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In accordance with our hypothesis regarding an
association between MMPs and RV antigenemia, a
positive correlation was identified between MMP-9
and RV antigenemia, while a reverse correlation was
found between MMP-2 and RV antigenemia. These
data suggest that these two MMPs have important
roles in the pathogenesis of RV antigenemia. Since it
has been suggested that the level of RV antigenemia
is associated with disease severity [Ramani et al,,
2010], an association between the serum MMPs
concentrations and disease severity should be ana-
lyzed in a future study. Additionally, it is important
to elucidate which cells are responsible for the local
production of the MMPs in RV gastroenteritis, and
the regulatory mechanisms for their production.
Epithelial cells or infiltrating mucosal lymphocytes
have been suggested to synthesize MMP-9 and MMP-
2 in inflamed tissues [Castaneda et al., 2005]. As it is
difficult to obtain biopsy specimen from RV gastroen-
teritis patients, pathological analysis of RV infected
animals would be helpful to determine which cells in
the intestinal tissue secret the MMPs. Since MMPs
knockout mice have been useful to analyze role of
MMPs in the pathogenesis of IBD [Garg et al., 2006;
Munoz et al., 2009], we propose similar experiments
to test our hypothesis.

The enzymatic activity of MMPs is controlled by
TIMPs [Brew and Nagase, 2010]. Thus, the balance of
MMPs and TIMPs within the tissue may be important
for the regulation of local tissue damage. Two TIMPs
(TIMP-1 and TIMP-2) were investigated in this study.
TIMP-1 concentrations were found to be similar in
patients with RV gastroenteritis and healthy controls.
Meanwhile, TIMP-2 concentrations in RV gastroenter-
itis patients were significantly increased at the time
of admission and discharge compared to healthy con-
trols suggesting that TIMP-2 might be important for
the pathogenesis of RV antigenemia. Although TIMP-
1 concentration has been shown to increase in IBD
patients [Louis et al., 2000; Arihiro et al., 2001; Wier-
cinska-Drapalo et al., 2003; Kapsoritakis et al., 2008],
it has been demonstrated that TIPM-2 concentration
remained normal in these patients [Kapsoritakis
et al., 2008]. Thus, TIMPs expression may be differen-
tially regulated in RV infection and IBD.

As several cytokines and chemokines have been
suggested to be associated with upregulation of MMPs
synthesis [Lotz and Guerne, 1991; Saren et al., 1996;
Kusano et al., 1998], the correlation between serum
cytokine concentrations and MMP-9 or MMP-2 was
analyzed in this study. Although many reports have
demonstrated a positive correlation between TNF-a
and MMP synthesis [Pender et al.,, 1997; Pender
et al., 1998; Louis et al., 2000], no remarkable associa-
tion between these two biomarkers was found in the
present study. It has been suggested that RV infection
activates dendritic cells in Peyer’s patches resulting
in upregulation of TNF-a expression [Lopez-Guerrero
et al., 2010]. Therefore, an association between locally
produced MMP and TNF-a should be examined to
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elucidate the precise role of TNF-«a in the regulation
of MMPs in RV infection. Meanwhile, significant posi-
tive association between IL-6 and MMP-9 was identi-
fied. It has been suggested that IL-6 released from
fibroblasts was responsible for secretion of MMP-9
from dendritic cells in in vitro dermal microenviron-
ment model [Saalbach et al., 2010]. Similar patho-
physiological mechanisms should be evaluated in the
intestinal tissue of RV gastroenteritis patients.

In conclusion, these results suggest that MMP-9
and MMP-2 play important role in causing RV antige-
nemia as factors for attack and protection, respective-
ly. Additionally, TIMP-2 might be important for the
pathogenesis of RV antigenemia as a controller of
MMPs. However, no other cohort such as Norovirus
gastroenteritis patients was included in this study,
further cohorts analysis is necessary to determine
whether kinetics of MMPs and TIMPs were specific
for RV gastroenteritis or not.
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Whole-genomic analysis of a human G1P[9]
rotavirus strain reveals intergenogroup-
reassortment events
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Group A rotavirus (RVA) strain K8 (RVA/Human-tc/JPN/K8/1977/G1P[9]) was found to have
Wa-like VP7 and NSP1 genes and AU-1-like VP4 and NSP5 genes. To determine the exact
origin and overall genetic makeup of this unusual RVA strain, the remaining genes (VP1-VP3,
VP6 and NSP2-NSP4) of K8 were analysed in this study. Strain K8 exhibited a G1-P[9]-11-R3-
C3-M3-A1-N1-T3-E3-H3 genotype constellation, not reported previously. The VP6 and NSP2
genes of strain K8 were related closely to those of common human Wa-like G1P[8] and/or
G3P[8] strains, whilst its VP1-VP3, NSP3 and NSP4 genes were related more closely to those
of AU-1-like RVAs and/or AU-1-like genes of multi-reassortant strains than to those of other
RVAs. Therefore, strain K8 might have originated from intergenogroup-reassortment events
involving acquisition of four Wa-like genes, possibly from G1P[8] RVAs, by an AU-1-like P[9]
strain. Whole-genomic analysis of strain K8 has provided important insights into the complex

Accepted 14 May 2012 genetic diversity of RVAs.

Group A rotaviruses (RVAs) are a major cause of severe
childhood diarrhoea (Cashman et al, 2012; Estes &
Kapikian, 2007). To date, RVAs are classified into at least
27 G and 35 P genotypes on the basis of differences in the
nucleotide sequences of their outer-capsid VP7- and VP4-
encoding genes, respectively (Matthijnssens et al., 2011a).
In humans, G1, G2, G3, G4 or G9 strains in conjunction
with P[4], P[6] or P[8] have been reported widely, whilst
G12 is emerging as an important VP7 genotype (Matthijnssens
et al., 2009, 2010a; Santos & Hoshino, 2005).

By RNA-RNA hybridization, human RVAs have pre-
viously been classified into at least two major genogroups,
represented by reference strains RVA/Human-tc/USA/
Wa/1974/G1P1A[8] and RVA/Human-tc/USA/DS-1/1976/
G2P1B[4], and one minor genogroup, represented by strain
RVA/Human-tc/JPN/AU-1/1982/G3P3[9] (Nakagomi et al.,
1989). Recently, a whole genome-based genotyping system
has been accepted as the standard method for classification
of RVAs by researchers worldwide (Matthijnssens et al,
2008a, b, 2011a). Applying this classification system, the

The GenBank/EMBL/DDBJ accession numbers for the nucleotide
sequences of the VP1-VP3, VP and NSP2-NSP4 genes of rotavirus
strain  RVA/Human-tc/JPN/K8/1977/G1P[9] are  JQ713645-
JQ713651, respectively.

Two supplementary figures are available with the online version of this
paper.

