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with dependable DABG P-values. Inclusion of these probe sets
increases the standard deviation and decreases the DV of the
aberrantly spliced exon.

Potential roles of novel aberrant splicing events in DM1

In this study, we identified 27 DMI-specific aberrant splicing, in
which 25 have not been published yet. Among the 25 exons, aberrant
splicing events of two exons were ‘uniquely’ observed in DMI: one is
inclusion of the LIM domain binding 3 (LDB3) exon 4 and the other
is inclusion of titin (TTN) exon 45. Interestingly, both encode
structural proteins of muscle fiber.

LDB3, also known as Cypher/ZASP (Z-band alternatively spliced
PDZ-motif protein), contains a PDZ domain at the N-terminus and
one or three LIM domains at the C-terminus. LDB3 is localized to the
Z-line and interacts with a-actinin 2 through its PDZ-domain and
with protein kinase C via its C-terminal LIM domains.?® LDB3 is
likely to have an essential role in supporting Z-line structure and
muscle function during contraction.?® LDB3 has several isoforms. As
inclusion of exon 4 is preferentially observed in the fetal heart,’® the
aberrant inclusion of exon 4 in the skeletal muscles in DM1 would
lead to dysfunction or morphological abnormalities of muscle fiber.
Recently, phosphoglucomutase 1 (PGM1), an enzyme involved in
glycolysis and gluconeogenesis, has been known to bind to the domain
encoded by exon 4 of LDB3. LDB3 mutations in exon 4 reduce the
binding to PGM1 and develop dilated cardiomyopathy.?! On the other
hand, the increased binding of PGM1 and LDB3 through aberrant
inclusion of exon 4 might be involved in the pathogenesis of muscle
atrophy, weakness and histological abnormalities in DM1.

TTN encodes the largest protein in mammals and the third most
abundant protein in muscle’* An N-terminal Z-disc region and a
C-terminal M-line region bind to the Z-line and M-line of the
sarcomere, respectively, so that a single molecule extends half the
length of a sarcomere. Titin is critically important for myofibril
elasticity and structural integrity. Its elasticity lies specifically in the
I-band region and contains two elements in series with different
properties: the tandem immunoglobulin (Ig) and PEVK domains.>
Different TTN isoforms contribute to differences in elasticity of
different muscle types. As exon 45 is located at the tandem Ig
domains, aberrant inclusion of exon 45 in DM1 might lead to
defective myofibril assembly and function.
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SUMMARY

Mammalian pallial (cortical and hippocampal) and
striatal interneurons are both generated in the
embryonic subpallium, including the medial gangli-
onic eminence (MGE). Herein we demonstrate that
the Zfhx1b (Sip1, Zeb2) zinc finger homeobox gene
is required in the MGE, directly downstream of
Dix1&2, to generate cortical interneurons that
express Cxcr7, MafB, and cMaf. In its absence,
Nkx2-1 expression is not repressed, and cells that
ordinarily would become cortical interneurons ap-
pear to transform toward a subtype of GABAergic
striatal interneurons. These results show that Zfhx1b
is required to generate cortical interneurons, and
suggest a mechanism for the epilepsy observed in
humans with Zfhx7b mutations (Mowat-Wilson
syndrome).

INTRODUCTION

Cell type specification within the embryonic basal ganglia is
regulated at multiple levels. Distinct subdivisions within this
region generate distinct neurons. For instance, the lateral gangli-
onic eminence (LGE) generates striatal projection neurons
whereas the medial ganglionic eminence (MGE) generates pal-
lidal projection neurons. Domains within the MGE are biased
toward generating different cell types, whereas the rostrodorsal
MGE largely produces cortical and striatal interneurons, the
caudoventral MGE largely produces pallidal projection neurons
(Flandin et al., 2010; Nobrega-Pereira et al., 2010). Distinct
MGE-derived cortical interneuron subtypes appear to be gener-
ated from the same progenitors, perhaps in a temporal sequence
(Brown et al., 2011).

Cortical and striatal interneurons are both generated from the
MGE (Marin et al., 2000). The Nkx2-17 homeobox transcription

factor has a central role in specifying their identity. While
Nkx2-1 is initially required for both of these cell types, Nkx2-1
expression is repressed soon after immature cortical interneu-
rons tangentially migrate from the MGE, while it is maintained
in striatal interneurons (Butt et al., 2008; Marin et al., 2000;
Nébrega-Pereira et al., 2008; Sussel et al., 1999).

Forced expression of Nkx2-1 in cortical interneurons changes
their migration so that they settle in the striatum (Nébrega-Per-
eira et al., 2008), providing additional evidence that repression
of Nkx2-1 is a key step in generating cortical interneurons.
How ka2-1 expressmn |s repressed m these cells is unknown

Prevnous analysns of thx1b mouse mutants has shed hght on
its functions in the development of cortical projection neurons
(Miquelajauregui et al., 2007; Seuntjens et al., 2009). In humans,
mutations of Zfhx1b result in Mowat-Wilson syndrome, a devel-

opmental disorder characterized by mental retardation,
epilepsy, and defects of neural crest-derived tissues, including
craniofacial and enteric nervous system (Mowat et al., 2003).
Our results that demonstrate Zfhx1b is required to generate
cortical interneurons suggest a mechanism for the epilepsy
observed in Mowat-Wilson syndrome.

RESULTS

Conditional Deletion of Zffix7b in the VZ or the 8VZ of the
Subpailium using Nkx2. 1-Cre or Dixit12b-Cre

Zfhx1b prenatal expression has been noted in migrating cortical
interneurons and the subpallial telencephalon (Batista-Brito
et al., 2008; Seuntjens et al., 2009). We found that Zfhx1b RNA
is expressed in E12.5 MGE-derived cells that are tangentially
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migrating through the LGE and into the cortex by performing
fluorescent in situ hybridization (FISH) on a brain in which
MGE-derived cells expressed EGFP (expressed due to Nkx2.1-
Cre induced recombination of the CAG:CAT-EGFP Cre reporter
allele) (see Figures S1A-S1A” available online).

To determine the role of Zfix1b in the development of the
basal ganglia, we used a conditional mutagenesis approach.
Using an allele of Zfhx1b, in which exon 7 is floxed (Higashi
et al., 2002), we removed Zfhx1b expression using two different
Cre alleles. Deletion of exon 7 creates a frameshift mutation and
premature truncation of the protein. Previous analysis failed to
detect the truncated mutant protein in Zfhx1b mutant tissues,
providing evidence that this is a null allele (Higashi et al., 2002).

To remove Zfhx1b in the early progenitors of the MGE, we
used the Nkx2.71-Cre allele (Xu et al., 2008), which drives Cre
expression in the ventricular zone (VZ) of the MGE beginning
around E9.5 (later it also drives expression in the subventricular
and mantle zones [SVZ and MZ]). To differentiate between the
role of Zfhx1b in the VZ and the SVZ/MZ, we used the Dix/1/
2b-Cre allele (Potter et al., 2008), which drives Cre expression
in the SVZ and MZ of the entire subpallium beginning around
E10.5. To examine the pattern of recombination, we used an
antisense riboprobe designed against Zfhx1b exon 7.

