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Fig. 6 - (A) Neurobehavioral test at 24 h post-ischemia, the neurologic score of the cooling group was better than that of
the non-cooling group (n=9 *p<0.05 by Mann-Whitney U test. S. indicates scores of motor function. Score 0: best, score
4: worst. N: number of rats.). Forelimb capability (B. ipsilateral forelimb; C. contralateral forelimb) measured by a grip strength
meter from 5 days before surgery to 5 days after surgery. Note that in the contralateral forelimb (bottom tracing), a significant
difference was observed between the cooling and non-cooling groups at 2 days after surgery. Data are expressed as
mean+SD (n=9 #p<0.03 by paired t-test. BL=baseline average grip strength 5 days before the surgery.)

Motor function was restored to baseline at 3 days after the
ischemic event and there was no statistically-significant differ-
ence between the cooling and non-cooling groups. This phe-
nomenon is supported by previous studies showing that most
animals recover from their impaired function, more or less after
brain injury because of active neuroplasticity (Alexis et al., 1995).

While the neuroprotective effect of FBC was confirmed in
our study, further proof is still necessary to confirm the
optimal cooling temperature, cooling period and rewarming
times, as well as comparison of the efficacy of FBC and
systemic hypothermia (Steiner et al., 2001; Clark et al., 2008;
Colbourne et al., 2000; Yanamoto et al., 2001).

In our institute, we have initiated development of an
implantable focal cooling system, including a cooling com-
ponent, temperature control system, battery, and a fail-safe
system. Recently, a focal cooling system, the ChillerPad™,
was applied to a monkey model of traumatic brain injury and
in patients with stroke or aneurysm (King et al., 2010, Wagner
and Zuccarello, 2005). However, several issues remain and
must be resolved from the medical engineering point of view
before this neuromodulation can be used clinically. With the
continued development of such apparatuses, clinical applica-
tion of this implantable local cooling system may thus be
realized in the near future.

4, Experimental procedure
4.1.  Animals

Healthy adult male Wistar rats (350+50g) housed in a
temperature-controlled room (23.0+2.0°C) were used in the

study (n=30 in total). Animal experiments were performed
using protocols that were approved by the Institutional Animal
Care Committee at Yamaguchi University School of Medicine.

4.2,
model

Surgical procedures and the focal cerebral ischemia

Rats were anesthetized with sevoflurane (3% for induction via
a face mask, 2% after intubation and maintenance in an 80%/
20% mixture of oxygen and air by a ventilator (A.D.S.1000
Engler Engineering Corporation. USA). During the procedure,
rectal temperature was monitored and kept constant at
37+0.2°C by a temperature-controlled heating pad
(N'S-TC10, Neuroscience Inc., Japan). The femoral artery and
femoral vein were cannulated for continuous monitoring of
arterial blood pressure, obtaining blood gas samples and drug
administration. Systemic blood pressure was maintained at
100-120 mmHg, and blood-gas data in the non-cooling and
cooling groups were controlled at pH 7.44+0.04 and
7.4340.03, pO, of 202.6+36.0 and 215.3+37 and pCO, of
40.7+2.2 and 40.543.0.

The skull was fixed using a stereotactic apparatus (SR-6N,
Narishige, Japan). A scalp incision was performed at the
midline following injection of lidocaine (2%), and both the
Bregma and Lambda points were exposed after dissection of
the pericranial tissue. A small burr hole, 3 mm in diameter,
was made 4 mm lateral to the right and 0.5 mm anterior to
the Bregma and the dura matter remained intact. Focal
cerebral ischemia was achieved by the photothrombotic
method (Yao et al., 2003; Grome et al.,, 1988; Fujioka et al,,
2010b), illumination was initiated through the burr hole with
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a fiber optic bundle of a cold light source (Fiber-Lite series 180
Dolan-Jenner Industries. Inc., USA) just after the Rose Bengal
injection (1.3 mg/100 g body weight in 0.9% sterile saline) via the
right femoral vein, and lasted for 20 min. In this manner, focal
cerebral ischemia of the primary sensorimotor (SI-MI) cortex of
the right hemisphere (2.5-5.5mm lateral, 20mm anterior,
1.0 mm posterior to the Bregma) was photochemically-induced

