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during a relaxed state. It is attenuated by movement execu-
tion and motor imagery. That phenomenon is referred to as
event-related desynchronization (ERD) (Arroyo et al. 1993).
The ERD of the mu rhythm, named mu ERD, is interpreted as
the desynchronized activities of the activated neurons, and it
appears around the motor area during motor execution,
preparation and motor imagery (Pfurtscheller and Aranibar
1977; Pfurtscheller and Lopes da Silva 1999). Recently,
electroencephalogram (EEG)-based BCI was applied to
patients with chronic stroke (Daly et al. 2009; Shindo et al.
2011). These EEG-based BCls controlled an orthotic device
to extend their paretic fingers. The EEG-based BCIs detected
mu ERD during motor imagery with EEG and reported that
BCI training improved hand motor function in patients with
chronic stroke.

However, the application of BCI to patients with severe
motor disabilities has been limited, because of the diffi-
culty detecting stable brain signals (Platz et al. 2000;
Leocani et al. 2006). If it is possible to potentiate ERD, it
would be easier to apply BCI to these patients.

Matsumoto et al. (2010) reported that tDCS could
modulate mu ERD in healthy persons. Anodal tDCS
(10 min, 1 mA) increased the magnitude of mu ERD in
M1. If tDCS could also increase mu ERD in patients with
severe hemiparetic stroke, it may be useable as a condi-
tioning tool to facilitate the detection of more stable ERD
for BCI application. Therefore, the aim of this study was to
test whether anodal tDCS could increase ERD in patients
with severe hemiparetic stroke.

Methods
Participants

Six patients with chronic hemiparetic stroke (4 males and 2
females) participated in this study. Inclusion criteria

Table 1 Clinical details of participants

consisted of the following: (1) first unilateral subcortical
stroke, not involving sensorimotor cortex as confirmed
with brain MRI; (2) time from the stroke onset more than
6 months; (3) moderate to severe hemiparesis (participants
could not move their paretic fingers individually); and (4)
no motor improvement in the last 1 month before starting
the intervention as confirmed by physicians and patients’
testimonies. Exclusion criteria were as follows: (1) history
of major psychiatric or previous neurological diseases,
including seizure; (2) cognitive impairment precluding
informed consent; (3) use of central nervous system-active
drugs; and (4) implanted pacemaker or other metallic
object. Participants’ mean age was 56.8 + 9.5 years. The
mean time from the onset was 70.0 £+ 19.6 months. The
mean score on the Fugl-Meyer assessment of upper
extremity motor score was 30.8 + 16.5 (Fugl-Meyer et al.
1975), and the median score of the modified Ashworth
scale for finger flexors was 14+ (range = 14+ to 2)
(Bohannon et al. 1987). All participants were right handed.
Clinical details of the participants are shown in Table 1.
Additionally, seven age-matched healthy persons were
recruited. All were right handed. Their mean age was
54.4 + 6.1 years. We found no significant difference in the
age between the stroke and age-matched healthy partici-
pants (unpaired t test, P = 0.593). The purpose and pro-
cedures of the study were explained to the participants, and
written informed consent was obtained. The study was
approved by the institutional ethics review board and per-
formed in accordance with the Declaration of Helsinki.

Measurement of event-related desynchronization
(ERD)

We assessed mu ERD during imagery of extension of the
affected fingers just before and after anodal and sham tDCS
over the motor area of the affected hemisphere in the stroke
participants. The order of the stimulations was randomized,

Participant (sex) Age Dx Lesion Paretic side Time from onset FM U/E Modified Ashworth
(months) scale

1 (M) 67 CH L thalamus R 96 35 1+

2 M) 44 CH L putamen R 64 50 1+

3 M) 63 CH R thalamus L 49 12 2

4 (M) 46 CI R corona radiata L 48 49 1+

5(F) 61 CI R putamen L 85 24 1+

6 (F) 60 CI L putamen R 78 15 2

Mean 56.8 70 30.8 1+*

SD 9.5 19.6 16.5

CI cerebral infarction, CH cerebral hemorrhage, FM U/E Fugl-Meyer assessment score upper extremity motor score, L left, R right

? median value
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and the interval between the stimulations was more than
2 days. In the healthy participants, we assessed mu ERD
during imagery of right finger extension before and after
anodal tDCS over the left motor area.

EEG signals were recorded with 15 Ag/AgCl disk
electrodes (1 cm in diameter) with binaural references
according to the international 10-20 system of electrode
placement (FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4,
CP3, CP1, CPz, CP2, CP4) with the average of bilateral
earlobe references. Impedance for all channels was main-
tained below 10 kQ throughout the experiment. Electr-
omyograms (EMGs) were simultaneously recorded from
the bilateral extensor digitorum communis muscles (EDC)
with surface Ag/AgCl disk electrodes (1 cm in diameter) to
monitor EMG activities during the imagery task to avoid
unexpected muscle contraction. EEG and EMG were
amplified, digitized with sampling frequency of 1,000 Hz
and band-pass filtered (EEG 0.53-100 Hz, EMG 20-1 kHz)
using a commercially available biosignal recorder (Neurofax
EEG-9100, Nihon Kohden Corporation, Japan).

