed in Toxoplasma gondii showed
that genetic depletion of 7TgAtg3, which encodes an enzyme
required for Atg8 — PE conjugation, causes growth inhibition and

PLOS ONE | www.plosone.org

mitochondrial anomalies, which may be due to a defect in
mitophagy {26].

In contrast, the nature of Atg proteins of the malaria parasite
Plasmodium spp. remains largely unknown. Plasmodium, which
belongs to phylum Apicomplexa together with Toxoplasma,
possesses characteristic organelles such as the apicoplast, rhoptry,
microneme, and dense granule. The Plasmodium sporozoite is
transmitted by mosquito and first infects the hepatocyte which
generates a large number of infectious merozoites. The merozoite
infects erythrocytes and multiplies by schizogony to generate up to
~32 merozoites. Finally the infected erythrocytes rupture, and
newly formed merozoites are released into the blood stream. An
electron microscopy study of the rodent malaria parasite P. berghe
demonstrated the presence of autophagosome-like double-mem-
brane structures, which appeared to eliminate micronemes in
liver-stage parasites [13,27]. Furthermore, P. berghei Atg8 appears
to localize to abundant vesicles organized in a reticular network

[27].
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Because Atg8 — PE is present on both elongating isolation
membranes and complete autophagosomes [28,29], Atg8 and its
orthologs have been generally recognized as an autophagosome
marker. Thus, in this study, we determined the biochemical
properties and subcellular localization of Atg8 in P. falciparum, the
major cause of human malaria. Contrary to our expectation, we
found that P. falciparum Atg8 (PfAtg8) was specifically associated
with the apicoplast, not autophagosomes, during the erythrocytic
stage.

Results

Expression of PfAtg8 increases during the erythrocytic
stage

Previously, it was reported that the P. falciparum genome has
only a partial set of core Atg proteins [12,13]. We systematically
searched for the orthologs of Atg proteins in the parasite genome
and reached a similar conclusion (Figure 1A). We found genes
encoding orthologs of a complete set of the Atg8 conjugation
system (Atg3, Atg4, Atg7, and Atg8), although other Asg genes are
only partially conserved (Figure 1A). Compared with Atg8 of the
yeast Saccharompces cerevisiae, PfAtg8 shows approximately 40%
identity and 65% similarity and has the exposed C-terminal
glycine residue, unlike Atg8 orthologs of other organisms
(Figure 1B). P. falewparum possesses the class III PtdIns 3-kinase
Vps34 [30]. In addition, although similarity is not high, there seem
to be potential homologs of Atgd (Figure S1), Atgl2 (Figure S2),
and Atgl8 (Figure S3). Proteins encoded by PFI3_0116 and
PF14_0294 are partially similar to Atg2 and Vpsl5, respectively,
but it remains unknown whether they are orthologs of Atg2 and
Vpslb5.

To analyze endogenous PfAtg8, we generated two independent
rabbit polyclonal antibodies against PfAtg8. Both antibodies
specifically reacted with a band at approximately 14 kDa
(Figure 2A). This size was close to that of Atg8 proteins of other
species [28,29]. We used the anti-PfAtg8 antibody #1 in the
following experiments unless otherwise specified. The expression
level of PfAtg8 was low during early intra-erythrocytic develop-
ment, but it increased as the parasite matured and reached the
maximal level at the late schizont stage (Figure 2B). This pattern
was similar to that of HSP70 serving as a cytosolic loading control,
suggesting that the apparent increase of PfAtg8 corresponds to the
increasing volume of the intra-erythrocytic parasites.