By E12.5, Cre activity from both the Nkx2.7-Cre and DixI/1/2b-
Cre alleles removed Zfhx1b RNA expression in the expected
patterns (Figures 1A-1C). As previously reported, the Nkx2-1
allele did not express Cre in the dorsal-most portion of the
MGE, thus explaining the persistence of Zfhx b in that location
(Figure 1B). Of note, in the Nkx2.1-Cre; Zfhx1b conditional
mutant brains, Zfhx1b RNA expression was not observed in
the cells that appear to be migrating from the dorsal MGE into
the mantle of the LGE, suggesting that the Zfhx71b™ cells in the
mantle of the E12.5 LGE are likely to be MGE-derived cells
(e.g., cortical and/or striatal interneurons) (X in Figure 1B). Also,
note that Dix/1/2b-Cre leads to recombination in the SVZ and
MZ of the LGE, MGE and CGE (white arrowhead, Figure 1C,
and data not shown).

Next, we examined the expression of Zfhx1b’s closely related
homolog, Zfhx1a, inthe E12.5 control and mutant telencephalon.
Both Zfhx1a and Zfhx1b are expressed in the subpallial VZ,
whereas only Zfhx1b is clearly expressed in the SVZ (Figures
1A and S1B). Zfhx1a’s expression did not clearly change in the
Nkx2.1-Cre mediated Zfhx1b mutant (Figures S1B-S1S1D/).
Thus, in the Nkx2.1-Cre conditional Zfhx1b mutant, only the VZ
of the MGE continued to strongly express a Zfhx homolog.

MGE-Derived Pallial interneurons Migrate to the
Striatum When Deleting 2fhix7h in the VZ of the MGE
using Nkx2.7-Cre

We analyzed the effect of deleting Zfhx1b, using Nkx2.1-Cre at
multiple developmental stages, including E12.5, E15.5, and PO.
To track the fate of Zfhx1b mutant cells, we used the CAG:
CAT-EGFP Cre reporter allele (Kawamoto et al., 2000). Mutant
brains had the following genotype: Nkx2. 1-Cre;Zfhx1b"™ / —;,CAG:
CAT-EGFP; whereas controls had the following genotype:
Nkx2.1-Cre;Zfhx1b™*;CAG:CAT-EGFP (on occasion, some
were: Nkx2.1-Cre; Zfhx1b™*). At E12.5, while the control brain
showed a robust stream of EGFP* cells migrating into the cortex,
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the mutant’s EGFP™ MGE derivatives failed to migrate to the
cortex, and many were detected in the LGE mantle (Figures
1D-1G).

Next, we analyzed the phenotype using molecular markers of
MGE-derived cells including Nkx2-1 and Lhx6. While Nkx2-1
RNA and protein is expressed throughout the VZ and SVZ of
the MGE, its expression thereafter is restricted to specific
neuronal lineages. MGE-derived cortical interneurons repress
Nkx2.1 expression as they migrate out of the MGE while most,
but not all, classes of striatal interneurons maintain Nkx2.1
expression. (Flandin et al., 2010; Marin et al., 2000; Nobrega-
Pereira et al., 2008; Sussel et al., 1999). In the mutants, there
was a subtle increase in Nkx2-7 RNA expression in the LGE
and CGE (Figures 1H-1J’). This increase was more apparent at
higher magnification when analyzing NKX2-1 protein expression
(Figures 1G and 1G’) and at later stages (E13.5 and E15.5)
(Figures TN-1P’ and 2A-2F’).

EGFP and NKX2-1 protein expression in control brains colo-
calized in a subset of cells derived from the MGE. EGFP/
NKX2-17 cells were observed in the MGE VZ and SVZ progeni-
tors and a subset of their derived neurons, including the globus
pallidus, and striatal interneurons (Xu et al., 2008; Figure 1G,
solid arrowheads), while interneurons migrating to the cerebral
cortex showed little to no NKX2-1 protein expression (Figure 1G,
open arrowheads). In mutant brains, however, most if not all
EGFP labeled cells had detectable levels of NKX2-1 protein,
with many cells strongly coexpressing NKX2-1 and EGFP in
the LGE MZ, and in a region lateral to the globus pallidus (Fig-
ure 1@, solid arrowheads). Thus, Zfhx1b mutants had a defect
in their ability to repress Nkx2-7 RNA and protein expression,
concomitant wuth fallure of MGE-derived migration to the cere-
was ‘required to repress Nkx2-1.
find evidence that Nkx2-1 regulated:
gh his conclusion was based on in situ hybrid-
lzatnon analysrs of Zfhx1b expression in mice lacking Nkx2-1 in
newly born MGE neurons at E15.5 (Nkx2-1 conditional mutant
with DIx5/6-Cre) (Figure S6).

Lhx6 RNA is expressed in tangentially migrating cells that are
immature cortical and striatal interneurons, as well as cell types
that remain in the subpallium (Flandin et al., 2011; Lavdas et al.,
1999; Liodis et al., 2007; Sussel et al., 1999; Zhao et al., 2008). In
the Zfhx1b mutant, Lhx6* cells failed to be detected in the
pallium, whereas they continued to be densely located
throughout the MGE, and as a scattered population in the LGE
and CGE (Figures 1K-1M’). On the other hand, Lhx8 and Gbx2
RNA expression was not appreciably changed in the mutants
(Figures S1H-S1J'). Thus, Zfhx1b mutants may have a selective
defect in cells fated to become pallial interneurons, but not
cholinergic striatal interneurons. To explore this hypothesis we
studied the phenotype at later developmental stages.

By E15.5, the tangential migration of immature cortical inter-
neurons can be readily visualized by expression of Lhx6,
Somatostatin (Sst), and EGFP (in Nkx2. 1-Cre;CAG-EGFP brains)
(Figures 2 and S2D-S2F). By contrast, in Zfhx7b mutants
(Nkx2.1-Cre), pallial expression of Lhx6, Sst, and EGFP was
strongly attenuated (Figures 2 and S2D'-S2F'). On the other
hand, subpallial expression of these markers was increased in
two locations: the striatum (asterisks, Figures 2A-2C/, 2G-2/',
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Figure 1. Zfhx1h Expression in the MGE Is
Required for Interneuron Migration at E12.85
(A-C) Zfhx1b RNA expression detected by in situ
hybridization in control and conditional Zfhx1b
mutant telencephalons. (B) Nkx2.7-Cre. (C)
Dixl12b-Cre. Black arrowhead in (B) shows loss of
Zfhx1b expression in the MGE VZ (except dorsal-
most MGE). White arrowheads in (B) and (C) show
loss of Zfhx1b expression in the SVZ of the MGE. X
in (B) shows loss of Zfhx1b expression in the SVZ/
MZ of the LGE. (D--P’) Coronal hemisections of the
telencephalon comparing gene expression in
three rostral-to-caudal planes of section in control
(left side) and Zfhx1b Nkx2.1-Cre conditional
mutants (right side). (D-F') Two color immuno-
fluoresence detection of EGFP (green) and
NKX2-1 (red). (G and G') Higher magnification view
of two color immunofluoresence detection of
EGFP (green) and Nkx2-1 (red) in control (G) and
Zfhx1b mutant (G'). Solid white arrowheads show
e th{frof; Wkx2 1.Cre; § i 2IxIOFAY NIt 2 1 re; ; increased numbers of cells that express both
CAG:CATECFF L CAG:CAT-EGFP ; EGFP (green) and NKX2-1 (red) in the mutant’s
: ] LGE/Str. In the wild-type cortex, black arrow-
heads (with white outline) show that cells express
EGFP (green) and not NKX2-1. (H-P') In situ

Cont. 2 tbiFL); Dixttith-Cre

L ZmobgFg e SCre
B C

Zfhxsh exon ? :

e hybridization expression analysis at E12.5 of
% Nkx2-1 (H-J') and Lhx6 (K-M'), and at E13.5 of
& Nkx2-1 (N-P'). Asterisks in (N)~(P’) show increased
£ numbers of labeled cells in striatum. X in (K')-(M-)
& notes the loss of labeled cells in the cortex.