(Fig. 1).
4.3.  Focal brain cooling

An additional craniotomy, including the burr hole, was made
over the ipsilateral SI-MI cortex (1.0-7.0 mm lateral, 3.0 mm
anterior, 4.0 mm posterior to the Bregma) just after induction
of the focal cerebral ischemia. A cooling device composed of a
thermoelectric chip that was originally developed in our
laboratory, and has been described previously (Fujioka et al.,
2010a, 2010b), was placed on the SI-MI cortex (Fig. 1). We
focally cooled the SI-MI cortex above the dura matter to a
temperature of 15 °C for 5 h from 1 h after the development of
focal ischemia. After the cooling period ended, the cortex was
spontaneously rewarmed and the temperature was main-
tained for 1h. The 15°C cooling was selected because it
represents the borderline temperature affecting neurobeha-
vioral function (Fujii et al., 2012). Sham-operated rats under-
went craniotomy and placement of the cooling device.

The focal cooling experiments were composed of short-
and long-term studies. The short-term study evaluated the
periodic epileptiform discharges in the border zone of the
ischemic focus and of the infarct area. The long-term study
assessed the impact on neurobehavioral function (Fig. 2).

4.4. ECoG recordings and the spectral analysis

We placed a pair of ball-type electrodes (impedance 500 kQ at
500 Hz) to detect the ECoG on the cortex at the boundary of
the ischemic area after placement of the cooling device
(Fig. 1). Thereafter, ECoGs were recorded continuously for
8h in two channels (monopolar recording; with a reference
electrode inserted in the scalp) and analyzed using PowerLab
Chart 5 software (PowerLab Chart5; AD Instruments) at a
sampling rate of 2kHz (low-cut filter 5Hz, high-cut filter
60 Hz) for visual examination. To quantify the frequency
profiles, the power spectrum was calculated by fast Fourier
transform (FFT) analysis, which was performed for ECoG data
in 60s intervals at 1h (precooling), 3h (cooling) and 7h
(rewarming) after the development of focal ischemia (Fig. 2).
We analyzed the ECoG components in all conventional
frequency bands, including delta, theta, alpha and beta
(delta=1-4 Hz; theta=4-9 Hz; alpha=09-14 Hz; betal=14-25
Hz; beta2=25-30Hz). Six rats were used in each of the
cooling and non-cooling groups.

4.5.  Measurement of the infarct area

All of the rats in both the cooling and non-cooling groups
(n=6) were sacrificed after the recording of ECoG for 8 h. The
brains were immediately removed and incubated in a 2%
solution of 2,3,5-triphenyltetrazolium chloride (TTC Lot KWG
6634, Wako Pure Chemical Industries, Ltd., Japan) at 4 °C for

12h (Hatfield et al.,, 1991). Three serial sections from each
brain were cut at 1mm intervals from the center of the
infarct zone and photographs of the sections were taken at
the middle of the 3 sections.

4.6.  The impact on neurobehavioral function

After the focal cooling for Sh, cortices were naturally
rewarmed and the temperature was maintained at the base-
line for 1h (cooling group, n=9). Thereafter, the scalp was
closed without repairing the cranial window. The rats
awakened from anesthesia were placed back in the cages.
To distinguish the effect of the sensorimotor injury, appro-
priate control experiments were also conducted (non-cooling
group, n=>9).

Neurobehavioral function of each rat was evaluated after
surgery by an observer who was blinded to the experimental
procedure. Neurobehavioral function was assessed by five
categories of motor neurological findings, as follows: score 0:
no observable deficit, score 1: forelimb flexion, score 2:
forelimb flexion and decreased resistance to lateral push,
score 3: forelimb flexion, decreased resistance to lateral push
and unilateral circling, and score 4: forelimb flexion, unable
or difficult to ambulate (Lee et al.,, 2002). Neurobehavioral
function was assessed 24h after the induction of focal
ischemia in the cooling and non-cooling groups (Fig. 2).

Grip strength test was also employed in the assessment of
neurobehavioral function. An inverted T-type bar 63 mm in
length and 103 cm wide connected to a grip strength meter
(Ugo Basile Comerio (VA), Italy) was used to measure graded
changes in the forelimb grip strength of the rats. Rats held
the bar and were gently pulled away from it in a smooth
manner, by grasping of the tail, in a steady motion, until they
released the bar. The grip strength meter measured the force
[g] required to break the rat’s grip. Prior to the surgery, rats
were trained on the apparatus for 5 days (n=9). Each rat was
allowed to grasp the apparatus for three consecutive times, to
determine the strength of the forelimbs of the left, right and
both sides, respectively. The average grip strength for all
patterns was used as the baseline force. From 1 to 5 days after
surgery, three readings were taken for each rat and the
average force required was recorded as the individual grip
strength score for that rat (Fig. 2) (Bertelli and Mira, 1995).