PfAtg8 is associated with membranes

In other organisms, Atg8 is present in two forms: free Atg8 and
the membrane-associated form that conjugates with PE embedded
in the lipid bilayer. The PE-conjugated and unconjugated forms of
Atg8 can be separated by standard SDS-PAGE and urea-
containing SDS-PAGE in mammals [29] and yeast [15],
respectively. Although Atg8 gains molecular mass when conjugat-
ed to PE, its apparent mobility in SDS-PAGE increases probably
because of the highly hydrophobic nature of PE. However, PfAtg8
was detected only as a single band in SDS-PAGE (Figure 2A), and
no extra band was identified even in the presence of 6 M urea
(data not shown). This suggests that the majority of PfAtg8 is
present in either the conjugated or unconjugated form. When
PfAtg8 was expressed in mammalian cells, PfAtg8 was also
detected as a single band, although the mobility was lower than
that of PfAtg8 expressed in parasites (Figure 2C). As it is unlikely
that PfAtg8 conjugates with PE in mammalian cells, the band
detected in mammalian cells is likely to represent the mobility of
the unconjugated form. We therefore speculate that PfAtg8 is
present primarily in a PE-conjugated form in Plasmodium.

'PLOS ONE | www.plosone.org
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We thus investigated whether or not PfAtg8 is membrane
bound. The lysates of asynchronous parasites were fractionated by
differential centrifugation. PfAtg8 was mainly collected in a low-
speed (13,000 xg) pellet (LSP) fraction (Figure 2D). PfAtg8 in the
LSP fraction could be solubilized by treatment with 2% Triton X-
100, but not with 2 M urea (Figure 2E). This behavior is
characteristic of integral membrane proteins, and Atg8 — PE of
other organisms have been known to behave in this manner
[15,29]. Thus our data suggest that most PfAtg8 is membrane-
associated in intra-erythrocytic Plasmodium.

In yeast and mammalian cells, Atg8/LC3 associating with the
inner autophagosomal membrane is degraded upon fusion with
lysosomes [31]. Chloroquine, a well-known anti-malarial drug,
impairs lysosomal acidification, and thereby blocks degradation of
LC3 in the lysosome [31]. If PfAtg8 is attached to the
autophagosomal membrane in P. falciparum as are Atg8 or LC3
in yeasts and mammals, this protein should also be degraded
within the lytic organelles such as the food vacuole. Chloroquine
may affect this process and therefore we examined its effect on the
level of PfAtg8. However, treatment of the parasite growing in
erythrocytes with chloroquine did not increase the amount of
PfAtg8 (Figure 2F), suggesting that PfAtg8 is not involved in the
autophagic process at this stage of the parasite’s life cycle.

PfAtg8 localizes to the apicoplast membrane

We next determined the subcellular localization of PfAtg8 by
immunofluorescence microscopy. In segmented schizonts, the
PfAtg8 signal was detected as a single punctate structure in each
merozoite (Figure 3). The size of each punctate structure was
approximately 200-400 nm. The fact that every parasite possessed
one such structure precluded the possibility that the PfAtg8-
positive structure is rapidly turned over in the same way as the
autophagosome.

The nature of these PfAtg8-positive structures was further
characterized by double staining with organelle markers. PfAtg8
did not colocalize with any markers for the merozoite apical
organelles such as the microneme (Figure 3A), rhoptry body
(Figure 3B), rhoptry neck (Figure 3C), and dense granule
(Figure 3D). By contrast, PfAtg8 colocalized with the apicoplast-
localizing green fluorescent protein (ACP-GFP) (some of the
parasites displayed only weak ACP-GFP expression) [32,33]
(Figure 3 F). We confirmed the colocalization between ACP-
GFP and PfAtg8 using the independent anti-PfAtg8 antibody #2
(Figure 3G). All the organelles labeled with the ACP-GFP
antibody also reacted with the antibody against the plastid-
localizing PAHU (histone-like protein, heat unstable), an endoge-
nous apicoplast marker (Figure 3H) [34]. The PfAtg8-positive
structure was observed in close proximity to the mitochondrion,
and even appeared to overlap part of the organelle (Figure 3E).
This partial gverlapping between mitochondria and PfAtg8 is
consistent with the fact that the apicoplast and the mitochondrion
are juxtaposed, probably maintaining physical contact, in the
parasite cell [35,36]. To better dissect the localization of PfAtg8,
we looked at the parasites at an earlier stage. Morphology of the
apicoplast dramatically changes during development inside
erythrocytes [32,37]. At the late trophozoite to early schizont
stages, the apicoplast forms a tubular or branched shape. In fact,
PfAtg8 localized to the tubular or branched apicoplasts, which
were clearly distinct from the mitochondria (Figure 4). Taken
together, these data suggest that PfAtg8 localizes to the apicoplast
during normal development.