§i§ Abbreviations: Cx, cortex; e, ectopia in region of
Y the ventral striatum and central nucleus of the
o

amygdala; GP, globus pallidus; LGE, lateral
ganglionic eminence; MGE, medial ganglionic
eminence; MZ, mantle zone; Str, Striatum; SVZ,
subventricular zone; VPd, ventral pallidum; VZ,
ventricular zone. Scale bars equal 500 pm (A and
D) and 300 um (G).
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Figure 2. Zfhx1b Expression in the MGE Is
Required for Interneuron Migration at E15.5

HeAscararp

Coronal hemisections of the telencephalon
comparing gene expression in three rostral-to-
caudal planes of section in control (left side) and
Zfthx1b;Nkx2.1-Cre conditional mutants (right
side).

(A—C’) Two color immunofluoresence detection of
EGFP (green) and NKX2-1 (red).

N

H Zehxip (Fray;
N2 ICoo

Nkx2.-Cre

2P (FR50

Nkx2.3-Cre

2ttt IF3;
Wix3.3-Cre H

Zaxtd (£33 H
Nkx214-Cre i

Zihx 18 (RS

P i (D-U') In situ hybridization analysis. Nkx2-1 (D-F'),

EF
; CGE
P

Lhx6 (G-'), Sox6 (J-L'), Lhx8 (M-O'), NPY (P-R'),
Kenmb4  (S-U').  Asterisks show increased
numbers of labeled cells in the striatum. X shows
reduced number of labeled cells in cortex.
Abbreviations: CGE, caudal ganglionic eminence;
Cx, cortex; e, ectopia in region of the ventral
striatum and central nucleus of the amygdala; GP,
globus pallidus; LGE, lateral ganglionic eminence;
MGE, medial ganglionic eminence; MZ, mantle
zone; Str, striatum; SVZ, subventricular zone; VPd,
ventral pallidum; VZ, ventricular zone. Scale bar
equals 500 um (A).

globus pallidus, striatal interneurons,
and cortical interneurons (Sox6 only)
(Azim et al., 2009; Batista-Brito et al.,
2008).

Next, we tested whether the mutant
cells that failed to migrate to the pallium

Ztucth (Fo);
Nkx23-LCre i

2Pkt (Fre);

i Zétctt (Foehs ﬁ 2t ¢
e

Zinxth (FA
Nkx2.1-Cre

NiexR.1-Cre.

Ztnetih (F13):

P i had features of the globus pallidus or

Ms

and S2D-S2F') and a region contiguous with the caudoventral
striatum, which we believe corresponds to the anlage of the
central nucleus of the amygdala (labeled e, for ectopia, Figures
2E”, 2H’, and S2D'; note that Figure S2T shows DIx5 expression
labeling the central nucleus of the amygdala, CeA). The ectopia
in these regions also contained increased expression of Nkx2-1
and Sox6 (Figures 2D-2F' and 2J-2L'). These genes are normally
expressed in the subpallial projection neurons such as the
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striatal interneurons. We examined ex-
pression of several globus pallidus
markers including Kcnmb4, Kctdi12,
Gbx2, and Lhx8. Unlike the abnormal
expression of Lhx6, Sst, Nkx2-1, and
Sox6, expression of Kcnmb4, Kctd12,
Gbx2, and Lhx8 appeared normal in the
Zfhx1b mutants (Figures 2M-20', 25-
2V, and S2J-S20), providing evidence
that the abnormal collections of cells
correspond either to abnormally migrated
cortical interneurons or to striatal inter-
neurons, and not globus pallidus neurons.
Furthermore, as Gbx2 and Lhx8 expres-
sion and function are linked to the devel-
opment of striatal cholinergic interneu-
rons (Chen et al, 2010; Zhao et al,
2003), these results provided evidence
that increased striatal Nkx2-1 expression
did not correspond to cells destined to
become striatal cholinergic interneurons.

To distinguish whether the abnormal coilections of cells in the
mutant striatum were cortical or striatal interneurons, we exam-
ined expression of Cxcr7 and NPY. At E15.5, Cxcr7 marked
migrating cortical interneurons and few cells in the striatum
(Figures 7J, 7K, and 7L), suggesting that it is a relatively specific
cortical interneuron marker (Wang et al., 2011). In the mutant,
there was a robust reduction of Cxcr7 expression in the pattern
of migrating cortical interneurons, without a substantive increase

Nix2.3-Cre
O A
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in striatal expression (Figures 7J/, 7K’,and 7L’); a similar result
was seen for Cux2 (not shown). On the other hand, at E15.5,
NPY expression strongly marks scattered striatal cells (probably
interneurons), and relatively few migrating cortical interneurons
(note, most of the cortical expression at this age resembles
that of immature projection neurons in the cortical plate). In the
mutant, there was a robust increase in NPY expression in
the striatum (Figures 2P-2R’), in a pattern closely resembling
the pattern of ectopic Nkx2-1, Lhx6 and Sox6 (Figures 2D-2L).
Thus, we propose that the mutant cortical interneurons are trans-
formed toward GABAergic striatal interneurons.

Deleling ZfhxTh in SVZ of the MGE using Dix{12b-Cre
Phenocopies Loss of Zfix71h Function in the VZ
NEx2.1-Cre)

Toward defining the stage of differentiation when Zfhx1b is
required for programming interneurons to migrate to the cortex,
and not the striatum, we used the Dix/12b-Cre allele (Potter et al.,
2008). DIxI1/2b-Cre expression begins in subpallial SVZ cells
that express the mitotic marker Ki67 (Figures S1T-S1T"), sug-
gesting that Cre recombination occurs in secondary progenitor
cells that are mitotically active. Thus, Dix/12b-Cre induces
recombination beginning in the SVZ of the entire subpaliium,
whereas Nkx2.71-Cre induces recombination in the VZ of the
MGE and preoptic area (Figures 1D-1F).

We analyzed the effect of deleting Zfhix1b using DixI12b-Cre at
E12.5 and E15.5. In general, all of the phenotypes of MGE-
derived cells observed with the Nkx2.7-Cre were recapitulated
with the DIxI12b-Cre (Figures 3, $1, S3), including the strong
reduction of tangential migration to the cortex, indicated by anal-
ysis of Cre-dependent reporter EGFP expression, and Lhx6, Sst,
and CXCR?7 expression. Like Nkx2.1-Cre mutants, Dix/1/2b-Cre
mutants showed increased numbers of striatal cells that ex-
pressed Lhx6, Nkx2-1, NPY, Sst, and Sox6 (Figures 3A-3/,
3M-30’, and S3J-83L’). Furthermore, these mutants did not
show an increase in the number of cells that expressed markers
of the globus pallius (Lhx8, Gbx2, Kcnmb4) or striatal cholinergic
interneurons (Lhx8, Gbx2) (Figures 3J-3L/, 3P-3R/, and S1Q'-
S$19/, and data not shown).