VP1-VP3, VP6 and NSP1-NSP5 genes of most human RVA
strains with different G and P genotypes were found to
exhibit an RVA strain Wa-like (designated genotypes R1,
C1,M1,11, A1, N1, T1, E1 and H1) or DS-1-like (designated
genotypes R2, C2, M2, 12, A2, N2, T2, E2 and H2) genotype,
whilst a limited number of strains possessed genes of the
AU-1-like (designated genotypes R3, C3, M3, I3, A3, N3, T3,
E3 and H3) genotype (Ghosh & Kobayashi, 2011; Heiman
et al., 2008; Matthijnssens, et al., 2008a, b, 2011a). Results
obtained using this genotyping system concurred with
the previous classification of human RVA strains into the
three RVA genogroups (Wa, DS-1 and AU-1) (Ghosh &
Kobayashi, 2011; Matthijnssens et al, 2008a, b). Human
RVA strains possessing mixed genotype constellations have
been also reported (Ghosh & Kobayashi, 2011).

RVA GIP[9] is an uncommon VP7-VP4 genotype com-
bination, reported in RVA strains from humans and
environmental samples (Matthijnssens et al., 2009; Villena
et al., 2003). The first G1P[9] RVA strain, RVA/Human-tc/
JPN/K8/1977/G1P[9], was detected in a diarrhoeal stool
sample collected from a 14-year-old child in the city of
Kitami, Hokkaido prefecture, Japan, in 1977 (Urasawa et al.,
1984). Since then, only a few human GI1P[9] RVA strains
have been reported, from Brazil, Burkina Faso, China, Italy,
South Korea and Spain (Bonkoungou ef al., 2011; Fang et al.,
2002; Grassi et al., 2012; Le et al, 2008; Leite et al, 1996;
Santos et al., 2003; Villena et al., 2003).
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Whole-genomic analyses of atypical RVA strains are
essential to obtain conclusive data on their true origin
and evolution (Ghosh & Kobayashi, 2011; Matthijnssens
et al., 2008a, b). However, to date there are no reports on
the whole-genomic analysis of the unusual G1P[9] RVA
strains. RNA-RNA hybridization studies involving a single
G1P[9] strain, K8, pointed towards possible intergenogroup-
reassortment events (Nakagomi et al, 1992). By partial
genomic analysis, strain K8 was found to possess Wa-like
VP7 and NSPI1 genes and AU-1-like VP4 and NSP5 genes
(Kojima et al., 1996; Matthijnssens et al., 2008b; Taniguchi et
al., 1989; Wu et al., 1998). Therefore, to gain insights into
the exact origin and overall genetic makeup of a G1P[9] RVA
strain, the remaining seven genes (VP1-VP3, VP6 and NSP2—
NSP4) of strain K8 were analysed in the present study.
Moreover, only a few RVA gene sequences were available
during analyses of the NSP1 and NSP5 genes of strain K8 in
previous studies (Kojima ef al, 1996; Wu et al, 1998),
prompting us to repeat phylogenetic analyses of these genes
with a larger number of RVA strains.

Human G1P[9] strain K8 was isolated successfully by tissue
culture in MA-104 cells in our laboratory (Urasawa et al,
1984) and stored at —80 °C until further analysis. Primers
used for the amplification of the VP1-3, VP6 and NSP2—4
genes of strain K8 have been described previously (Ghosh
et al., 2010a, b, 2011; Wang et al, 2010). RT-PCR, nucleo-
tide sequencing and sequence analysis were carried out as
described previously (Ghosh ef al, 2011). Phylogenetic trees
were constructed by the neighbour-joining method (Saitou
& Nei, 1987) using MEGA (v5.01) software (Tamura et al,

2011). The trees were statistically supported by boot-
strapping with 1000 replicates, and phylogenetic distances
were measured by the Kimura two-parameter model.

The VP4, VP7, NSP1 and NSP5 genes of RVA strain K8
were shown previously to belong to the P[9], G1, Al and
H3 genotypes, respectively (Matthijnssens et al., 2008b). In
the present study, based on nucleotide sequence identities
and phylogenetic analyses of the nearly full-length
nucleotide sequences (minus the 5'- and 3'-end primer
sequences), the VP1-VP3, VP6 and NSP2-NSP4 genes of
strain K8 were assigned to the R3, C3, M3, 11, N1, T3 and
E3 genotypes, respectively (Table 1; Fig. 1). Therefore,
strain K8 exhibited a G1-P[9]-11-R3-C3-M3-A1-N1-T3-E3-
H3 genotype constellation, not reported previously. Four
of the 11 genotypes (G1, 11, Al and N1) of K8 were closely
related genomically to those of the Wa-like RVAs, whilst its
remaining seven genotypes were AU-1-like, revealing a
mixed genotype constellation (Table 1). The Wa-, DS-1- or
AU-1-like genogroup is assigned to a human RVA strain if
at least seven gene segments belong to the respective Wa-,
DS-1-, or AU-1-like genotype (Matthijnssens et al., 2008a).
Therefore, strain K8 was assigned to the AU-1 genogroup.

The VP1 gene of strain K8 shared low nucleotide sequence
identities (maximum nucleotide sequence identity of
89.9% with strain RVA/Human-tc/THA/T152/1998/
G12P[9], followed by 89.5 % with strain AU-1) with those
of other RVAs, and phylogenetically, it clustered separately,
near strain AU-1, AU-1-like G12 strain T152 (Matthijnssens
et al., 2008a, b; Rahman er al., 2007) and strain RVA/

Table 1. Genotype nature of the 11 gene segments of RVA strain K8 compared with those of selected RVA strains with known

genomic constellations

Bold type indicates gene segments with a genotype identical to that of strain K8; — indicates that no sequence data were available in GenBank.

Strains K8, Wa and AU-1 are underlined.