Even though the main localization of PfAtg8 is the apicoplast,
PfAtg8 could be present on other structures such as autophago-
somes. However, the localization pattern of PfAtg8 was not
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Figure 2. PfAtg8 is associated with membranes. (A) Specificity of the two independently generated anti-PfAtg8 antibodies (#1 and #2). Crude
antisera and purified antibodies were used for immunoblotting of lysates of asynchronized P. falciparum parasites. (B) Expression of PfAtg8 increases
during the erythrocytic stage of development. Highly synchronized P. falciparum parasites were collected at 0, 12, 24, 32, and 40 h after invasion. The
duration of one cycle of the erythrocyte stage was approximately 42 h. Expression levels of PfAtg8 were analyzed by immunoblotting. An antibody
against HSP70 was used as a loading control. (C) PfAtg8 exogenously expressed in mammalian cells (lane 1), endogenous PfAtg8 expressed in P.
falciparum (lane 2), and the mixture of these two samples were subjected to immunoblot analysis using anti-PfAtg8 antibody. (D) Lysates of
asynchronized Plasmodium were separated into low-speed (13,000xg) pellet (LSP), high-speed (100,000 xg) pellet (HSP), and high-speed supernatant
(HSS) fractions, and analyzed by immunoblotting using anti-PfAtg8 antibody. (E) The LSP fraction prepared in (D) was treated with 2 M urea or 2%
Triton-X 100 and separated into 100,000 xg pellet (P) and supernatant (S). (F) Infected erythrocytes were cultured in the presence of the indicated

concentration of chloroquine and expression of PfAtg8 was analyzed.
doi:10.1371/journal.pone.0042977.g002

significantly changed by treatment of chloroquine (Figure 5A),
which can typically accumulate autophagosomes/autolysosomes in
mammalian cells (as we mentioned above, ACP-GFP was not
uniformly expressed and some merozoites displayed only faint
GFP signals) [38]. Thus, we could not conclude whether P.
Jalciparum can generate PfAtg8-positive autophagosomes. Further-
more, treatment with wortmannin, a PtdIns 3-kinase inhibitor, did
not affect PfAtg8 localization, suggesting that association of PfAtg8
with the apicoplast membrane is independent of PtdIns 3-
phosphate (Figure 5B).

We further analyzed the localization of PfAtg8 by immunoelec-
tron microscopy using the anti-PfAtg8 antibody. The silver-
enhanced gold particles specifically associated with multiple
membrane-bound organelles (Figure 6A). The inside of the
organelles were filled with relatively low-density materials and a
fiber-like structure, which are features of the apicoplast [35,39,40].
These characteristics suggest that the organelles surrounded by
PfAtg8 were different from autophagosomes, which are defined as