Posinatal Analysis of Cortical and Siriatal Interneuron
Phenotypes in Mkx2. 1-Cre;Zfhx1h Mulants
Nkx2.1-Cre conditional mutants died between P17 and P21; at
P15, mutants weighed ~30% less than their control littermates,
a phenotype that was exacerbated by litter size. We did not
observe seizures or other neurological/behavioral phenotypes.
We analyzed postnatal day 0 (P0) and P15 Nkx2.7-
Cre;Zfhx1b~ conditional mutants to better understand the
nature and extent of their cortical and striatal interneuron
defects. In the PO neocortex there was an ~90% reduction in
the number of EGFP* Cre-reporter marked cells, as well as
a decrease in Calbindin (CB), Sst, and Lhx6 expressing interneu-
rons (Figures 4A-4C’ and 4S). Likewise, at P15 there was a >90%
reduction in number of neocortical EGFP* cells (Figures 4D-4F'
and 48). Next, we counted the number cortical interneurons in
the Nkx2-1-Cre lineage that expressed Parvalbumin (PV) or
Sst, which are the two main MGE-derived subtypes (Rudy
et al., 2011). We saw a strong reduction in double labeled

neurons, with the numbers of EGFP* interneurons expressing
Sst or PV reduced by >90% or more (Figure 4S). The expression
of cortical Calretinin (CR), which predominantly marks CGE-
derived cortical interneurons, showed little to no change in the
Zfhx1b; Nkx2.1-Cre conditional mutant (Figures 4F and 4F').

In the striatum at PO, as we saw at E15.5, there was an
increase in the number of cells expressing EGFP (Cre reporter),
Sst, and Lhx6 (Figures 4G-4l'); consistent with the hypothesis
that Zfhx1b mutant cells that were destined to go to the
neocortex, instead migrated to the striatum. Additionally, there
was a clear increase in the number of striatal cells expressing
nNos, NPY, and Nkx2-1 (Figures 4J-4K’, S4B, and S4B'), while
we observed no change in Lhx8, a marker for striatal cholinergic
interneurons (Figures S4A and S4A').

As NPY, Sst, and nNos are also expressed in subsets of
cortical interneurons, their increased striatal expression does
not provide unequivocal information about whether supernu-
merary cells correspond to cortical interneurons that failed to
correctly migrate, or to interneurons that changed fate due to
the mutation. To this end, we searched for a marker that is ex-
pressed in striatal, but not cortical interneurons. Substance P
receptor (TacR1) is robustly expressed in striatal interneurons
(Ardelt et al., 1996). We found that TacR7 is almost exclusively
expressed in striatal and not cortical interneurons at E15.5, PO,
and P15 (Figures 4L and 4L/, and 4Q and 4Q’, and S4D-S4F/,
and data not shown). In Zfhx1b-Nkx2. 1-Cre mutants at PO, there
was increased striatal TacR7 expression (Figures 4Q and 4Q’),
supporting the idea that at least some of the mutant cells are
adopting a striatal interneuron identity.

At P15 the number of mutant cells (EGFP*) was roughly the
same as in controls, and they were evenly dispersed within the
striatum, lacking the cell clusters and ectopia (striatal and caudal
amygdala) that were apparent at younger ages (Figures 4M, 4M’,
and 4T). The elimination of the excess mutant striatal cells
appears to occur through apoptosis, which is robust at PO
(expression of activated cleaved-caspase 6), particularly in the
ectopia (Figures S4C-S4C).

Despite the cell death, Zfhx1b conditional mutants at P15
continued to have significantly increased numbers of striatal
nNOS, NPY, Sst, and TacR1 expressing cells (183%, 230%,
225%, and 164%; Figures 4N-4Q' and 4T). Importantly,
total striatal PV* cells were decreased by 58% (Figure 4S).
Furthermore, there was no detectable change in TrkA ex-
pression (Figures 4R, 4R’, and 4T), which marks striatal cholin-
ergic interneurons. We saw very few CR* cells in the control
striatum (1-3 cells per section), which did not noticeably change
in the Zfhx1b conditional mutant (data not shown). Thus, Nkx2.71-
Cre;Zfhx1b mutants have a selective increase in striatal inter-
neurons expressing nNos, NPY, Sst, and TacR7 but have
reduced PV interneurons, and no change in cholinergic or CR
interneurons.

We also analyzed the gross morphological properties of nNos/
NPY/Sst striatal interneurons in the Zfhx1b mutant and found
that, like control brains, Zfhx1b conditional mutants had Sst
processes restricted to the matrisomes (Chesselet and Graybiel,
1986), in a lateral to medial gradient (Figures S4G-S4Y, arrow-
heads mark CB-poor striosomes), suggesting that the overpro-
duced nNos/NPY/Sst interneurons in the Zfhx1b conditional
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Figure 3, Zfhx1b Expression in the SVZ of the MGE Is Required for Interneuron Migration at E15.5

Coronal hemisections of the telencephalon comparing gene expression in three rostral-to-caudal planes of section in control (left side) and Zfhx1b DixI12b-Cre
conditional mutants (right side). In situ hybridization analysis of Nkx2-1 (A-C’), Lhx6 (D-F'), Sox6 (G-I}, Lhx8 (P-R'), NPY (M-0'), Kcnmb4 (P-R'). Asterisks show
increased numbers of labeled cells in the striatum. X shows reduced number of Lhx6™ cells in cortex. Abbreviations: CGE, caudal ganglionic eminence; Cx,
cortex; e, ectopia in region of the ventral striatum and central nucleus of the amygdala; GP, globus pallidus; LGE, lateral ganglionic eminence; MGE, medial
ganglionic eminence; MZ, mantle zone; Str, striatum; SVZ, subventricular zone; VPd, ventral pallidum; VZ, ventricular zone. Scale bar equals 500 um (A).
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mutant share grossly similar morphological properties with wild-
type striatal interneurons.

Zffib Expression is Downstream of Dix1/2 in the
Developing Basal Gangilia

DIx1 and Dix2 are necessary for subpallial development,
including interneuron migration to the cortex (Anderson et al.,
1997a; Long et al., 2009a; Long et al, 2009b; Yun et al.,
2002a); thus, we examined Zfhx1b RNA expression in Dix1/2
constitutive null mutants using in situ hybridization (Figures 5A-
5B’). In control brains at E12.5 and E15.5, Zfhx1b was expressed
in the VZ and SVZ of the subpallium, in addition to its previous
described expression in the cortical plate and SVZ (Miquelajaur-
egui et al., 2007; Seuntjens et al., 2009). Zfhx1b expression in the
subpallial MZ was restricted to dispersed cells in the LGE and to
a nucleus forming near the ventral medial ganglionic eminence
(MGE) (Figures 1A, 5A, and 5B). In DIx1/2~/~ mutants, Zfhx1b
expression was strongly and specifically decreased in the SVZ
of the entire subpallium; expression in the subpallial VZ was
maintained, albeit perhaps reduced (Figures 5A-5B").

Toward defining the mechanisms that reguiate Zfhx7b expres-
sion in the developing subpallium, we identified two regulatory
elements near the Zfhx7b locus that drive expression in the
developing subpallium. These enhancers, here named #649
and #675, were identified by virtue of their extremely strong
evolutionary conservation (Figures 5C-5G) and their reproduc-
ible enhancer activity in the forebrain of mouse embryos in trans-
genic experiments (Figures 5H-5I; Visel et al., 2007, 2008). The
other genes in this region do not have known expression in the
developing subpallium. Analysis of enhancer activity at E11.5
in transgenic whole mounts and sections showed that both
enhancers drive LacZ expression in the subpallium, including
the SVZ of the MGE (Figures 5H and 5I). The spatial overlap of
enhancer activities and Zfhx7b mRNA expression suggests
that these two elements are distant-acting transcriptional activa-
tors of Zfhx1b in the developing subpallium. Computational
analysis identified multiple candidate homeobox binding sites
(asterisks in Figures 5D and 5E and highlighted regions in 5F
and 5G).

To test whether DIx2 can regulate these candidate Zfhx1b
enhancers we used a luciferase reporter assay. Co-transfection
of a luciferase reporter construct containing enhancers #649 and
#675 with a DIx2 expression vector in P19 cells showed that
DLX2 strongly activates luciferase transcription when these
elements are present (Figure 5J).