4.7. Statistical analyses

The Mann-Whitney U test was used for comparison of the
infarction area, neurobehavioral test between groups. The
grip strength test was performed by paired t-test. The power
spectrum was analyzed with one-way analysis of variance
(ANOVA), followed by a LSD post-hoc test. These tests were
performed using SPSS 17.0 for Windows (SPSS Inc, Chicago,
IL, USA). The data are expressed as the meanz+SD.
p-values <0.05 were considered significant.
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Abstract Seizure control is not achieved in approximately one-third of patients
with epilepsy, even with the best available medications. Surgical treatment can be
performed for these patients, however this is also not always successful. Under these
circumstances, the potential for seizure suppression by focal brain cooling has gained
attention. Brain cooling was first proposed about 50 years ago, and has come into the
spotlight in recent years with advances in technology. Recent studies indicate that
focal cooling of the brain to a cortical surface temperature of 20 to 25°C terminates
epileptic discharges without inducing irreversible neurophysiological dysfunction or
neuronal damage. These results have promoted development of implantable focal cool-
ing devices, but some aspects of the hardware in these devices require optimization.
However, advances in precision machining have enabled optimization of an implant-
able focal cooling system, and this suggests that brain cooling therapy may become a

reality in the near future.

Key words: epilepsy, focal brain cooling, seizure, device, neuromodulation

Introduction

Epilepsy is usually treated with medica-
tion, but approximately one-third of epilepsy
patients do not attain seizure control, even
with the best medications.! Surgical treat-
ment is also used, but is not always suc-
cessful. Furthermore, surgical resection is
impossible if the epileptogenic focus is in
critical areas such as the motor and speech
cortices. Under these circumstances, several
clinical trials of neuromodulation technol-
ogy for treating refractory epilepsy have
recently been performed. Vagal nerve stimu-
lation has been used for the past decade’ and
electrical stimulation of the brain has been
proposed as an alternative to surgical resec-
tion. The anterior nucleus of the thalamus or
hippocampus has been chosen as a stimula-
tion target. Clinical pilot stimulation studies
have been performed, but the results remain
unsatisfactory.*® A unique clinical study

with an implantable, responsive, closed-loop
stimulation system is currently in progress.®
This device can terminate seizures by deliver-
ing a burst of stimulation after detecting a
seizure with an electroencephalogram (EEG)
algorithm through an implanted electrode.”
The preliminary efficacy of this method was
demonstrated in a feasibility trial, but fur-
ther clinical investigation and optimization
are required.

Focal cooling of the brain is another at-
tractive and nondestructive approach for
treatment of patients with epilepsy. Brain
cooling was first proposed about 50 years
ago as an effective method for suppressing
epileptic discharges (EDs),*® and has recently
been revived with advances in technology and
medical engineering.'" At our institution, we
have obtained interesting results in practical
use of brain cooling as a new therapy, which
we refer to as “thermal neuromodulation”,
for patients with intractable epilepsy."* In
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this review, we discuss the historical back-
ground of focal cooling, the influence of focal
cooling on epileptic seizure and the normal
brain, the mechanisms of seizure termination
due to focal cooling, and the practicality of
use of an implantable cooling system based
on our experimental data and results pub-
lished in the literature.

Historical background

The therapeutic value of focal cooling ini-
tially gained attention in the 1950s. At that
time, local cooling of the nervous system was
achieved in animal models using perivascu-
lar methods.** Local cooling was also used
to treat patients with head trauma, cancer,
and pain, and the findings emphasized the
utility of this method.”® The effect of cooling
on epilepsy was first demonstrated by sup-
pression of EDs in the primate temporal lobe
using systemic hypothermia.® Thereafter, lo-
cal cooling with the gas method was shown
to suppress EDs in human.’ Ventricular ir-
rigation with cold Ringer’s solution was also
found to suppress seizures.” Another early
study indicated that systemic hypothermia
suppressed seizures in patients with refrac-
tory epilepsy.”®

Despite these initial studies indicating that
brain cooling has the potential to terminate
seizure activity, the method was not opti-
mized for clinical use because of the difficulty
in improving the cooling system. Initial cool-
ing methodologies such as local refrigeration
with gas and cold water or ventricular ir-
rigation had many problems for clinical use.
These methodologies increased the chance for
infection and are difficult to use over long pe-
riods or permanently. Severe systematic hy-
pothermia can suppress seizures,®” but also
has fatal complications including infection,
cardiac arrhythmia, and blood coagulation
disturbances.”