PLOS ONE | www.plosone.org

double membrane-bound organelles containing undigested cyto-
plasmic materials, and from autolysosomes, which contain
degraded materials [41]. We did not observe such autophagic
structures in the parasites in the erythrocytic stage. To confirm
that the PfAtg8-positive multi-membrane structures were indeed
apicoplasts, we performed immunoelectron microscopy of AGP-
GFP-expressing parasites. Anti-GFP antibody specifically reacted
with multi-membrane organelles that looked the same as the
structures to which PfAtg8 localized (Figure 6A and 6B). The
PfAtg8 signals were not detected on the mitochondrion that was in
close proximity to the apicoplast (Figure 6A). This suggests that the
fluorescence signal detected apparently in the mitochondrion
(Figure 3E) was caused by the spatial overlap of the organelle and
the apicoplast. Taken together, these data suggest that PfAtg8
specifically localizes to the membrane of the apicoplast in P.
Salciparum.
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Figure 3. PfAtg8 localizes to the apicoplast. P. falciparum FCR3 (A~E) and P. falciparum 3D7 transfected with ACP-GFP (F-H) were stained with
the indicated organelle markers and visualized by confocal microscopy (because ACP-GFP was not uniformly expressed, some merozoites displayed
only faint GFP signals). Anti-PfAtg8 antibody #1 was used in (A-F), and anti-PfAtg8 antibody #2 was used in (G). Apical membrane antigen 1 (AMA1)
as a microneme marker (A), rhoptry-associated protein 1 (RAP1) as a rhoptry body marker (B), rhoptry neck protein 2 (RON2) as a rhoptry neck marker
(), the ring-infected erythrocyte surface antigen (RESA) as a dense granule marker (D), MitoTrackerRed CMXRos as a mitochondria marker (E), ACP-
GFP (F-H) and the organellar histone-like protein PfHU (H) as an apicoplast marker were used. Scale bar, 1 um.

doi:10.1371/journal.pone.0042977.g003

Discussion

We report here that PfAtg8 is associated with the apicoplast,
probably with the outermost membrane likely in a lipid-
conjugated form during the erythrocytic stage. Although we did
not detect any autophagosome-like structures in P. faliparum even
under chloroquine treatment, we do not rule out the possibility
that Atg8 can localize to autophagosomes if such structures are
formed in Plasmodium. The apicoplast is a non-phatosynthetic
plastid, which is an essential organelle possessing its own genome
[40,42,43]. The apicoplast is involved in several metabolic
pathways such as biosynthesis of fatty acids, haem, isoprenoid
(required for tRNA modification, ctc) and iron—sulphur clusters. P.
Jalciparum has one plastid, and it physically contacts with the
mitochondrion during intraerythrocyte stage [35,36], although the
relationship between these two organelles seem to be more
complicated in liver stages [44]. The apicoplast has four
membranes and that is believed to explain the origin of the
organclle from a secondary endosymbiotic alga, most likely a red
alga [43,45,46]. The outer two membranes appear to be related to
the ER. Nuclear-encoded apicoplast proteins possess an N-
terminal signal peptide that is essential for their delivery to the
apicoplast via Golgi-independent transport [32,40,47,48,49]. ER-
associated protein degradation-like machinery exists in the second
outermost membrane {50,31]. Although the autophagosome does
not have any ER-related proteins and contribution of other
organelles such as mitochondria [52] and the plasma membrane
[53], autophagosomes are basically gencrated on or in close
proximity to the ER [8,54]; even direct membrane continuity
between the ER and autophagosome has been suggested [55,36].
Therefore, Atg8 may have a shared role in biogenesis of ER-
related organelles.

To date, no particular contribution of PfAtg8 on the apicoplast
or its biogenesis has been predicted. This protein was suggested to

PfAtg8

ACP-GFP Mitotracker

Late trophozoite

Early schizont

be essential because deletion of the Ag8 gene in P. berghei causes a
lethal phenotype [13,27]. Our ultrastructural analysis, as well as
the fact that the parasite has one apicoplast throughout its ccll
cycle (except for a short period of organellar division), suggest that
PfAtg8 is unlikely to be used for autophagic degradation of the
apicoplast. Conditional targeting of Afg3 in 7. gondii resulted in a
severe growth defect with altered mitochondrial morphology [26].
The observed mitochondrial defects might have been caused by a
defect in mitochondrial autophagy (mitophagy) as suggested by
Besteiro et al,, but it may be duc to an impaired apicoplast—-
mitochondria relationship. If the Atg8 conjugation system is
involved in essential cellular activities of the malaria parasites,
compounds that can inhibit the conjugation reaction (i.c.
inhibitors of PfAtg7 or PfAtg3) would be promising therapeutic
tools.