To determine whether DLX2 directly regulates enhancers 649
or 675, we performed chromatin immunoprecipitation (ChiP)-
gPCR of E13.5 basal ganglia using a DLX2 antibody. We found
enrichment over several homeodomain-containing regions of
enhancers 649 and 675, with a particular domain of #675 (region
#3) showing the strongest enrichment as compared to control
regions of the genome (Figure 5K). Also, the relative enrichment
of the enhancer fragments was eliminated when a DLX2 poly-
peptide was included in the immunoreaction as a negative
control (Figure 5K).

In summary, we have identified two candidate distant-acting
gene regulatory elements whose activity patterns suggest that
they contribute to Zfhx71b expression in the developing subpal-

lium. These enhancer elements are activated by DLX2 in lucif-
erase reporter assays and are bound by DLX2 in vivo, providing
strong evidence that subpallial Zfhx1b expression directly
depends on Dix1/2. Consistent with this, we observed marked
alterations of Zfhx1b expression in the subpallial SVZ of Dix1/
2-deficient mice. Taken together, these results raise the possi-
bility that the loss of Zfhx7b expression in the SVZ could
contribute to the defects in differentiation and interneuron migra-
tion seen in DIx1/2 mutants. To investigate this possibility, we
compared the phenotypes of the conditional Zfhx7b and Dix1/
27/~ mutants.

Dix1/2”~ Constitutive and Zfhx7b Conditional Mutants
Have Similar Changes in Gene Expression Related to
Their Defects in Interneuron Migration

As Zfhx1b expression in the subpallial SVZ was greatly reduced
in the DIx1/2 mutants (Figures 5A-5B'), and because interneuron
migration to the cortex was greatly reduced in both the Dix7/2~/~
and Zfhx1b mutants, we hypothesized that loss of Zfhx1b may
underiie some of the interneuron migration phenotype of the
Dix1/2~"~ mutants. To evaluate this idea, we compared gene
expression phenotypes of the Dix7/2™/~ constitutive null mutant
with the Zfhx1b conditional (Nkx2.7-Cre) mutant at E15.5
(Figure 6).

Indeed, changes in Nkx2-1 and Sox6 expression were similar
in the DIx1/2~/~ and Zfhx1b mutants. Nkx2-1 and Sox6 RNAs
are normally expressed in similar patterns at E15.5 (Figures 6A,
6B, 6C, 6G, 6H, and 6l); in wild-type brains, both RNAs are
maintained in the MGE, and in putative striatal interneurons
and globus pallidus neurons, while they are downregulated
in the MGE-derived cortical interneuron lineage (Nkx2-1-,
Sox6°*). Both Dix1/2~/~ and Zfhx1b mutants show increased
numbers of Nkx2-1* and Sox6* cells in the striatum/LGE
(asterisks in Figure 6; note: the Dix1 /2=~ mutant striatum is small
due to Dix-function in the LGE) (Anderson et al., 1997b; Yunet al.,
2002a).

Lhx6" cells are lacking throughout the cortex and increased in
the striatum of both the Dix7/2~/~ and Zfhx1b mutants (Figures
6D-6F"). Likewise, Sst* and NPY* cortical interneurons were
lost, whereas their expression was increased in the striatum
(Figures 6J-6L"; Sst data not shown).

RNA Expression Array Analysis ldentifies Candidate
Mediators of Zfhx1b Function

Toward identifying the molecular mechanisms underlying the
Zfhx1b mutant phenotype we used an RNA expression microar-
ray analysis. We compared gene expression from the E12.5

'MGE of Nkx2.1-Cre; Zfhx1b™~ mutants to that of Nkx2.1-Cre;

Zfhx1b™+ control littermates. Table S1 (see Table S3 for an
extended version) lists the most highly upregulated and downre-
gulated genes. Overall, a larger number of genes were found to
be significantly upregulated than downregulated in Zfhx1b
mutants, which may reflect Zfhx1b’s function as a recruiter of
repressive transcriptional complexes (van Grunsven et al.,
2003; Verschueren et al., 1999; Verstappen et al., 2008). We veri-
fied the results for many of the genes by performing in situ RNA
hybridization on E12.5 control and mutant brains (Figure S6 and
data not shown).
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We were most interested in genes that were altered in both the
Nkx2.1-Cre and DixI12b-Cre Zfhx1b mutants, given that both
mutants showed altered interneuron migration and specification.
Six genes fell into this category: cMaf, MafB, CXCR7, Dik1,
Cited1, and Gpc4 (Figures 7 and S6). DIk1, Cited1, and Gpc4
were upregulated in the MGE both mutants (Figure S6). cMaf,
MafB, and CXCR7 were downregulated in the MGE and
migrating interneurons; later in the paper, we focused more on
these genes (Figures 7 and S6); below, we discuss the other
genes.

DIk1 expression was strongly increased in the VZ and SVZ of
the MGE in the Nkx2.7-Cre mutant and increased weakly only
in the SVZ of the MGE in the DIx/12b-Cre mutant. (Figures
S6J-S6L' and S6HH-S6JJ"). Given that Zfhx1b’s function was
required in the SVZ of the MGE, the increase in DIk1 expression
could play a role in the phenotype. Dik1 encodes a secreted
delta-like ligand (Ferrén et al., 2011; Moon et al., 2002) that could
alter Notch signaling. We used electroporation to increase Dik1
expression in wild-type MGE, but failed to identify a change in
interneuron migration (data not shown).

Other genes related to Notch-signaling were also identified in
the array analysis, including the /d2 and /d4 helix-loop-helix and
Sox6 HMG-box transcription factors (Table S1). Expression of
1d4 was increased in the VZ of the Nkx2. 1-Cre mutant; however,
no change in expression was detected in the Dix/12b-Cre mutant
(Figures S6M-S60’ and S6KK-S6MM’); this implies that /d4
does not contribute to the interneuron phenotype. /d2 expres-
sion showed a subtle expression increase in the Nkx2.7-Cre
mutant (not shown); like /1d4, we did not find a change in its
expression in the Dix/1/2b-Cre mutant (not shown). Sox6 expres-
sion was also increased based on the array and an increase was
seen in both Nkx2.7-Cre and DIxl/1/2b-Cre mutants by in situ
hybridization at E12.5 (Table S1, Figures S1F-S1F/, and data
not shown), which became more pronounced at E13.5 and
E15.5 (Figures 2d-2L' and 3G-3l). Of note, Sox6 represses
MGE expression of Ascl1 (MashT) (Azim et al., 2009), a basic-
helix-loop-helix transcription factor whose expression is
promoted by Notch-signaling.

Expression of Cited1, a p300-binding transcriptional co-acti-
vator that promotes signaling in the TGF-beta pathway (Gerstner
and Landry, 2007) was increased in the SVZ of the ventral MGE
and POA in both the Nkx2.7-Cre and Dix/12b-Cre mutants
(Figures S58-S5U" and S5QQ-S5SS'). This is of interest given
that ZFHX1B acts as a SMAD-binding transcriptional core-
pressor (Vandewalle et al., 2009). Thus, Cited? and Zfhx1b
may function antagonistically in MGE development. Gpc4
expression in the SVZ of the MGE was increased in both mutants

(Figures S5V-S5X’ and S5TT-S5WW'). Glypicans (GPC) are
extracellular matrix proteins that promote FGF-signaling (Jen
et al., 2009).