Strain VP7 VP4 VP6 VPl VP2 VP3 NSP1 NSP2 NSP3 NSP4 NSP5
RVA/Human-tc/JPN/K8/1977/G1P[9] Gl P[9] 11 R3 C3 M3 Al N1 T3 E3 H3
RVA/Human-tc/USA/Wa/1974/G1P1A[8] Gl P[8] I1 R1 Cl Ml Al N1 T1 El H1
RVA/Human-wt/BEL/BE00097/2009/G1P[8] Gl P[8] ] RI Cl Mt Al N1 Tl El Hi
RVA/Human-wt/USA/DC1505/1976/G3P[8] G3  P[8] 11 R1 c1 Ml Al N1 Tl El Hi
RVA/Human-tc/JPN/AU-1/1982/G3P3[9] G3 P[9] 13 R3 C3 M3 A3 N3 T3 E3 H3
RVA/Cat-wt/JPN/FRV1/1985/G3P[9] G3  P[9] - - - - - - - E3 -
RVA/Human-tc/ITA/PA260-97/1997/G3P[3]  G3  P[3] 13 R3 C3 M3 Al5 N2 T3 E3 H6
RVA/Human-tc/USA/HCR3A/1984/G3P[3] G3 P[3] I3 R3 C2 M3 A9 N2 T3 E3 Hé
RVA/Cat-tc/AUS/Cat97/1984/G3P[3] G3 P[3] 13 R3 C2 M3 A9 N2 T3 E3 Heé
RVA/Dog-tc/AUS/K9/1981/G3P[3] G3  P[3] 3 R3 C2 M3 A9 N2 T3 E3 Hé6
RVA/Simian-tc/USA/RRV/1975/G3P[3] G3 P[3] 12 R2 C3 M3 A9 N2 T3 E3 H6
RVA/Cat-wt/ITA/BA222/2005/G3P[9] G3 P[9] 12 R2 C2 M2 A3 N1 T3 E2 H3
RVA/Cat-tc/AUS/Cat2/1984/G3P[9] G3 P[9] 13 R3 C2 M3 A3 N1 T6 E3 H3
RVA/Human-wt/THA/CMH120/2004/G3P[9] G3  P[9] I3 - - - - - - E3 -
RVA/Human-wt/THA/CMH134/2004/G3P[9] G3 P[9] I3 - - - - - - E3 -
RVA/Rhesus-tc/USA/TUCH/2002/G3P[24] G3  P[24] I9 R3 C3 M3 A9 N1 T3 E3 He
RVA/Human-wt/JPN/KF17/2010/G6P[9] G6  P[9] 2 R2 C M2 A3 N2 T3 E3 H3
RVA/Human-tc/THA/T152/1998/G12P[9] Gl12  P[9] I3 R3 C3 M3 A2 N3 T3 E3 H3
http://vir.sgmjournals.org 1701
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() vP1 (b) VP2
RVA/Cat-tc/AUS/Cat97/1984/G3P[3] ™ 100 RVA/Human-tc/THA/T152/1998/G12P[9]
RVA/Human-1o/ISR/Ro1 845/1986/GaP[3] 100 RVA/Human-tc/ITA/PA260-97/1997/G3P(3]
RVA/Cat-tc/AUS/Cat2/1984/G3P[o] R‘A’; ';‘/‘X;‘:““C’ JZN/{’ ’;L;“/L’s‘ffﬁi’ gé'?gfg}] ca
RVA/Dog-tc/ITA/RV198-95/1995/G3P(3] /ruman-te;
RVA/Dog-to/ITA/RVE2-06/1 995/G3P(3] 00 RVA/Simian-tc/USA/RRV/19756/G3P[3]
RVA/Dog-tc/USA/CU-1/1082/G3P[3] RVA/Rhesus-tc/USA/TUCH/2002/G3P[24]
RVA/Human-tc/USA/HCR3A/1984/G3P[3] >, RS
RVA/Dog-tc/IUSA/A79-10/1979/G3P[3] 0.05
RVA/Dog-tc/IAUS/KO/1981/G3P[a]
RVA/Rhesus-tc/USA/TUCH/2002/GaP[24] (d) vPe A
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Fig. 1. Phylogenetic analyses of the VP1-VP3, VP6 and NSP2-NSP4 genes (a—g, respectively) of rotavirus strain RVA/Human-
tc/JPN/K8/1977/G1P[9]. Although strains representing all RVA genotypes were included in the phylogenetic analyses, only those
relevant to the present study are shown. Within the 11 and N1 genotypes, clade(s) consisting of strains that are not directly related
to the present study, but were included for unbiased analysis, have been compressed and labelled as subcluster(s). In all trees, the
position of strain K8 is highlighted by ®. Bootstrap values >85 % are shown. Bar, 0.05 substitutions per nucleotide.
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Human-tc/ITA/PA260-97/1997/G3P[3] [a reassortant
between RVAs of the AU-1-like and Cat97-like genogroups
(Matthijnssens ef al., 2011b)] (Fig. 1a). Strain K8 exhibited
maximum nucleotide sequence identity of 92.1% to the
AU-1-like VP2 gene of simian strain RVA/Simian-tc/USA/
RRV/1975/G3P[3} (Matthijnssens et al, 2010b), followed
by identities of 89.0 and 88.9 % to those of strains AU-1
and TI152, respectively. Phylogenetically, strain K8 clus-
tered near strain RRV within the VP2-C3 genotype (Fig.
1b). The VP3 gene of strain K8 was related more closely to
that of strain AU-1 (nucleotide sequence identity of
95.8 %) than to those of other RVAs (nucleotide sequence
identities of <<88 %) (Fig. 1c). The VP6 and NSP1 genes of
K8 were related closely (nucleotide sequence identities of
99 %) to those of the common human Wa-like G3P[8]
RVA strains detected in the USA in 1976 (Fig. 1d; Fig. S1,
available in JGV Online). The NSP2 gene of K8 shared
nucleotide sequence identities of 94-95% and clustered
phylogenetically with those of the common human Wa-
like G1P[8] RVA strains (Fig. le).

The NSP3 gene of strain K8 was related more closely
(nucleotide sequence identities of 96.0, 95.9 and 95.6 %,
respectively) to those of strains AU-1, RVA/Cat-wt/ITA/
BA222/2005/G3P[9] (a multi-reassortant strain derived
from human, canine/feline, and bovine or bovine-like
human RVAs) (Martella et al., 2011) and RVA/Human-wt/
JPN/KF17/2010/G6P[9] (a reassortant between bovine-like
human and AU-1-like RVAs) (Yamamoto et al., 2011) than
those of other RVA strains (nucleotide sequence identities
of <88 %) (Fig. 1f). The NSP4 gene of strain K8 exhibited
high nucleotide sequence identities of 97.9, 97.5, 96.7, 96.7
and 96.5 % to those of lapine strain RVA/Rabbit-tc/JPN/R-
2/197x/G3P[14], strain RRV, feline strains RVA/Cat-wt/
JPN/FRV384/1993/G3P3[9], RVA/Cat-wt/JPN/FRV381/1993/
G3P3[9] and RVA/Cat-wt/JPN/FRV317/1993/G3P3[9], res-
pectively, and clustered phylogenetically with strains R-2
and RRYV, close to strains FRV384, FRV381 and FRV317,
within the NSP4-E3 genotype (Fig. 1g). The NSP5 gene of
strain K8 formed a separate cluster with strain AU-1 and two
other human P[9] RVA strains from Japan within the NSP5-
H3 genotype (Fig. S2).

Taken together, the VP6, VP7, NSP1 and NSP2 genes of
strain K8 were related closely to those of common human
Wa-like G1P[8] and/or G3P[8] strains, whilst its VP1-VP4
and NSP3-NSP5 genes were related more closely to those of
AU-1-like RVAs and/or AU-1-like genes of multi-reassor-
tant RVA strains than those of other RVAs. Therefore,
human G1P[9] RVA strain K8 might have originated from
intergenogroup-reassortment events involving acquisition
of four Wa-like gene segments, possibly from G1P[8] RVAs,
by an AU-1-like P[9] strain.

Human AU-1-like strains are believed to be derived from
feline/canine RVAs, as revealed by RNA-RNA hybridiza-
tion studies (Nakagomi & Nakagomi, 1989). Among the
AU-1-like genes of strain K8, the NSP4 gene was possibly
derived from co-circulating feline RVAs (Fig. 1g).