P. falciparum contains the class III PtdIns 3-kinase Vps34
(Figure 1A) and PtdIns 3-phosphate is present on both the food
vacuole and the apiocoplast membrane [30]. As the Atg8 system
functions downstrcam of the PtdIns 3-kinase complex in starva-
tion-induced autophagy in both yeast and mammals [9,10], we
speculated that association between PfAtg8 and the apicoplast
membrane could depend on PtdIns 3-kinase activity. However, we
observed that treatment of P. falciparum with wortmannin did not
affect the localization of PfAtg8 (Figurc 5B). Recently, it was
reported that LG3 (a mammalian Atg8) can associate with
membranes even in the absence of upstream Atg factors such as
the ULK1/Atg] complex, Atg9, and PtdIns 3-kinase activity in
some types of selective autophagy such as xenophagy against
Salmonella [37] and Parkin-mediated mitophagy [58]. Nonetheless,
the membrane association with LC3 still depends on the two
ubiquitin-like LC3 and Atgl2 conjugation systems. Therefore, it is
possible that the PfAtg8 conjugation system has a unique function,
which is independent of most other Atg proteins.

Merge

Figure 4. PfAtg8 localizes to tubular and branched apicoplasts. P. falciparum transfectant expressing ACP-GFP at late trophozoite and early
schizont stages was stained with anti-GFP and anti-PfAtg8 antibodies and MitoTrackerRed CMXRos, and visualized by confocal microscopy. Scale bar,

1 pm.
doi:10.1371/journal.pone.0042977.g004
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Figure 5. PfAtg8 localization is not affected by chloroquine or wortmannin treatment. P. falciparum transfectant expressing ACP-GFP was
treated with chloroguine (100 or 300 nM) (A), or wortmannin {10 pM) (B) for 2 h. Scale bar, 1 pm.
doi:10.1371/journal.pone.0042977.g005

Another interesting issue is the requirement of the Atgl2 PrAtg12 lacks the C-terminal glycine residue (Figure S2), which is
conjugation system. In the autophagy pathway, the Atg8/LC3 essential for formation of an isopeptide bond with Atg3. An
conjugation reaction requires an E3-like activity of the Atgl2-  attractive hypothesis is that PfAtgl2 alone may have E3-like
Atgd conjugate both in yeast and mammals [59,60]. However, activity without Atg3, although the P. falciparum genome contains a

Figure 6. PfAtg8 is associated with the apicoplast membrane. (A) P. falciparum FCR3 parasites at the schizont stage were analyzed by
immunoelectron microscopy (immunogold and silver enhancement method) with an antibody against PfAtg8 (#1). (a) A schizont in an erythrocyte.
(b) A magnified image of the area indicated in (a). (c) Another typical image of a PfAtg8-positive structure. (B) P. falciparum transfectant expressing
ACP-GFP was analyzed as in panel (A) with an antibody against GFP. A, apicoplast; Mt, mitochondrion. Scale bars, (A, a) 1 pm, (A, b and ¢, and B)
200 nm.

doi:10.1371/journal.pone.0042977.g006
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gene encoding a potential Atg5 homolog (Figure S1). The gene,
PF14 0283 encodes an 863-amino acid (aa) protein that is much
larger than yeast (294 aa) and human Atg5 (275 aa). Because of the
presence of a number of insertion sequences, it is important to
examine whether this Atg5 candidate is a functional Atg5 ortholog
that should conjugate and collaborate with PfAtgl2 in the
organism. Further understanding the roles of Atg8 and Atgl2 in
Plasmodium will provide a general insight into the functions of Atg
proteins even in the autophagy pathway.