Expression of genes related to oligodendrogenesis, including
Olg1 and GPR17 (Chen et al., 2009; Lu et al., 2000) were down-
regulated on the array in the Nkx2.7-Cre mutant (Table S1); we
failed to detect GPR17 expression by in situ hybridization and
Olg1 expression was weak. For this reason, we studied Olg2
expression; its expression was reduced in the SVZ of the MGE
at E12.5 (Figures S5P-S5R’). The downregulation of oligoden-
drocyte markers may be related to the increase in ID4 RNA; ID
proteins can repress oligodendrogenesis (Wang et al., 2001).
By E15.5, we did not detect a change in Olg2 expression (Figures
S2P-S2R'). The DIxI12b-Cre mutant did not show changes in
Olg2 expression (Figures SSNN-S5PP’), suggesting the Zfhx1b
function in the VZ, and not SVZ, regulates oligodendrogenesis.

Zfhx 18 Is Required for Expression of Genetic Markers

of Cortical Interneurons: cMaf, MafB, and Cxcr?

The gene expression array showed a ~3-fold reduction in the
expression of cMaf (v-Maf), a leucine zipper-containing tran-
scription factor (Table S1). cMaf, and its relative MafB, have
been reported to be expressed in cortical interneurons (Cobos
et al., 2006; Faux et al., 2009; Zhao et al., 2008). Likewise, the
array identified reduced expression of CXCR7, whose expres-
sion and function are required during cortical interneuron migra-
tion (Sanchez-Alcafiz et al., 2011; Wang et al., 2011).

We compared cMaf, MafB, and Cxcr7 RNA expression at
E12.5 and E15.5 and identified some important features (Figures
7, S2A-S2C, and S6D-~S6F). cMaf, MafB, and Cxcr7 RNAs were
expressed in the SVZ of the dorsal MGE (and not the ventral
MGE) and were maintained in cells migrating through the LGE
and CGE and then into the cortex at E12.5 and E15.5 (Figure 7,
S2A-S2C, and S6D-S6F). cMaf, MafB, and CXCR7 appear to
be excellent markers of the cortical interneuron lineage, as we
did not detect their expression in other MGE-derived structures,
such as the ventral pallidum or globus pallidus at E12.5, E15.5, or
PO (Figures 7, S2A-S2C, S6D-S6F, and data not shown). In the
E15.5 and PO striatum, these genes showed little expression
(Figure 7), except for MafB and cMaf in a very small population
of cells (data not shown). Thus, unlike other cortical interneuron
markers that are also expressed in striatal interneurons (e.g.,
Dix1, Lhx6, Parvalbumin, Sst), cMaf, MafB, and CXCR7 expres-
sion largely mark only cortical interneurons.

We then compared cMaf, MafB, and Cxcr7 expression in
E12.5 and E15.5 control (Zfhx1b heterozygotes), Zfhx1b condi-
tional mutants (Nkx2.7-Cre and Dix/12b-Cre) and the DIx1/2™/~

Figure 4, Zfhx1b Expression in the MGE Regulates the Numbers and Fate of Posinatal {P0 and P15) Cortical and Striatal Internsurons
Coronal hemisections showing the neocortex (A-F) and the striatum (G-R), comparing gene expression in control (left side) and Zfhx1b;Nkx2. 1-Cre conditional

mutants (right side).

(Aand A, D-F/, Gand G/, and M and M’) Two color immunoflucrescence with anti-EGFP (Cre reporter; green) and interneuron markers (red); other panels show

in situ hybridization results.

(S) Cell counts, control relative to mutant, of: total Cre-reporter EGFP* cell numbers in the PO and P15 cortex (left); of the number of cells that had colocalization of
the EGFP Cre-reporter with Sst or PV at P15 (middle); of the total levels of Sst and PV in the P15 cortex (right).

(T) Cell counts, control relative to mutant, of EGFP* Cre-reporter cells in the P15 striatum (left); of EGFP-colocalization with PV, Sst, and nNos in the P15 striatum
(middle); and of the total numbers of the markers PV, Sst, nNos, NPY, TacR1, and TrkA in the P15 striatum (right).

Error bars represent standard deviation. Scale bar equals 500 um (A, D, G, and M). *p < 0.05; *p < 0.01.
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Figure 5. DIx1&2 Are Required for Zfhx1b Expression in the SVZ of the Subpallium

(A-B) Coronal hemisections of the telencephalon comparing Zfhx1b expression in DIx1/*'~ and DIx1/2™'~ at E12.5 (A and A’) and E15.5 (B and B’). Note the
greatly reduced Zfhx1b expression in the SVZ of the LGE and MGE. X denotes reduction in Zfhx1b expression in the SVZ.

{C-K) Regulatory elements near Zfhx1b that drive subpallial expression are bound by DLX2 in vivo and are positively regulated by DLX2. (C) Relative genomic
position of two ultraconserved DNA elements near the Human Zfhx 1b (Zeb2) locus, #675 (D) and #649 (E) (data from hitp://genome.ucsc.edw/). (D and E) Genomic
alignment of enhancers #675 and #649; each contain a number of conserved consensus homeobox sites (asterisks). (F and G) Base-resolution view of regions
with homeobox sites within #649 and #675, which are heavily conserved across vertebrate species and are similar to known DLX2 binding sites (Potter et al.,
2008). (H and 1) Whoie-mount E11.5 enhancer-lacZ transgenic mouse embryos that demonstrated lacZ expression (X-Gal staining) in the ganglionic eminences
(subpallium) (H" and V'). (J) Luciferase assay demonstrating DLX2-dependent transcriptional activation (tCAGGS vector) mediated by enhancers #649 and #675
upstream of luciferase (pGL4.23 vector). (K) Blue bars: DLX2 ChiP gPCR assay (n = 3) demonstrates anti-DLX2 binding to chromatin from E13.5 ganglionic
eminences to subdomains of enhancers #675 and #649 and the positive control (DIx5/6 enhancer), and not to the negative control region (a nonconserved domain
upstream of DIx2). Red bars: addition of a DLX2 peptide blocks the anti-DLX2 binding.

Abbreviations: Cx, cortex; LGE, lateral ganglionic eminence; Luc, luciferase; MGE, medial ganglionic eminence; MZ, mantle zone; SP, subpallium; SVZ,
subventricular zone; VZ, ventricular zone. Error bars represent standard deviation. Scale bar equals 500 pm (A and B). **p < .001; n.s., not significant.
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Lhx6 Figure 8. Zfhx1b;Nkx2.1-Cre and Dix1/2"
futants Both Faill to Repress Nix2-1 and
Sox8, Lose Cortical internsurons, and Accu-
mulate MGE Cells in Thelr Striatum

Coronal hemisections of the E15.5 telencephalon
comparing gene expression in three rostral-to-
caudal planes of section in controls (left side) and
mutants (right side). In situ hybridization analysis
of Nkx2-1 (A-C"), Lhx6 (D-F"), Sox6 (G-1"), and
NPY (J-L") expression was assessed for control,
Zfhx1b;Nkx2.1-Cre  mutants, and Dix1/27/~
mutants. Asterisks show increased numbers of
labeled cells in the striatum. X shows reduced
number of Lhx6" cells in cortex. Abbreviations:
CGE, caudal ganglionic eminence; Cx, cortex; e,
ectopia in region of the ventral striatum and central
nucleus of the amygdala; GP, globus pallidus;
LGE, lateral ganglionic eminence; MGE, medial
ganglionic eminence; MZ, mantle zone; Str, stria-
tum; SVZ, subventricular zone; VPd, ventral pal-
lidum; VZ, ventricular zone. Scale bar equals
500 pm (A).
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Next, we determined at a cellular
resolution when cMaf expression begins

20hx1b (Fref;
Nix2.1-Cre.