The participants sat in an upright position in an armchair
with their eyes open facing the computer monitor showing
the task. The monitor was placed approximately 0.5 m in
front of the subjects at eye level. One trial started with an
8-s period of relaxation during which the word “Rest” was
shown on the monitor. After that, the word “Ready” was
shown for 2 s, then the word “Start” was presented for 5 s,
and the participants were asked to imagine extension of
their affected fingers. The trial ended when the word
“Rest” reappeared, and the next trial began. They were
given no feedback regarding EEG changes to avoid a
learning effect. One session consisted of 20 trials. Before
and after tDCS, three sessions were conducted with
approximately 5 min of rest between each session. All
three sessions were completed within 30 min (Fig. 1).

Quantification of ERD

Event-related trials lasting 5 s during motor imagery were
selected for off-line data processing. All trials were

visually assessed. The trials with artifacts resulting from
eye movement and the trials with increased EMG activities
were excluded. All trials were segmented into successive
1-s windows with 900 overlapping samples, and the Fou-
rier transform with the Hanning window was applied in
each segment. The power spectrum densities of each seg-
ment were estimated over the trials by Welch’s averaged
periodogram method (Welch et al. 1967).

The mu ERD was expressed as the percentage of the
power decrease in relation to the 1-s reference interval
before the direction of “Ready.” The ERD at a certain
frequency was calculated for each time (resolu-
tion = 0.1 s) and frequency (resolution = 0.98) according
to Eq. (1).

ERD (f,1) = {[R(f) — A(f,)]/R(f)} x 100 (%) )

where A(f, 1) is the power spectrum density of the EEG at a
certain frequency band f[Hz] and time ¢[s] since the
imagery task was started, and R(f) is the power spectrum at
the same frequency f[Hz] of the baseline period (a 1-s
interval before the direction of “Ready” was displayed).
The largest power decrease during motor imagery was
selected as the value of mu ERD. The values of mu ERD
before tDCS application were compared in all adjacent
pairs of bipolar derivations of EEG and determined the
electrode pairs showing the strongest value of mu ERD for
individuals. The values of mu ERD in two stimulation
conditions (anodal and sham stimulation) were calculated
from the same bipolar derivation of EEG. All off-line
analyses of EEG data were performed using MATLAB
(The MathWorks, Inc. USA).

Transcranial direct current stimulation (tDCS)

The tDCS was applied through rectangular saline-soaked
sponge electrodes (50 x 70 mm) with a battery-driven
stimulator (CX-6650, Rolf Schneider Electronics, Glei-
chen, Germany). In the stroke participants, the position of
M1 of the affected hemisphere was determined as the
symmetrically opposite side of M1 of the unaffected

ERD ERD ERD
20 20 20

tDCS/
Sham

ERD ERD ERD
20 20 20

L e 2 s S S e J e i S o e D e e S .
5min 10 min

Fig. 1 The paradigm of the experiment. We assessed the ERD during
imagery of the affected fingers extension just before and after the
anodal and sham tDCS over the motor area of the affected
hemisphere. The order of the stimulations was randomized, and the
interval between the stimulation was more than 2 days. One ERD

assessment session consisted of 20 trials. One trial consisted of an 8-s
period of relaxation, a 2-s period of ready state, and a 5-s period of
imagery. Before and after tDCS or sham stimulation, three sessions
were conducted with approximately 5 min of rest between each
session
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hemisphere confirmed by the induction of the largest
motor-evoked potentials (MEPs) in the unaffected EDC
muscle with constant stimulus intensity using TMS with a
figure-eight stimulation coil connected to a Magstim 200
magnetic stimulator (Magstim, Whitland, UK). This is
because the MEPs could be evoked in the unaffected
hemisphere but not in the affected hemisphere in all stroke
participants. The anode was placed over M1 of the affected
hemisphere, and the cathode was placed over the opposite
side in the supraorbital region. In the active condition,
tDCS was applied for 10 min with a current intensity of
1 mA. Participants sat awake in a comfortable armchair
during the stimulation. In the sham stimulation, the elec-
trodes were arranged similarly to the anodal stimulation
and applied stimulation within the first 10 s only to mimic
the transient skin sensation at the beginning of actual tDCS
without producing any conditioning effects on the brain
(Furubayashi et al. 2008). In the healthy participants, the
anode was placed over the left M1 determined by TMS,
and the cathode was placed over the right supraorbital
region. TDCS was applied to them for 10 min with a
current intensity of 1 mA. To place the tDCS electrodes on
the head, 3 to 4 EEG electrodes over the stimulus site were
removed after marking the scalp. After the stimulation, the
EEG electrodes were set again on the same position as
before. Because it took less than 3 min for electrode
replacement, the effect of elapsed time after tDCS on the
ERD measurement was limited.