Materials and Methods

Parasite culture

P. falciparum strain FCR3 was cultured in human B erythrocytes
as described [61]. In some subcellular localization experiments,
the 3D7 parasite strain transfected with pSSPF2/GFP-ACP was
used; the transfectant was cultured in the standard culture medium
supplemented with 5 nM WR99210 [33]. Where indicated,
chloroquine (Sigma-Aldrich) was added to the culture medium.
For synchronizing the culture, the red blood cells infected by the
late stage schizont were recovered from asynchronous culture by
60% Percoll (GE healthcare) density centrifugation at 2000 xg for
20 min. After 4 h the culture was treated with 5% D-sorbitol [62],
yielding parasites tightly synchronized in the early ring stage (0—
4 h after parasite invasion of the erythrocyte).

Cloning of PfAtg8 cDNA and generation of anti-PfAtg8
antibodies

RNA extraction and ¢cDNA synthesis were carried out as
described previously [63,64]. GST-fused PfAtg8 recombinant
protein was generated using a wheat germ cell-free system [65].
Two independent anti-PfAtg8 antisera (#1 and #2) were raised in
two New Zealand white rabbits and the antibodies were purified
using GST-PfAtg8 recombinant protein. Animal experimental
protocols were approved by the Institutional Animal Care and Use
Committee of Tokyo Medical and Dental University (No.
0110115A).

Immunoblotting

Parasites were collected from erythrocytes by treatment with
0.15% saponin (Sigma) in phosphate-buffered saline (PBS) with
Complete Protease Inhibitor cocktail (Roche Applied Science),
washed three times in PBS and lysed in sample buffer. Parasite
extracts were loaded onto 13.5% SDS gel and transferred to a
PVDF membrane. Blots were blocked with 5% skim milk in Tris-
buffered saline with 0.01% Tween 20 (TBST) and stained with
primary antibodies overnight at 4°C. The following primary
antibodies were used: rabbit anti-PfAtg8 and mouse monoclonal
anti-PfHSP70 antibodies (1:100) [66,67]. After washing with
TBST, blots were stained with HRP-conjugated secondary
antibodies and visualized with SuperSignal West Pico Chemilu-
minescent substrate (Thermo Fisher Scientific).

Subcellular fractionation

Asynchronous parasites were harvested as described above.
Parasite pellets were disrupted by three cycles of freezing/thawing
in MSE buffer (225 mM mannitol, 75 mM sucrose, 0.1 mM
EDTA, and 3 mM Tris-HCl [pH 7.4]). Cell debris and intact
erythrocytes were removed by centrifugation at 800 xg for 5 min.
The supernatant was spun at 13,000 xg for 15 min to separate the
LSP, and the supernatant was centrifuged again at 100,000 xg for
60 min to generate the high-speed pellet (HSP) and high-speed
supernatant (HSS). The LSP and HSP were resuspended in the
same buffer. To analyze solubility, each sample was incubated
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with 2 M urea or 2% Triton X-100 on ice for 1 h, and then
centrifuged at 100,000 xg for 1 h. The samples were precipitated
with ice-cold acetone, resuspended in SDS-PAGE sample buffer,
and analyzed by SDS-PAGE.

Expression of PfAtg8 in mammalian cells

PfAtg8 cDNA was inserted into a pCl-neo mammalian
expression plasmid (Promega) and transfected into HEK293T
cells [68] using Lipofectamine 2000 reagent (Invitrogen). Total cell
lysates were subjected to SDS-PAGE and immunoblot analysis.