Dbx1/24-

constitutive mutant (Figures 7, S2A-S2C”, and S3A-S3Y). cMaf
expression was nearly eliminated in all three mutants. Much of
the remaining cMaf expression was in scattered blood cells
and in the choroid plexus (Figures 7H’ and 7H"). MafB and
Cxcr7 were also greatly reduced in the SVZ of the ganglionic
eminences, although they were not as strongly downregulated
as cMaf (Figures 7, S2A-S2C’, S3D-S3V, S6D-S6Y, and
S6BB-S6GG’). Therefore, Zfhx1b (and DIx1&2) were required
for cMaf, MafB, and Cxcr7 expression, which are highly specific
markers of immature migrating cortical interneurons (cMaf and
MafB are specific for MGE-derived interneurons). Thus, the
loss of cMaf, MafB, and Cxcr7 expression in Zfhx1b conditional
mutants (Nkx2.1-Cre and DIx/12b-Cre) provides additional
evidence that cortical interneurons fail to be specified.

in developing cortical interneurons
(Figures 7M-7M'"). Given that cMaf
expression in the dorsal MGE and
migrating cortical interneurons is depen-
dent on Zfhx1b expression, and that
repression of Nkx2-1 in these regions is
also Zfhx1b dependent, we analyzed
whether or not cMaf and Nkx2-1 are
coexpressed in these cells. To this end,
we performed a triple-labeling analysis:
fluorescent in situ hybridization to detect
cMaf in combination with immunofluo-
rescence to label NKX2-1 and the
EGFP* Nkx2.1-Cre lineage (EGFP ex-
pression from CAG-CAT-EGFP, the Cre
reporter allele). We found that cMaf
RNA was expressed in EGFP* cells
derived from the MGE lineage that
were migrating through the LGE corridor
(LGE-Co) on route to the cortex (Figures
7M', 7TM”, and 7M""). These cells were NKX2-17. On the other
hand, NKX2-1 was expressed in cMaf —cells of the globus
pallidus (Figures 7M, 7M”, and 7M’”). Thus, as NKX2-1 expres-
sion is repressed in immature cortical interneurons, cMaf
expression begins.

DISCUSSION

Herein we demonstrate that Zfhx7b subpallial expression is
directly positively regulated by DIx7&2 and is required in the
MGE to generate cortical interneurons that express Cxcr7,
MafB, and cMaf. In its absence, Nkx2-1 expression is not
repressed, and cells that ordinarily would become cortical
interneurons are transformed toward the NPY/nNos/Sst subtype

_6 5._
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cMaf Cxer? Figure 7. cMaf and CXCR7 Are Highly

‘ P T l Frimih P i Py R Specific Markers of the Cortical !nternﬂe}xmn

rxargre 1 wkeatre i Nkx2.1-Cre NioztCre i i Lineage that Are Lost in £fhx b Conditional
e Mutarts and Dix1/27" Mutants

Ox

E12.5

cMaf

Cxer?

Coronal hemisections of the E12.5 (A-F”) and
E15.5 (G~L") telencephalon comparing cMaf (A-
C”; G-1")and CXCR7 (D-F”; J-L") RNA expression
by in situ hybridization in three rostral-to-caudal
planes of section in control (left panels),
Zfhx1b;Nkx2.1-Cre conditional mutants (middie
panels), and Dix7/2~/~ mutants (right panels). X
shows reduced/absent cMaf* or CXCR7* cells in
cortex or ganglionic eminences. Abbreviations:
CGE, caudal ganglionic eminence; ChP, choroid
plexus; Cx, cortex; LGE Co, LGE corridor; dMGE,
dorsal medial ganglionic eminence; vMGE, ventral
medial ganglionic eminence; Str, striatum. Scale
bars are equal to 500 pm (A) and 200 uM (M).

Zfhx1b Regulates MGE Cell-Type
Generation

E O Ranb (P
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Nkx2.1-Gre

4 1
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The MGE generates multiple cell types,

H onvzi |

LOx
L&

Cx

E15.5

Zfhx1b (F/+); Nkx2.1-Cre; CAG-CAT-EGFP

including GABAergic interneurons of the
cortex and striatum, GABAergic projec-
tion neurons of the basal ganglia (e.g.,
GP), cholinergic neurons of the striatum
and basal telencephalon and oligoden-
drocytes (Flandin et al., 2010; Petryniak
et al.,, 2007; Xu et al., 2008). The MGE
generates roughly 60% of all GABAergic
cortical interneurons; these express PV,
Sst, NPY, and nNos (Gelman and Marin,
2010; Rudy et al., 2011).

The MGE also generates striatal inter-
neurons. There are three subtypes of
GABAergic striatal interneurons: PV,
nNos/NPY/Sst* and CR* (Tepper et al.,
2010). The striatum also has cholinergic
interneurons. The cholinergic population
is marked and regulated by Gbx2, Islet1,
and Lhx8 (Chen et al., 2010; Fragkouli

X2t cla RN i SEGEE

| ostar e, iz angre, € al., 2009), and the neurotrophin

E13.5

of striatal GABAergic interneuron. Furthermore, it is possible
that the Zfix1b™'~ phenotype is also caused by defects in
migration and differentiation that contribute to the formation of
subpallial ectopia. However, below we largely concentrate on
discussing the evidence that Zfhx1b regulates cell-type
specification.

receptor TrkA (Sanchez-Ortiz et al,
2012).

The ventral MGE is not a major source
for cortical interneurons based on fate
mapping using Shh-Cre (Flandin et al.,
2010). Thus, the dorsal MGE must be
the source of most MGE-derived cortical
and striatal GABAergic interneurons. It is
poorly understood whether these cell
types are generated from distinct subre-
gions, from distinct but intermixed progenitors, or from the
same progenitors in a stochastic or temporally modulated
program. While the same neuroepithelial progenitor can
generate different types of cortical interneurons (PV and Sst)
(Brown et al., 2011), it is not known whether cortical and striatal
interneurons are derived from the same progenitor.
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Zfhx1b was required to generate GABAergic cells that migrate
to the cortex, and to repress the generation GABAergic cells that
migrate to the striatum. We suggest that Zfhx7b promotes a fate
switch between cortical interneurons and nNos/NPY/Sst striatal
interneurons through repression of Nkx2-1 expression. Further-
more, Zfhx1b mutants have reduced striatal PV interneurons
(Figures 4M and 4M'); thus, Zfhx1b could also control this fate
decision. Zfhx1b is required in the MGE SVZ, and not the VZ,
to promote the specification of pallial interneurons, as we
observed largely the same phenotype using Dix/12b-Cre (SVZ
recombination, Figures 3, S1, and S3) and Nkx2.7-Cre (VZ
recombination; Figures 1, 2, S$1, and S2).

We identified perhaps the first specific early marker of dorsal
MGE-derived cortical interneurons: cMaf (Figure 7). cMaf and
Mafb expression are dependent on Zfhx7b and Dix1/2 function
(Figures 7, S2A-S2C’, S3D-33F, S6D-S6F', and S6BB-S6DD’;
Cobos et al., 2006; Long et al., 2009a; Long et al., 2009b).
Notably, neither cMaf nor Mafb are strongly expressed prenatally
in neurons of the striatum (interneurons and medium spiny
neurons), suggesting that prenatally they may be specific
markers of the cortical interneuron lineage. Currently, Maf func-
tion in the brain has only been studied in the hindbrain (Cordes
and Barsh, 1994).