Phylogenetically, the VP1, VP3 and NSP3 genes appeared
to share a common ancestry with those of typical feline/
canine RVAs (Fig. la, ¢, f). The VP4 gene belonged to the
same genotype as those of the feline G3P[9] RVAs, such as
strains RVA/Cat-wt/JPN/FRV1/1985/G3P3[9], FRV-317,
FRV381 and FRV384 from Japan. On the other hand, the
VP2 and NSP5 genes appeared to be genetically distinct
from those of the typical canine/feline RVAs (Table 1; Fig.
1b; Fig. S2). Moreover, phylogenetically, the NSP5 gene of
strain K8 (and AU-1) appeared to share a common
ancestry with those of artiodactyl and artiodactyl-like
human strains (Fig. S2). Therefore, whole-genomic ana-
lyses of more AU-1-like human and typical canine/feline
RVAs may be required to obtain conclusive data on the
overall genetic relatedness between these RVAs, and with
RVAs from other host species.

In conclusion, whole-genomic analysis of human RVA
G1P[9] strain K8 provided important insights into the
complex genetic diversity and evolutionary patterns of
human RVAs. RVAs arising from intergenogroup-reassort-
ment events, such as strain K8, are believed to be selected
against in nature (McDonald er al., 2009), as evident from
the detection of only a few G1P[9] RVA strains in the last
three and a half decades since the isolation of strain K8.
However, compared with the high rates of detection of
RVAs in humans, to date only a limited number of human
RVA strains have been analysed for their whole genomes.
Therefore, large-scale whole genome-based surveillance
studies may be required to elucidate the actual frequency of
RVA intergenogroup-reassortment events occurring under
natural conditions, and to monitor the stability of RVA
strains arising from such events. To our knowledge, the
present study is the first report on the whole-genomic
analysis of an intergenogroup-reassortant G1 RVA strain.
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BRSO o L E iz Ty AN AN BIEBT8EE R
B, AL BITHMEET ) T LIRS v, FRLZBERYANATH L, BIHEEICITL
UL, FEBROBRBE T, BE~0FRIE BYERERNHEICBY T, £EH 3,000
WG E R ), RELRAEREERMCE, AREEE O WS SN 5 5 BRSO Bk
K DICARMAESNS 5 WIGRNEE RO BRI 1I~12 AB X0 2~4 AicgtdE
BlErobAHAEHIEONL 20, DATE DY~ 2B L, WHEAENZER T, EX
TIRMEBEF v PR EN TS, 2, DRy 10% O HIE I 1B v TR AR A A
AET ¥ 7 A VAT 7 F B ER, D fibh, gilic/ a4 VA, BRIy YA
THTTICMA SN, HYEOFMOY VARELCKRBENLTYEY, hAEONER
WEARZOY—XA 5 YV AREHTITDbRT  RicBwT, w4 VAR EEBH s
" NSER A R VRR EREEHCTIVFTV 7 72 - K AT
T 700-8505 AL R 2-1-60 Ll fOE  (multiplex polymerase chain reac-
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&1 MRIEBTIREBREROEEY VA

T1 A% L7 4 EE (%)” AEZBEFY N | DOFY
A& ILA RNA 17~20 HY) HY)
JagAILA RNA 16~18 HY) &L
7T IAINA DNA 2~5 Hh) L
YRIA LA RNA 3~4 &L &L
FAMATAILA RNA 0~2 &L wL
[l VA W Ly & 9 [V § RNA 0~5 Bz ZL
ErRDTAIK DNA 0~1 "L =L

* L OPEDNRRNREZE L BREEBRBERED SREES NIV N ADSEE

tion) ETY A4 W AKRBELZRALHETIZ,
Q¥4 NVAR, JOI94 VR, TF)I74IVA
DIFIZZ L AbNiz. ZHEDOWTN D IHEDS
Bidy ML 2REZHATRETHS (Juy
AN AZRERBERN). MBSz
2 DHE L EEERTIORT?.

oy9 A NVRIE VETAVAROUS Y4
WABIZGEEND RNAYANVATHSL. ¥
ANWRBFIL, S8, REBIUEHNRBD 3B
BEIPOLRL, NBICERET 5 BRENHRE
VP7 (viral protein 7) 8L ' VP4 IX, #hZFh
G (glycoprotein) IiFEEI & P (protease) Efx
FHRZHEEL, GIP[8] LD X HITRKHT 5.
WATT AIERNL, FE - HBICL-TaEE
TChHH FLRBICHFET S VP6 OHLEME
DERIZIY) A~GHIZFESNE., 2055
A, B, CEMe MIBEYT 5208, TORES D
ABTHY, bPFETEENIC CHOBFEMN
HAbhb (2~3%). BHEANYIFSTFvaR
FETHE SN TWEY, bPEORERILE
‘1)1).
RBpZOEBRLHYZMLTE b MRET
5. B1gHiT 10 @ELEDY 1V AH 4
L, BEOYA NVATRENFEZLEINTY
5. BORPEIZI DL VANBENTHEEL
2, BF 1~3 HOBRKHB B TRALIE
HTHEEL, 5l&mEHEEOKRETHEZEL
3%, EOMWRICETIEBIEZS RV, R

432

(48R, 20097)

DOBGTIIREZH S EO B OB & RBRE
WCLIELITEBT 5. k%2, AR BEOD
BRI whA, BE - BED XS 2E68ER
BEG: CRREHEEEICRE L, TRY
HHBO 7 DFRPCERME, KREANTORSE
bLIELISHEL 2 5. FREEETRL,
B MR B (oral rehydration therapy : ORT)
PR, BERELR EOMNEREERIT.
F#4H1E T2 Rotarix®®B & U RotaTeq® D 2 FE3H
DERPORERT 7F VRS, 2004 4F
VREHRPCcER LooH 5. WMBREITOS
WGIPRIOMER z &G Hflic oy 4N
AT 7 F v, BEIX GIP[5], G2P[5], G3P[5],
G4P[5], G6P[8lZz &L 5Miv ¥y - b F Y
ANWARBBZERT 2 F v ThHDB, TNHDT S
FUIE, v IA VABBREBROK 80%, &
EEREOW W% ZFHTELHBESATY
5. DAEETI 2011 EICT Y v 7 ACHEHR
PRB-FFHEN, 01281 AIC3Zas Ty r°®
PR AR S huiz?,

@s

¥4 NAEBROBEZ, EFE - BKRH
B, BEOUREENLEGICHNTETSHS
B, T 5 IEAREBMALETH L. »0
TREFEMEICI 09 Y4 VAN TFZ BN
TAHRHEPFELCER S Twzas, ELISA
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(enzyme-linked immunosorbent assay) # %
I 5 v 7 A (latex agglutination assay :
LA) ZHVWTCESROTR Z Y 4 v 2HE % B
THREZE Y PALELCFHAINBE LI
o7, ELISA #:iZ 2~3 WO M e &
BRPLETDH B0, BRRBEL LEOLSHAEN
BIZRERTHBY. 208, L HRETHME
BELHiERA L 7= b (immunochroma-
tographic assay : IC) #Ex2 BV v LR
SN, bPEOBRASZTIEIERE Lo TS,
7272L, ThoOREZNBEEIZART S Y
ANVZAZBBTEHOTHY, B, CEITKRM
LBaw, CEETsY 4V AOKRBIZIE, #5%
BB LIS (reverse passive hemaggluti-
nation : RPHA) ZAw/=F v M 2T 5.