Immunofluorescence microscopy

Parasite thin blood smears were fixed with 4% paraformalde-
hyde/PBS for 10 min and samples were permealized with 0.1%
Triton X-100/PBS for 15 min. After blocking with 3% bovine
serum albumin/PBS for 1 h, samples were incubated with primary
and secondary antibodies for 2 h and 1 h, respectively. The
smears were mounted with Prolong Gold (Invitrogen). All
reactions were carried out at room temperature. Samples were
observed with a confocal laser microscope (FV1000D IX81,
Olympus) using a 60x PlanApoN oil immersion lens (1.42 NA;
Olympus). The following primary antibodies were used: purified
rabbit anti-PfAtg8 (1:200 for #1, and 1:100 for #2) antibody,
mouse anti-apical membrane antigen (AMA)1 (1:500) [67], anti-
rhoptry-associated protein 1 (RAPI, 1:200) [67], anti-rhoptry neck
protein 2 (RON2, 1:200) [69], and anti-ring-infected erythrocyte
surface antigen (RESA) (23/9, 1:200) [70] antibodies, rabbit anti-
PHU (organellar histone-like protein) antibody [34], and rat anti-
GFP antibody (Nacalai Tesque). For visualizing the mitochondri-
on, parasites were preincubated for 30 min with complete culture
medium containing 100 nM MitoTracker Red CMXRos (Molec-
ular Probes).

Immunoelectron microscopy

Mature schizont stage parasites were enriched from synchro-
nous culture using MACS 25LD columns (MiltenyiBiotec) as
previously described [71]. For immunoelectron microscopy of P.
Jalciparum, the previously described pre-embedding silver enhance-
ment immunogold method [72] was used with slight modifications.
The parasitized erythrocytes were fixed in 4% paraformaldehyde
and 0.0075% glutaraldehyde dissolved in 0.1 M sodium phos-
phate buffer (PB) (pH 7.4) for 2 h and then washed three times
with PB. Then the cells were permeabilized in liquid nitrogen and
cubated in a blocking buffer containing 0.005% saponin, 10%
goat serum, 0.1% cold water fish gelatin, and 10% bovine serum
albumin for 30 min, and reacted with rabbit anti-PfAtg8 (#1) or
rat monoclonal anti-GFP (IgG2a, Nacalai Tesque #04404-84) in
blocking buffer at 4°C overnight. Next the cells were washed in PB
containing 0.005% saponin and incubated with goat anti-rabbit
IgG or anti-rat IgG conjugated with colloidal gold (1.4-nm
diameter, Nanogold, Nanoprobes) in blocking buffer for 2 h at
room temperature. Cells were washed five times with PB
containing 0.005% saponin for 10 min, washed with PB for
5 min, and fixed with 1% glutaraldehyde for 10 min. After
washing, the gold partiles were intensified using a silver
enhancement kit (HQ silver, Nanoprobes) for 6 min at 20°C in
the dark. After washing in distilled water, the cells were post-fixed
with 0.03% OsO, for 15 min at 4°C. After washing with PB, cells
were resuspended in 2% gelatin (Sigma) and pelleted again.
Microcentrifuge tubes were plunged into ice-cold water to quickly
solidify the gelatin with the cells. The tip of the tube was cut open
and the cell pellets were retrieved into 15% ethanol, and cut into
1-mm® blocks. The blocks were suspended and dehydrated with a
graded series of ethanol concentrations, and embedded in epoxy
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resin. Ultrathin sections were doubly stained with uranyl acetate
and lead citrate and observed using a Hitachi H7100 electron
microscope.

Supporting information

Figure S1 Sequence alignment of Atgd homologs. Align-
ment of the sequences of . cerevisiae Atg5, H. sapiens Atg5 and P.
Jaleiparum Atg5. Asterisk (¥) shows the position of the Lys residue
that receives Atgl2 conjugation in yeast and human. This Lys is
conserved in PfAtg5.

(TIF)

Figure S$2 Sequence alignment of Atgl2 homologs.
Alignment of the sequences of S. cerevisiee Atgl2, H. sapiens
Atgl2 and P. falciparum Atgl2. Asterisk (*) shows the C-terminal
Gly residue essential for conjugation with Atgd in yeast and
human. PfAtgl2 lacks this Gly residue.