Zfhx1b Connects the Mix2-1 and Dix Transcription
Pathways

There is genetic evidence for at least three parallel (although in-
teracting) transcriptional pathways in the MGE that are required
for cortical interneuron development: the (1) Asc/7 (Mash1), (2)
Dix, and (3) Nkx2-1 pathways (Long et al., 2009a, 2008b). The
Nkx2-1 pathway is the core mediator of MGE regional and cell
identity (Butt et al., 2007; Sussel et al., 1999); it functions through
induction of Lhx6 and Lhx8 (Sussel et al., 1999). Lhx6 is essential
for induction of Mafb and Shh in neurons, maintenance of Sox6 in
interneurons, and the differentiation of Sst and Parvalbumin
cortical interneurons (Lhx6) (Liodis et al., 2007; Zhao et al,,
2008); Lhx8 is required in cholinergic striatal interneurons
(Lhx8) (Fragkouli et al., 2009).

Only a subset of MGE neuronal derivatives maintain Nkx2-1
and Lhx8 expression, such as the globus pallidus and cholin-
ergic striatal interneurons (Marin et al., 2000), whereas MGE-
derived cortical interneurons suppress Nkx2-1 and Lhx8
expression (Nobrega-Pereira et al., 2008). We propose that
Dix and Nkx2-1 pathways interact at this step. We demon-
strated that Dix1/2 were required for Zfhx1b expression in the
subpallial SVZ (Figure 4) and that Zfhx1b was required for
repression of Nkx2-1, but not of Lhx8 (Figures 2D-2F, 2M-
20/, 3A-3C', and 3J-3L'). Thus, in the absence of Zfhx1b,
dorsal MGE-derived neurons continued to express Nkx2-7,
Sox6, and Lhx6, and migrate into the striatum and not the
cortex. These ceils failed to express markers of cortical inter-
neurons (Cxcr7, cMaf, and MafB) (Figures 7A~7." and S5A-
S5Y), but highly expressed the striatal GABAergic subtype
markers NPY, nNos, and Sst (Figures 2P-2R’ and 3M-30’; Tep-
per et al., 2010). Additionally, there was increased expression of
TacR1, which is robustly expressed in Sst* and ChAT? striatal
interneurons, and in very few cortical interneurons (Ardelt
et al., 1996; Figures S4D-S4F").

Finally, Zfhx1b mutants did not exhibit clear phenotypes of
striatal cholinergic interneurons or the GP. Thus, we propose
a distinct Zfhx1b-independent mechanism for the generation of
the GP and cholinergic neurons; the latter depends on the main-
tenance of Lhx8, perhaps in combination with Islet? and Gbx2
(Chen et al., 2010; Fragkouli et al., 2009).

Downsiream of Zfhx1b In the MGE Celis

It is unclear whether Zfhx7b has a common molecular mecha-
nism in all developing cells. Zfhx1b mediates some of its
functions through interactions with SMAD proteins, and thus
participates in TGF-beta signaling (Vandewalle et al., 2009).
Expression of the SMAD-binding transcriptional coactivator
Cited1 was increased in Zfhx1b mutants (Figure S6). The link
to SMAD signaling is intriguing because SMAD dominant-nega-
tive expression can inhibit interneuron tangential migration
(Maira et al., 2010).

In the pallium, Zfhx7b functions in both progenitors and
neurons. In hippocampal progenitors, it functions upstream of
Whnt signaling to control development of the entire region (Mique-
lajauregui et al., 2007). In neocortical neurons, Zfhx1b regulates
neurotrophin-3 and Fgf9 expression, to control cortical progen-
itors (Seuntjens et al., 2009). We did not observe similar regula-
tory changes in the Zfhx1b mutant MGE.

While Zfhx1b in the MGE SVZ regulates the switch between
cortical and striatal interneurons, Zfhx1b is also expressed in
the VZ of the MGE (Figure 1A). Two genes related to Notch
signaling were upregulated in the mutant MGE VZ, including
the secreted delta-like ligand Dik1 (Ferron et al., 2011; Moon
et al,, 2002) and the HLH transcription factor /D4 (Yun et al.,
2004; Figures S6J-S60'). DIkT upregulation in the VZ and SVZ
could alter the balance of cell fate decisions.

Previous studies suggested that Nkx2-1 promotes interneuron
integration into the striatum via repression of Npn2/Sema3-
dependent repulsion (Marin et al., 2001; Nébrega-Pereira et al.,
2008). We did not detect a change in Npn2 and Npn1 RNA
expression in migrating immature Zfhx7b mutant interneurons
at E12.5. On the other hand, van den Berghe et al. (2012) (this
issue of Neuron) present evidence that Zfhx1b regulates inter-
neuron migration through the Netrin receptor Unc5b.

Zfhx1h and Human Disease

Mowat-Wilson syndrome (MWS) is caused by a heterozygous
mutation or deletion of the Zfhx1b (ZEB2, SIP1) and is character-
ized by a distinctive facial appearance, intellectual disability, and
variable other features including seizures, agenesis of the corpus
callosum, and Hirschsprung disease (Mowat et al., 2003). Given
Zfhx1b’s critical role in cortical interneuron development, we
propose that cortical interneuron defects contribute to the
seizure phenotype of MWS. Furthermore, since Dix1&2 regulate
Zfhx1b expression in the subpallium, and Dix1&2 also regulate
craniofacial and enteric nervous system development (Qiu
et al., 1995) it will be intriguing whether Zfhx1b is also down-
stream of Dix function during development of these tissues.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for detailed description of
methods.
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Mice

Zfhx1b FF mice were genotyped according to (Miyoshi et al., 2006). CAG-CAT-
eGFP mice were genotyped according to (Kawamoto et al., 2000). Zfhx1b 77
males were crossed to Beta-Actin Cre mice (Lewandoski et al.,, 1997) to
generate the Zfhx1b null allele, which was followed by a cross to wild-type mice
to eliminate the Beta-Actin Cre allele. Zfhx1b*'~ mice were crossed with
Nkx2.1-Cre or 11/2b-Cre mice, and male Zfhx1b*™~; Cre* mice were
crossed with female Zfhx7b™" mice with or without the CAG-CAT-EGFP
allele to generate conditional mutant embryos. Animals were treated in accor-
dance with the protocols approved by the NICHD and UCSF Animal Use
Committee.

Histochemistry

Embryonic and postnatal brains were prepared and immunostained (Flandin
et al., 2010) or assayed by in situ hybridization (Jeong et al., 2008). Protocols
can be found on our lab website http://physio.ucsf.edu/rubenstein/protocols/
index.asp, with modifications for dual immuno/in situ fluorescence analysis
described in the Supplemental Experimental Procedures.

Cell Culture, Transfections, and Luciferase Assays

P19 cells were cultured as described in (Farah et al., 2000). Experimental
conditions were tested in triplicate by transfection of cells in 12-well plates
using Fugene 6 (Roche). Cotransfection of a Renilla luciferase expression
construct was used as a normalization control for a dual-luciferase assay.
The following amounts of DNA were used in each well: 80 ng pGL4.73 (Renilla
Luciferase, Promega), 240 ng pCAGGs-empty or pCAGGS-Dix2, 240ng
pGL4.23-empty (Luciferase, Promega), or pGL4.23-enhancer. Luciferase
and Renilla Luciferase quantification was done using a Promega Dual-Lucifase
Assay Kit and a microplate luminometer (Veritas). Chi-square test showed that
the levels of activation were significant *: p < 0.05.

Chromatin iImmunoprecipitation (ChiP)
ChlIP was performed similar to a published method (McKenna et al., 2011) with
modifications described in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, three tables, and Supplemental
Experimental Procedures and can be found with this article online at http://dx.
doi.org/10.1016/j.neuron.2012.11.035.
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