ZFoMIZ, FEEERY 25— CEHRD
(reverse transcription polymerase chain reac-
tion : RT-PCR) IR BEBRNA 7Y ¥4 -V 3
v (nucleic acid hybridization) #, KU 7 27 Y
V7 I F7FVERIWKE (polyacrylamide gel
electrophores : PAGE) #, 74 VA EEFOD
¥ — 7 v AW (sequence analysis), <V F
7Vy 7 ZAPCRE, MBEEELREOREE
2B, RT-PCRER, A, B, CHDO VP7#
B2/ 54 <—%%ELTPCR 27\, &5
IZ nested PCR 2179 2 & T G A P &z
FHOHBBWETHY, -5 AB
WTEELRBEZELZLTWS. VT 7Ly
7 X PCR #iZ, FRICEHOY 4 VA ZKH
T&, BEUHRELHELELD, A7V —
YFELTHELTWS, LHLIhb0KERE
REACKHHEZEL, ElETRLERIEIELL
Twb7:®, FECHMEN—ATITbhTw
67)8)'

(

—
.

ﬂﬁ%%#wh@ﬁﬁt%%j}

BEZEF v bliX, POCT (point of care
testing ; BEIRIAGEIIFIRE) K& h, VTN

433

P =u-S

¥4 LATEHRBICKREEZITIZLT, BEOD
QOL (quality of life) R#HEEZH LEESZ
EEEBMELTwS. £ O5E, FHRE
PHAEY, ML L —= v S CERENTRE
ThY, RlTHHZEFRDONB.
BETANVABEEBROBEIIBVT, %<
DOBABEZR v P OFRIZHETENCE
ERIZE WD, V—F TOEHIZHERE
nTwivy, Lo LEBOBRKRAS T, wHE
B o T ETHREAXFHTE, BHH,
5 ORT X 7zi3miEE, BEFRELZLICLS
B RERERIB LY, RERREREER
EEETEX52A) v bbdHb. SHICKESLER
Wik, FRBEPICBIT R R e L CEELRE
ZREMELVES. EICAREETE, AL
THRNBREOBREZH O T7:0IREEEE
RORBEWEWICL Y ARTAHEZFITAHZ
EHITbTw5,
DRETH, B¥ 94 VAT 7T VEARE
DOMBERSHZIWBTHI LI, T7F VR
ZEMET AL TCEDLDTEETH L. REDH
DRERZ LI T OFEREL LMR2ITHI LA
%<, BREFNEOREIL Ty MIFH

WAH 5.

@?ﬁﬁ%ﬁ#wh@%@

¥4 VARBBEF Y MET A VAPER
ABICRINT AMEETH S, 201242 A
BE ERNTHHREESATwAsELRFy b2R2
WRTOTY. WNRERBEILANVRIZABETS
TANATHY, BETTF/ 74 VR ERKIC
BHTE23y FORABIATVS., BRE -
BEERFICEHEER RT-PCREL DB T
liL72dD%RLZD, BREOBERELTY
5H00% L, BRELCOFRICET S, —
B, 1 5/7u< bEERITy 7 ABREL
D HEEHN L, ELISA B2 IZIZR%E L vwh
nTws, EREBETIEA L/ 70~ PESK
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F2 BEATHRIATORELOX T ARESEHFY b

s STYIA

Mﬁﬁﬂ AL 9;7 K& o ELISA
AR AL/ H—RKST | SEY RFX|BDRota/Adeno |F « v 7 A | O&%-FF./ K|Ogsn0>e®

O&J-1ILA® Q& - FF|I T IV A|TF4vT RRE | 51®

J FAYI® n&e®
A—H— | FAITT7E— FKAF o HI | HABD SKEHEE FBKATAHIL | FAITTE—
BwEE FE 25l HE01g TIHRAE 100 oL #¥FE12.56mg | HFO0.5¢g BEEH 1~
B 30~50 mg 0.2g

E/IRES ROXTANAT | MOLTAINA | ORI | MAZTAVA | |MOKTALA | OX74ILA

R (XUR) Pk (OHE) |k (ITR) ik (ZJR) | JulE (HE) | Jilk (YU R)
RISEER [ 105 109 5~10 % 159 29 (BILEZ | 40~70 7

. BR<)

BB | 1.9%10%F X b | 10° (TCID50/5 | 31 ng/mL "] 100 ng/mL 10%/mL 1.5X10%/mL
E AR
RKE 93.1* 92* 56.8"* 94*** 93.5* 92*
BRE 95. 8* 100* 97.3** 100*** 98.9* 89*
BiELEL 22.2 0 21.04 o 85 8.36
fEfEREL 0.07 0.08 0.46 0.086 0.07 0.09

FhEh, "BEE "PCRE "SIV IREEREL

Bazehdbds, 57y 7 AREHEDMERASH
Tw5. ELISA BRI =& L B L C, #8
DEHESRPHRZET LI LH5FICEKERE
P HEMAENR 2 L CTERAINS.

4n a2 bECIE FA49TATFA49T
K 0 y® LA H—FSTasy 74 VA®
BD Rota/Adeno /¥ VA5 49 27% S
¥y FFR%%us-75/, 5y FZAE-®
(@) by, Y2T7DEL2hEDb. 5
Fv I AREEIOIR S —-V® ny-7F
JF94® uslLy 2 AF54® ELISA i
yru R HREN TS,

ARECEA L 7us VERBEH LA L
H—FSTUZ T4 VA®EHE LTHRIT
611)12).
AEREIO[ FeEA LY A08u sy
YA NRE) 7 u—F bk (BREBEK) LfE
BEFOI A VAR EZ S EE728, ¥ b
DAYTV Y (%K) EICHL, BEoBi (7
A MEBR) IZHOMPULDEEINIY T OH

2o

434

(BERINEB KO 10)~12) KWUIER)

¥4 VARY 2 a—Fvhidk (BREE)
ERIBSEHZ LWL, 05BICHERTYA
NADKEEZHET HHETHS. Bikdico
T4 VABELET B L, RBPE-BRikh o
vy 4V APE-HIRIE) OBEERE K
L, £ L&auf FIZkh 57X MEBIC
R~BEBDT AL Y HBHNS.

D. EREOREUSE

BRI, ERHBE R R BELSENT 5.
EI~S5HHEICER YA VAEEEBICE D
twbhThY, SHUERRL-BRETIZE
HEHEINDLZI LD A.

FEX v POBRMXFEITE, LoMER T4
VALORERISBERZDLWERREH S
A, KEERTICHER L -2 T 5201345
RBITFD. ZoBEEIE, ERNOKCIMBO
BMEPPLEZELREVFEIN TS0, BER
RICEELRIZTTEEND 20 H5THE. E
FOBVWETHRBERRPE LAAMESR, HEK
OLIZYS Iy TE2B D 0% LI
L, BHARIT 5L I,
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®3

,*

%%#Jb@%ﬁﬁtmﬁ

Eoilia

CERlaEBTES L
CRBRE - BEESEO

'%zf“m

*%%@Mb? W%&WWTLL

C BEANRREBOBREBI TES

- BHOMEREERML. TEGREPREZEBTED
TERRARBEHERICN T B BRI/ END
ﬁ?éngrﬁﬁwﬁﬁt FERDER &&é

A%ﬁﬁT bf&é%}

B

'§®&4
AR THRE

0@@ﬁu¢“”%#
BETHDY,
‘ﬁ@@%k%@@%@ﬁ%*ﬁg%
- FRED H— ﬂiﬁﬁ?ﬁ BBTHEREDETTS

bﬂfmﬁA#%@k
L
ﬁi%ﬁ@@@%%g?é

REEESARERICEELEVESSHD
~Amu%@m ML AR TR A
MEHOMEGLTELN
NWRBIHEDY; TR IR & FRIUT @ F AN (TEST) #iti e av bo—
ERWIEE %< i#ﬁﬁﬁﬂﬁﬁou%& (CONTROL) #iioiR~%an 4y%mm
AATTHEOBEIPEONGZZ ELDH S HET 5.