(TIF)
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Plasmodium cynomolgi genome sequences provide insight
into Plasmodium vivax and the monkey malaria clade

Shin-Ichiro Tachibana®>!3, Steven A Sullivan?, Satoru Kawai®, Shota Nakamura*, Hyunjae R Kim?,

Naohisa Goto*, Nobuko Arisue®, Nirianne M Q Palacpac®, Hajime Honma'!»*, Masanori Yagi®, Takahiro Tougan®,
Yuko Katakai, Osamu Kaneko?, Toshihiro Mita®, Kiyoshi Kita®, Yasuhiro Yasutomi'?, Patrick L Sutton?,

Rimma Shakhbatyan?, Toshihiro Horii®, Teruo Yasunaga®, John W Barnwell!!, Ananias A Escalante!2,

Jane M Carlton®!* & Kazuyuki Tanabel->14

P. cynomolgi, a malaria-causing parasite of Asian Old World
monkeys, is the sister taxon of P. vivax, the most prevalent
malaria-causing species in humans outside of Africa. Because
P. cynomolgi shares many phenotypic, biological and genetic
characteristics with P. vivax, we generated draft genome
sequences for three P. cynomolgi strains and performed
genomic analysis comparing them with the P. vivax genome,
as well as with the genome of a third previously sequenced
simian parasite, Plasmodium knowlesi. Here, we show that
genomes of the monkey malaria clade can be characterized by
copy-number variants (CNVs) in multigene families involved
in evasion of the human immune system and invasion of host
erythrocytes. We identify genome-wide SNPs, microsatellites
and CNVs in the P. cynomolgi genome, providing a map of
genetic variation that can be used to map parasite traits and
study parasite populations. The sequencing of the P. cynomolgi
genome is a critical step in developing a model system for

P. vivax research and in counteracting the neglect of P. vivax.

Human malaria is transmitted by anopheline mosquitoes and is
caused by four species in the genus Plasmodium. Of these, P, vivax is
the major malaria agent outside of Africa, annually causing 80-100
million cases!. Although P, vivax infection is often mistakenly regarded
as benign and self-limiting, P vivax treatment and control present
challenges distinct from those of the more virulent Plasmodium
falciparum. Biological traits, including a dormant (hypnozoite) liver
stage responsible for recurrent infections (relapses), early infective
sexual stages (gametocytes) and transmission from low parasite

densities in the blood?, coupled with emerging antimalarial drug
resistance’, render P vivax resilient to modern control strategies.
Recent evidence indicates that P, falciparum derives from parasites of
great apes in Africa?, whereas P, vivax is more closely related to para-
sites of Asian Old World monkeys®~7, although not itself infective of
these monkeys.

P, vivax cannot be cultured in vitro, and the small New World mon-
keys capable of hosting it are rare and do not provide an ideal model
system. P. knowlesi, an Asian Old World monkey parasite recently
recognized as a zoonosis for humans?, has had its genome sequenced®,
but the species is distantly related to P, vivax and is phenotypically
dissimilar. In contrast, P. cynomolgi, a simian parasite that can infect
humans experimentally'?, is the closest living relative (a sister taxon)
to P vivax and possesses most of the same genetic, phenotypic and bio-
logical characteristics—notably, periodic relapses caused by dormant
hypnozoites, early infectious gametocyte formation and invasion of
Duffy blood group-positive reticulocytes. P. cynomolgi thus offers a
robust model for P. vivax in a readily available laboratory host, the
Rhesus monkey, whose genome was recently sequenced!!. Here, we
report draft genome sequences of three P. cynomolgi strains and com-
parative genomic analyses of P cynomolgi, P vivax'? and P. knowles?®,
three members of the monkey malaria clade.

We sequenced the genome of P cynomolgi strain B, isolated from a
monkey in Malaysia and grown in splenectomized monkeys (Online
Methods). A combination of Sanger, Roche 454 and Illumina chem-
istries was employed to generate a high-quality reference assembly at
161-fold coverage, consisting of 14 supercontigs (corresponding to the
14 parasite chromosomes) and ~1,649 unassigned contigs, comprising
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