Statistical analysis
To analyze the difference in mu ERD value and baseline

EEG power spectrum with stimulation (both anodal tDCS
and sham stimulation), Wilcoxon signed-rank test was

Fig. 2 Changes of mu ERD a
during the motor imagery with 40
tDCS in the stroke participants

(a) and the age-matched healthy 354
participants (b). The circle

shows the mean ERD before 30 4
and after anodal tDCS, and

square shows the mean ERD 25
before and after sham

stimulation. Error bars are "

standard errors. *Wilcoxon

signed-rank test P < 0.05
15 4

10 4

used. To compare the mu ERD value between the stroke
and healthy participants, Mann—Whitney test was used.
Statistical analysis was performed with SSPS 18.0 J (SSPS
Japan).

Results

None of the participants reported any adverse effects dur-
ing or after the experiment. All participants showed mu
ERD during motor imagery. The changes of ERD with
tDCS in the stroke and healthy participants were shown in
Fig. 2. Anodal tDCS significantly increased mu ERD in
both the stroke (P = 0.028) and healthy participants
(P = 0.018), though we did not find any significant change
of mu ERD in the stroke participants with sham stimulation
(P = 0.084). The mean (SD) values of mu ERD in the
stroke participants were 21.2 % (11.7) before anodal tDCS
and 21.4 % (15.8) before sham stimulation, and there was
no significant difference in the baseline mu ERD values
(P = 0.818). The mean mu ERD value (SD) before tDCS
in the healthy participants was 28.0 % (7.2). The mu ERD
values before tDCS in the healthy participants were rela-
tively larger than those in the stroke participants, though
the difference was not significant (P = 0.317).

We found no significant difference in the baseline EEG
power spectrum between before and after tDCS in both the
stroke and healthy participants. The mean (SD) value of the
baseline EEG power spectrum was 0.46 pV? (0.24) before
anodal tDCS and 0.47 wV? (0.26) after anodal tDCS in the
stroke participants (P = 0.715), and 0.23 qu 0.12)
before anodal tDCS and 0.27 pV? (0.15) after anodal tDCS
in the healthy participants (P = 0.398).

before
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Discussion

We found that anodal tDCS was able to increase ERD
during imagery of extension of the affected fingers in
patients with chronic severe hemiparetic stroke as same as
age-matched healthy persons. This result was similar to
younger healthy persons as demonstrated by Matsumoto
et al. (2010). It has been reported that anodal tDCS
increases cortical excitability (Nitche and Paulus 2000). It
was supposed that anodal tDCS increased spontaneous
neuronal firing (Bindman et al. 1964; Purpura and
McMurtry 1965) and depolarization of the resting mem-
brane potentials (Bindman et al. 1964; Nitche and Paulus
2001; Nitsche et al. 2003). The mechanism of ERD is
thought to be a decrease in synchrony of the underlying
neuronal population (Pfurtscheller and Lopes de Silva
1999). Therefore, modulation of ERD with tDCS could be
explained by changes in the oscillatory behavior of cortical
neurons, such as membrane potentials in the primary motor
area, and the neurons firing according to input signals in
response to motor imagery. An increase in cortical excit-
ability, such as depolarization of the membrane potential of
the cortical neurons in the M1, will result in more activated
and desynchronized neurons, based on the input signals
from motor imagery, which will strengthen ERD.

EEG patterns in patients with stroke are different from
those in healthy subjects. Platz et al. (2000) showed that
stroke patients with somatosensory deficits had reduced
alpha centroparietal ERD during movement preparation
and execution. We found that the baseline ERD values of
the stroke patients in this study were relatively smaller than
the values of the age-matched healthy participants. Anodal
tDCS may lead to normalization of the pattern of EEG by
increasing ERD of the affected hemisphere in patients with
severe hemiparetic stroke. Since ERD was fully detected in
every patient before tDCS, it might be interesting to rep-
licate this study in more severe patients in order to fully
test for the interest of the present findings.

There are several limitations to be considered in this
study. First, we determined the position of M1 of the
affected hemisphere using the symmetrical opposite side as
a marker, that is, M1 of the unaffected hemisphere. This is
not the exact position decided by motor-evoked potential
(MEP) of the affected EDC by directly stimulating the
affected hemisphere. This is because MEP could not be
evoked from the affected EDC. Second, because we used
fairly large (5 cm x 7 cm) electrodes for tDCS, we could
not exclude the aftereffect of the premotor cortex or sen-
sory motor cortex. Thirdly, there is the possibility that
some participants did not imagine well before the stimu-
lation. This is very difficult to assess. It could be supposed
that tDCS directly influenced the attention (Kang et al.
2009). Further study of the relationships between

modulation of ERD and stimulation site among patients
with stroke is needed.

In conclusion, anodal tDCS can increase mu ERD of the
affected hemisphere in patients with severe hemiparetic
stroke as well as in healthy persons. Therefore, it could be a
conditioning tool for EEG-based BCI to make detection of
ERD easier.
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Repeated measure ANOVA p<0.001
* Post hoc Bonferroni p<0.001
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VI. rTMS, tDCS
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VI. Brain-Machine Interface (BMI)
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