Focal brain cooling has recently gained at-
tention because of advances in technology.
In recent studies, evidence for an anticonvul-
sant effect of focal cooling has been obtained
in neocortical and hippocampal epilepsy
models®"*# and in humans.*® Clinically,
Sartorius et al. found that focal seizure ac-
tivity induced by direct cortical stimulation
mapping was rapidly halted by irrigation

of the brain surface with cold Ringer’s solu-
tion.” In recent studies, including our work,
a thermoelectric device has been used because
of its small size and strong cooling effect.™*
This kind of focal-cooling device is implant-
able and can be combined with a seizure de-
tection system.” Use of this technology has
caused new interest in focal brain cooling as
a therapy for patients with intractable epi-
lepsy.

Inhibitory effect of focal cooling on epileptic
seizure

We investigated the effect of focal brain
cooling on EDs in rat neocortical and hip- -
pocampal seizure models.”® A Peltier chip
was used as the basis of the thermoelectric
device. This chip consists of two conductors,
which are connected in parallel. Passing
an electric current between the conductors
causes cooling of one conductor and heating
of the other because of the electronic refrig-
eration phenomenon (Peltier effect). A heat
sink made of aluminum with a water chan-
nel is attached to the chip to help dissipate
the heat generated. Two silicone tubes are
connected to the heat sink to circulate water
through the channel.”

A neocortical seizure model was made in
adult male Sprague-Dawley rats. After cran-
iotomy, a cooling device was placed on the
surface of the sensorimotor cortex. Kainic
acid (KA) was injected into the cortex just be-
neath the cooled area to provoke EDs. Reduc-
tion of the temperature of the cortical surface
to 30°C, 28°C, and 25°C caused the frequency
of EDs to decrease as the temperature of the
cortex was lowered, with final disappearance
of EDs at 25°C during the cooling period.”
Rapid termination of EDs by focal cooling of
the neocortex has previously been shown in
rats with 4-aminopyridine-induced epilepsy."
Our results are also consistent with reports
showing that the optimum temperature of
the cortical surface for terminating seizures
is approximately 20 to 25°C.1#

We also investigated the inhibitory effect
of selective hippocampal cooling on KA-in-
duced hippocampal seizures in rats.” Control
of the temperature of the cooling site at 20°C
caused significant suppression of the ampli-
tude of the EDs. These results are also con-
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sistent with previous findings.”®

Influence of focal cooling on brain tissue and
neurophysiological function

Focal brain cooling has an inhibitory ef-
fect on EDs and a protective effect on brain
tissue.” However, the mechanisms underly-
ing the influence of focal cooling on brain
tissue and neurophysiological function have
not been investigated in detail. Therefore, we
examined the pathological and neurophysi-
ological consequences of focal cooling in the
neocortices of rats.” Pathologically, focal
cortical cooling at -5°C for 1 hour caused ir-
reversible histological changes that were con-
sistent with cryoinjury. However, focal brain
cooling above 0°C for 1 hour did not cause
histological damage of the cortex. Yang et al.
found that cooling of the rat brain to 5°C ev-
ery 2 minutes for 30 seconds for a total dura-
tion of 2 hours and cooling of the cat brain to
3°C for 1-2 hours every day for 7-10 months
had insignificant pathological consequences.”
These findings agree with our results, and
we also showed that irreversible neuronal
damage was not caused by focal brain cool-
ing above 0°C for 1 hour.”

Several studies have described the effects of
cooling on the electrophysiology of the nor-
mal brain. Cooling of cortical tissue to tem-
peratures between 0 and 20°C disrupts local
synaptic activity without causing permanent
injury to brain tissue.” The motor response
is preserved after cold saline is applied for
termination of EDs caused by cortical stimu-
lation mapping.” Focal cooling of the soma-
tosensory cortex in rats at 20°C for b minutes
induces recognizable changes of somatosen-
sory evoked potentials, but these are fully
reversible after warming the tissue.® These
studies suggest that reversible neurophysi-
ological dysfunction is induced at a threshold
temperature of approximately 20°C.

Mechanisms of seizure termination

Focal brain cooling is generally thought
to reduce transmitter release,” alter the ki-
netics of voltage-gated ion channels,”™* and
cause network desynchronization.* The pre-
cise antiepileptic mechanisms remain to be
determined, but it is generally recognized
that suppression of synaptic transmission is

involved in reduction of seizures.