ZoBE, EBERVWEZ Bk ch oy
ANVADORMLURETH 5. kT sy 4
WA E N2 2006095 %, 19 BI2EH
Wiz W72k Ey FTHRETH Y, s h
Loz 15 HTHE, Fv biZ J:Z.%M 7
vz (RFE 95%, HRBLEE 100%) ™.
. (EREDIRES S
FHB L PR T 5 2 LA T L v,
2~8C T 72 Wil OWARBEAE W HETH 1,
DM Z A2 B3 — 20C LUF Cals A3
L. BEOME BOoooU g, MESEAL
ERBRE LTHWA L, IFHERRERIE S
NHROEEDRD B 72 DNE "‘%;
BER*E
O wmHW (B2 bua—n) 350uL %
HRHEHF 2 -7z %
@ Mkl %, ¥Ry b &
TimA, X RMTS
&%&@%mm&%rzbﬁ
lZmA, 21~25CT

-
L

B

HwTF 2—

F oMk
WUEN S -5

435

. BE - BEE
R AIEEE LA oARF v PORKER
93.1% (121/130), ¥rHL)E1% 95.8% (114/119),

HRIELX 94.4% (235/249) TH Y, K¥v ME
Pk, RSO 9 Pl 8 #liL, B TIEYD
SNz AN ADKNFEIBPETH72. £
72, ELISA#: (myzuav®) &ML LY
HORF Y FORRIEIE 97.7% (126/129), JF
f@l%o (121/121), H#hE 98.8% (247/

50) TH Y, &%x~“&fﬁﬁA&%ﬁ@%
LWL T 20 TH o 7.

7 A WV A JEHE D BUR R SR W7k,
AHFZWIF v b O BRI E I D W TR

L7z, v bOBBICLY, AUEEELE0BHE
I LTY 7V A4 ATHEBNOEESHB X
OBRABRIASTREE o 72, DR HRESLHRAE

CHLTUROME 279 2 & TE, KIEN
BIUOMRNER R E LTO AR ERE
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BRIy POFALELBRIZONWTERS
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Abstract Aseptic meningitis and acute parotitis have
been observed after mumps vaccination. Mumps outbreaks
have been reported in Japan because of low vaccine
coverage, and molecular differentiation is required to
determine whether these cases are vaccine associated.
RT-nested PCR was performed in the small hydrophobic
gene region, and viruses were differentiated by restriction
fragment length polymorphism assay. A total of 584
nucleotides were amplified. The PCR product of the
Hoshino strain was cut into two fragments (313 and 271
nucleotides) by Mfel, that of the Torii strain was digested
with EcoT22l, resulting in 332- and 252-nucleotide frag-
ments. Both strains were genotype B and had an Xbal site,
resulting in two fragments: 299 and 285 nucleotides. Cur-
rent circulating wild types were cut only by Xbal or Mfel.
However, the Mfel site of the wild types was different
from that of the Hoshino strain, resulting in 451- and
133-nucleotide fragments. Using three restriction enzymes,
two mumps vaccine strains were distinguished from wild
types, and this separation was applied to the identification
of vaccine-related adverse events.

Keywords Mumps Hoshino strain - Mumps Torii strain -
Molecular differentiation - Wild circulating genotypes
Introduction

In Japan, the MMR vaccine was introduced in 1989 but
discontinued in 1993 because of an unexpectedly high

A. Sawada - Y. Yamaji - T. Nakayama (B<)
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I, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan

e-mail: tetsuo-n@lisci kitasato-u.ac.jp

Published online: 09 November 2012

incidence of aseptic meningitis caused by components of
the mumps vaccine [1, 2]. The mechanisms responsible for
the high incidence of aseptic meningitis with the MMR
vaccine have not been elucidated in comparison to mono-
valent mumps vaccines used since 1993. Nagai et al. [3]
investigated the incidence of aseptic meningitis after vac-
cination and identified 10 cases among 21,465 vaccine
recipients. Moreover, 13 patients with aseptic meningitis
were reported among 1,051 cases of naturally acquired
mumps confirmed by viral isolation together with genome
detection. The incidence of aseptic meningitis after vacci-
nation was 1/27 of that observed for natural infections.
However, in the post marketing study, the incidence of
aseptic meningitis was approximately 0.01 % (1 case in
10,000 recipients) and that of acute parotitis, 2-3 %.

The mumps virus strains were divided into 12 genotypes
based upon the sequence diversity of the small hydropho-
bic (SH) genome region [4, 5]. Parental strains of the
Hoshino and Torii vaccine strains, isolated in the 1960s,
are genotype B [6, 7]. Circulating wild-type strains were all
genotype B in the 1970s and earlier and were genotypes J
and B in the 1980s to 1990s. Genotype G appeared in the
2000s. Genotypes D, I, and L have been isolated sporadi-
cally [8-10], and recently genotype G was globally the
major circulating genotype [11]. Large outbreaks have
been observed every 3-5 years because of the low vaccine
coverage, 30 % to 40 %. The mumps vaccine is voluntary
(its cost is not covered by the government), and a guard-
ian’s decision usually depends on information on mumps
outbreaks. Some recipients were immunized during the
incubation period of natural infection, making it difficult to
determine whether the mumps illness was caused by a
natural infection or the vaccine.

In previous reports, the Hoshino vaccine strain was
distinguished from circulating wild strains using the

@ Springer
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reverse transcription-polymerase chain reaction (RT-PCR)
and restriction fragment length polymorphism (RFLP) in
the hemagglutinin-neuraminidase (HN) gene with Scal and
Aflll [12]. A simpler method was also reported through
digestion with Scal after DNA amplification by reverse
transcription loop-mediated isothermal amplification (RT-
LAMP) [13]. These methods are applied after immuniza-
tion with the Hoshino vaccine. Now, two vaccine strains of
the Torii and Hoshino are used, but no method of differ-
entiation has been developed for the Torii strain. In this
report, 584 nucleotides were amplified in the SH gene, and
the two vaccine strains were distinguished from circulating
wild types by unique restriction enzyme sites.