In our study, EDs were selectively inhib-
ited, but motor function was preserved when
the cortical surface was cooled to 20-25°C.%
An explanation of this phenomenon is need-
ed. An in vitro study showed that synaptic
transmission begins to decrease below 20°C.%
In a case in which the temperature is <20°C
at 1 mm under the cortical surface, but >20
°C at a depth of 2 mm, it is reasonable to as-
sume that synaptic transmissions and EDs in
the shallow cortex (layer II/III) are selective-
ly suppressed because of the spread through
neurons in the shallow layer with horizontal
connections to the ipsilateral or contralat-
eral cortex. Selective suppression of synaptic
transmission due to a cooling-induced ther-
mogradient in the cortex may have contrib-
uted to the vulnerability of somatosensory
processing, as indicated by the reduction of
receptive fields during cooling. Since the mo-
tor cortex lies deep in the sensorimotor cor-
tex (layer V), selective transmission failure
may have occurred during surface cooling.”

Practicality of use of an implantable cooling
system

Our previous studies and those of others
have demonstrated termination of EDs by fo-
cal brain cooling and indicate the therapeutic
potential of this method for patients with
intractable epilepsy, as an alternative to in-
vasive surgery. Focal brain cooling may be
applied for patients with an epileptic focus on
the eloquent cortex (i.e., motor or language
area). In our institute, we have initiated de-
velopment of an implantable focal cooling
system including a cooling component, an
automatic electrocorticogram (ECoG) ana-
lytical system, a heat processing system, a
rechargeable battery, and a fail-safe system
(Fig. 1). However, several hardware issues
remain to be resolved before this system can
be used clinically on a large scale. First, an
optimal fluid is required for use as the cir-
culating fluid for heat dissipation. Second,
the cooling device with Peltier chips requires
large amounts of electricity, and development
of electricity supply technology for the device
is required. Third, miniaturization of the
cooling device may be necessary. Smaller an-
cillary devices such as the electric power sup-



38 Masami Fujii

S

" Cooling component system |

heat transfer by

fluid medium
P, Thermo-| PI-controlled| ECoG
o : . 11
,_ 7 Leouple [Peerceviceligometlly BcoG
AT M ESTT ATV S S AR D AR ,EN lylﬂxn‘hé.lu:.- < AL F e ; Signal
ontrollabili :
; v - Automatic ECoG
> Fail-safe system . analytic system
i Prediction/detection
off-signa o
| relay
1 Leircuit cooling trigger
v iv \ ¥
Heat processing system
Rechargeable - <L
battery system | Cooler
o on-signal rmm}, éontrollébility
O

Fig.1 Flow chart of an implantable focal brain cooling system for intractable epilepsy.

ECoG; electroencephalogram.

ply, EEG detection system, and thermometer
are also required. However, precision devices
and micro-electromechanical technology have
made remarkable advances that are likely to
facilitate development of micropumps, micro-
batteries, and microcharging systems. The
continuing development of this equipment
suggests that an implantable local cooling
system may become available in the near fu-
ture.

Proposal for “thermal neuromodulation”

In this review, we discussed brain cooling
for treatment of intractable epilepsy. Howev-
er, clinical demand for a focal-cooling device
will not be limited to the epileptic field; other
potential applications include treatment
of cerebrovascular diseases in post-stroke
rehabilitation,®® neurotrauma,® and pain,®
all of which depend on “thermal modulation”
of neuronal excitability. Therefore, thermal
neuromodulation has considerable potential
as a new therapy for serious neurological dis-

orders.
Conclusion

Focal brain cooling terminates EDs and
modulates seizures. These findings have pro-
moted development of implantable focal cool-
ing devices with a closed-loop system (seizure
detection and focal cooling) for use in neuro-
modulation. However, several hardware com-
ponents of these devices require optimization
before clinical use can be considered.
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Fig. 1 The placement of the probe and relations of ROL Using the 3 % 5 unit probe folders, medial inferior probe
was located at Fpl and Fp2, and external inferior probe was located at superior region of the ear (T3 and
T4). And we set six places of ROI to show in the figure. The point B was marked on the {op of equilateral