Materials and methods
Mumps virus and clinical samples

The Hoshino (Kitasato Institute, Tokyo, Japan) and Torii
(Takeda Pharmaceutical, Osaka, Japan) vaccine strains
were recovered from marketed vaccines. MuVi/Tokyo.
JPN/77 (genotype B), MuVi/Akita.JPN/93-AK (genotype I),
MuVi/Tokyo.JPN/94-H (genotype J), MuVi/Tokyo.JPN/
94-0K (genotype B), and MuVi/Tokyo.JPN/01-11I-10
(genotype L) were used as wild-type representatives for
genotypes B, J, and L, which have already been reported
[8-10]. A total of 47 clinical samples were examined: 20
cases of aseptic meningitis after immunization with the
Torii strain, 25 cases after immunization with the Hoshino
strain, and 2 cases of orchitis after immunization with the
Hoshino strain. Two wild-type strains (MuVi/Tokyo.JPN/
10-K and MuVi/Tokyo.JPN/10-F) were isolated and iden-
tified as genotype G. Cerebrospinal fluid (CSF) samples
from the patients with aseptic meningitis and two salivary
swab samples or nasopharyngeal swab (NPS) from the
patients with orchitis were used.

Eco®22 1

S3856 8393

rorii [B] ATGCAT
Hoshino [B] @
apn/77 [B] S
Jgpn/93ak [1]  —eeen ¢
gen/94n [J] G
JpN/940K [B] 0 —meee G
JPN/01-111-10 [L] —-eue A
JeN/10K [G] ———C
R 3:TFATe) N Cc) ——— G

Fig. 1 Sequence alignment of the Torii and Hoshino vaccine strains and
representative wild strains. MuVi/Tokyo.JPN/77 (genotype B), MuVi/
Akita.JPN/93-AK (genotype I), MuVi/Tokyo.JPN/94-H (genotype J),
MuVi/Tokyo.JPN/94-0K (genotype B), and MuVi/Tokyo.JPN/01-III-10

@ Springer

RNA extraction

Total RNA was extracted from 200 pul CSF and salivary
swabs or NPS using a magnetic bead RNA purification kit
(MagExtractor-viral RNA; Toyobo, Osaka, Japan) and the
RNA pellet was suspended in 30 pl distilled water.

RT-PCR and RLFP

RNA was transcribed to cDNA with a random hexamer
using a PrimeScript RT reagent Kit (TaKaRa Bio, Japan)
and amplified using Ex Tag DNA polymerase (TaKaRa
Bio). The first PCR was done using MP F 921+ (5TCTAT
AATTCAATTGCCAGA) and MP HN241— (5TGTCTGC
AATTGAAGACAAC) and the nested PCR, using MpF0+
5'GTCGATGATCTCATCAGGTAC) and Mp HN1- (5'C
CAATATTCGGAAGCAGGTTCGGA), amplifying 584
nucleotides including the primer sequences from the gen-
ome positions 6139 to 6722 [10]. PCR products underwent
electrophoresis after digestion with EcoT22lI, Mfel, and
Xbal (New England BioLabs Japan).

Sequence analysis

PCR products were excised from low-melting gel electro-
phoresis and purified. DNA sequences were determined by
the dye terminator method using an Applied Biosystems
3130 (Life Technologies Japan).

Results

Sequence analysis and restriction enzyme sites

The Hoshino and Torii strains were sequenced; alignments

at the restriction enzyme sites are depicted in Fig. 1. The
EcoT22] site (genome position 6386—-6391) was unique to

Xba I Mfe 1 Mfe I

64-37’ 6442 B48Y 6458 8588 £594
TCTAGA  CAGITG CAACTG
Siil BUESEE Temew-
- NN, K"
w§rwﬁ;%<*‘ o o e i B S
. RS S0 W S
o R c-
Mwmwmnm [P
mmmmm G ~—mmeA  =eTen
el wewewl  malis

(genotype L) were used. MuVi/Tokyo JPN/10-K and MuVi/Tokyo.JPN/
10-F (genotype G) are isolated in this study. Nucleotide changes are
depicted in comparison with the Torii strain, and restriction enzyme
sequences are highlighted in grey
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Table 1 DNA sizes of restriction fragments after treatment with
EcoT22l, Mfel, and Xbal

Mumps strains EcoT221 Mfel Xbal

Hoshino genotype B - + (313/271)
Torii genotype B + (332/252) -
Wild genotypes B, J, L — - -+ (299/285)
+ (451/133)  + (299/285)
+ (451/133) —

+ (299/285)
+ (299/285)

Wild genotype I -
Wild genotype G —

the Torii strain and Mfel site (6451-6456) to the Hoshino
strain. Genotypes B, I, J, and L had an Xbal (6437-6442)
site, and old genotype I and the currently circulating
genotype G had an Mfel site (6589-6594) newly introduced
by nucleotide change, not at position 6451-6456 of the
Hoshino strain. Based on the results of the sequence
analysis, RFLP and predicted fragment lengths are shown
in Table 1. The PCR product of the Hoshino strain was cut
into two fragments (313 and 271) by Mfel and that of the
Torii strain into two fragments (332 and 252) by EcoT221.
These two strains were also cut by Xbal into two fragments
(299 and 285). RFLP of the circulating wild type had
mainly two patterns: genotypes B, J, and L were cut by
Xbal and genotype G by Mfel but differently from the
Hoshino strain.

The results of RFLP are shown in Fig. 2. The PCR
product of the Hoshino vaccine strain was cut by Mfel and
Xbal, and that of the Torii strain by EcoT221 and Xbal. As
for the RFLP of wild type, the PCR product of MuVi/
Akita.JPN/93-AK (genotype 1) was cut by both Mfel and
Xbal with different fragment sizes from the Hoshino strain.
MuVi/Tokyo.JPN/94-OK (genotype B) was cut by Xbal,
and the same RFLP pattern was noted for MuVi/
Tokyo.JPN/94-H (genotype J) and MuVi/Tokyo.JPN/O1-
III-10 (genotype L). PCR products of MuVi/Tokyo.JPN/
10-K and/10-F (genotype G) were cut by Mfel. They
showed different patterns from the vaccine strains, as
predicted from the sequencing results.

Differentiation of vaccine strains from wild types

A total of 47 clinical samples were obtained: 20 cases of
aseptic meningitis after immunization with the Torii strain,
25 cases after immunization with the Hoshino strain, and 2
cases of orchitis after immunization with the Hoshino
strain. The results of RT-PCR and RFLP are shown in
Table 2. RT-PCR was negative for two CSF samples from
the recipients of the Torii strain, and among 18 RT-PCR
positives, 16 were identified as the Torii vaccine strain.
Among 25 CSF samples obtained from the recipients of the
Hoshino strain, 3 were negative by RT-PCR, and 20 were
considered positive for the vaccine strain. Two from each

Hoshino 83.8K [1] S4-OK [B]
EMX EMX EMX
10008

5008

10-K [6} 10F (G} 0141010 [L] 94— (4]
EM X EMMX ENMX EmMX

Fig. 2 Restriction fragment length polymorphism (RFLP) of the
Hoshino and Torii vaccine strains and circulating wild strains. C,
control; E, treatment with EcoT22I; M, treatment with Mfel; X,
treatment with Xbal. 93-AK, MuVi/Akita.JPN/93-AK [genotype I];
94-H, MuVi/TokyoJPN/94-H [genotype JI; 94-OK, MuVi/
Tokyo.JPN/94-0K [genotype Bl; 01-11I-10, MuVi/Tokyo.JPN/01-III-
10 [genotype L]; 10-K, MuVi/Tokyo.JPN/10-K [genotype G]; 10-F,
MuVi/Tokyo.JPN/10-F [genotype G]

were identified as wild strains. In 2 cases of orchitis after
vaccination with the Hoshino strain, RT-PCR was positive
in 1 case, identified as the wild type. Five of 45 patients
with suspected adverse events were identified as having a
concurrent wild-type genotype G.

Some strains identified as causing adverse events were
sequenced; the phylogenetic analysis is shown in Fig. 3.
Cases 1 and 2 were patients with aseptic meningitis after
immunization with the Hoshino strain and cases A and B
after that with the Torii strain. The sequencing results
showed they were identical to the respective vaccine
strains.

Table 2 Results of differentiation of mumps virus genome for clin-
ical samples obtained from patients with aseptic meningitis and
orchitis

PCR negative  PCR positive

Vaccine strain ~ Wild strain

Aseptic meningitis after vaccination with

Torii (n = 20) 2 16 2
Hoshino (n = 25) 3 20 2
Orchitis after vaccination with
Hoshino (n = 2) 1 1
@ Springer
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Fig. 3 Phylogenetic analysis of vaccine-associated cases in the small hydrophobic (SH) genome region. Cases 1 and 2 were patients with aseptic
meningitis after immunization with the Hoshino strain and cases A and B after immunization with the Torii strain

Discussion

The mumps virus is classified into 12 distinct genotypes,
with genotype B indigenous to Japan [4, 5, 8]. Genotype J
was a dominant circulating strain with some genotype B
strains in 1990-2000, and genotype G appeared in
2000-2012 with sporadic outbreaks of genotype L [§-10].
Mumps has been circulating in Japan because of a low
immunization rate, approximately 30-40 %, and mump
outbreaks have also been reported in the EU and USA
where high immunization coverage was achieved with two
doses of MMR [14-16]. The outbreaks were caused by the
accumulation of susceptible individuals with an insufficient
two-dose MMR vaccination in childhood. Several vaccine
strains have been developed, and the Jeryl Lynn strain,
belonging to genotype A, has been widely used as a
component of MMR. Neutralization test (NT) antibody
titers in sera obtained after vaccination with Jeryl Lynn
were lower against genotype G than those against the
vaccine strain, but they completely neutralized the other
genotypes [17, 18]. In contrast, the antigenicity of genotype
A of the vaccine strain was quite different from the recent

@ Springer

circulating wild types and considered one of the reasons for
the recirculation of the mumps virus [19]. There would be
some problem with immunogenicity and persistence of
immunity after immunization with the Jeryl Lynn strain. In
Japan, two vaccine strains, Hoshino and Torii, are used and
they belong to genotype B. In our previous report, there
was no antigenic difference among circulating wild
types [10]. Immunogenicity paralleled the incidence of
adverse reactions. The incidence of aseptic meningitis after
immunization with the Jeryl Lynn strain was reported to be
1 case in 100,000, and that of Torii or Hoshi was higher.
The mump vaccine is still a voluntary one and so the cost is
not covered by regional governments. Thus, guardians
consider a mumps vaccination only when an outbreak is
coming according to surveillance data. Some recipients
were vaccinated by chance during the incubation period,
and infection with the wild type became mixed into the
vaccine-adverse events [12, 13]. In this report, 4 cases were
identified as wild types among 45 cases with aseptic
meningitis and 1 of the 2 cases of orchitis after immuni-
zation. From the results of surveillance reports, mumps
outbreaks were observed in moderate grade, and
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approximately 10 % of the vaccine-associated cases were
infected with the wild type around the immunization day.
Most adverse events developed 2-3 weeks after vaccina-
tion, but wild-type-related illness developed a few days
earlier. There was no difference in clinical symptoms and
clinical laboratory findings between vaccine-related
adverse events and wild-type-related illness [3]. Five
samples in aseptic meningitis and 1 in orchitis showed
negative for mumps RT-PCR. Enterovirus RT-PCR for the
mump PCR-negative samples showed negative for 5
mumps PCR-negative clinical samples [20]; these were
considered to be low virus doses or in inappropriate
stocking or transporting conditions.

Vaccine safety is a major concern and depends on
postmarketing surveillance. Postmarketing surveillance
from 1994 to 2010 is summarized, adding new data to the
previous report [21], compared with the incidence of natural
infections, in Table 3. The incidence of aseptic meningitis
was <1-15 % among mumps infections with different
incidences [22], and enhanced surveillance data showed
2.9 % of mumps patients were hospitalized, 6.1 % had
orchitis, 0.3 % had meningitis, and 0.25 % had pancreatitis
in England in 2002-2006 [23]. For the other complications,
permanent deafness was considered to occur in approxi-
mately 1 per 20,000 cases, but it would actually be higher, 1
per 1,000 cases [24]. The results of postmarketing studies

Table 3 Complications of mumps and vaccine adverse events after
vaccination with the Hoshino strain reported from 1994 to 2010

Vaccination
(3.5 million)

Complications Natural infection

Acute parotitis 70 % 2-3 %"
CNS complications
1/5,000-6,000 5 (1: enterovirus)

12 % 223°

Encephalopathy
Aseptic meningitis

ADEM 3 (1: enterovirus)
Deafness 1/15,000 (1/1,000) 4
Orchitis 25 % in adolescents 15¢
Oophoritis 5%
Pancreatitis 4 % 2
Other 1: ITP

1: allergic purpura

Incidence of complications during natural infection refers to Ref. [22]

CNS, central nervous system; ADEM, acute disseminated encepha-
lomyelitis; ITP, idiopathic thrombocytopenic purpura

# Of 117 nasopharyngeal swab (NPS) samples examined from
patients with acute parotitis after vaccination with the Hoshino strain,
PCR was positive in 89; 64 were identified as the vaccine strain and
25 as the wild type

> Of 85 CSF samples examined, 66 were PCR positive; 58 were
identified as the vaccine strain and 8 as the wild type

“ Three NPS samples were examined; one was the vaccine strain and
two were the wild type

are shown from 1994 to 2010. A total of 3.5 million doses
of the Hoshino vaccine were shipped, and acute parotitis
was observed in 2-3 % of recipients. Among them, 117
nasopharyngeal swabs were examined and 89 were positive
for RT-PCR: 64 were identified as the Hoshino vaccine
strain and 25 were wild type. Among CNS complications, 5
cases of encephalopathy, 223 cases of aseptic meningitis,
and 3 cases of acute disseminated encephalomyelitis
(ADEM) were reported. Two cases were identified as
enterovirus infections by RT-PCR [20]. When 85 CSF
samples were examined in 223 cases of aseptic meningitis,
58 were considered vaccine-associated illnesses among 66
PCR positives. In this study period from 2008 to 2012,
approximately 10 % of the patients suspected of having a
vaccine-associated illness were identified as having wild-
type infections during the mump outbreaks. Therefore, a
simple differentiation method would contribute to further
understanding of the safety of mumps vaccines.
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