triangle, and supposed fo be introductive of area 45. The iriangle was plotted as the prior literature’.
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Fig. 2 2D images of optical topography based on Oxy-Hb dur-
ing task accomplishment. The figure shows the 2D opti-
cal topography images of all patients with maximum
Oxy-Hb value after integral analysis. It is difficult to
determine the dominancy at a glance of these pictures,
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Table 2 The laterality index (LI value in each ROI and agreement rate with Wada test
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{2 X D deoxy-Hb i wash out ST L F v, Oxy-Hb
OHME deoxy-Hb DRV MRATND, KRS S
7 4 —Ti&, Oxy-Hb & deoxy-Hb OTEDHMIC &
AELERUTETH S, Zhicn LT, IMRI Tk
BEOEARELSZ-BOLD R ZDODDERMIE
HELTWALD, WiEO rCBV OZ{bOH I HEE
THhb, COBRICLY, BRELCBWTEEINRSS
TA—DAFBVIEPBEIND, FE, MR
X DR TH - /-G %, FERECEO NIRS T
BRI LA LT aMENLEERTVWSEY, LidaT,
FbRTS 74—, EESREETIEMRICIIRIE
Zwb oo, BESRELREBCORBEEICS
WT, MRSV ESRTHELEELZONS, AT,
MEG® fMRI D & 5 LB 2 LB L LEvid, A
THERPR—AA - —¥FE~ORELTHETH
5,

£3 HFHITEEMUFRIEETEOREL Wada test & O—F iR

Table 3 The determination methods of language lateralization: the principle and agreement situation with Wada test
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Non-invasive determination of language dominance with optical topography:
comparison with the intracarotid amobarbital procedure
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Background; During neurosurgical treatment, it is extremely important to localize of
cerebral function to preserve cerebral function and maintain the quality of life of the
patients. Recently, hemispheric dominance for language has been assessed using the Wada
test in which amobarbital is injected into the carotid artery. However, this is an invasive
technique with considerable risk of complications. Herein, we attempted optical topography
(OT) along with the findings of the Wada test.

Methods; Eleven patients who underwent craniotomy in this hospital were tested with
optical topography during a word generation task. These patients included 3 patients with
cerebral aneurysms, 6 with brain tumor, 1 with epilepsy, 1 with cerebral arteriovenous
malformation, who were from 13 year to 81 years of age, and comprised of 7 men and 4
women.

Word generation task: Each subject was given 15 seconds to write down as many words
as possible, beginning with a randomly presented letter on a computer monitor. In between
presentation of letters, subjects were instructed to focus on copying a picture for 30
seconds during which the NIRS baseline was established.

NIRS measurements: We measured the relative changes in oxygenated (Oxy-Hb)
deoxygenated hemoglobin (deoxy-Hb) and total hemoglobin, which were calculated by
combining the two parameters following collection of NIRS data (ETG-7100; Hitachi
Medical Corporation, Tokyo, Japan) during performance of the Word generation task, We
subsequently used a region of interest (ROI) and laterality index (LI). Six ROIs were set to
determine the useful RO], and the agreement rate with the Wada test was calculated. The
LI, for Oxy-Hb was calculated from L and R, the sum of the concentrations for the activated
ROIs over the left and right inferior frontal regions bilaterally, according to the following
formula: LI= (L - R}/(L+R). The LI ranged from — 1 to 1, where a positive value (0.26 to
1) indicated left language lateralization and a negative value (—1to —0.26) indicated right
language lateralization. A value between —0.25 and 0.25 inclusively was considered to
reflect bilateral language dominance.

Results; The results indicated a high agreement ratio in RO 3, 5, and 6, of which 5 and 6
were included in ROI 3. We subsequently determined the language dominant hemisphere
from the foregoing ROI and LI The results based upon the optical topography were eight
left-sided predominance, right predominance in two, and one case of bilateral predomi-
nance. Meanwhile, the results of Wada test were eight left-sided predominance, one case
each of right and bilateral predominance, and inability to determine in one. The agreement
between the techniques was 90% (9/10 case). One evaluation that was impossible by
determination using Wada test was possible.

Conclusions; Therefore, this study demonstrates that OT is a feasible clinical application
for the identification of the language dominant hemisphere.

Key Words : near-infrared spectroscopy, optical topography, Wada test, language domi-
nance, non-invasive measurement
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Focal brain cooling terminates the faster frequency components of epileptic
discharges induced by penicillin G in anesthetized rats
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e Epileptic discharges (EDs) in superficial layers were induced with penicillin G.
o Focal brain cooling preferentially terminated the faster frequency components of EDs.
o Frequency analysis demonstrated that cooling below 25 °C may be an effective treatment for epilepsy.

Keywords:
Epilepsy
Penicillin G PR - X - - - P
Focal cooling Objective: The goal of the study was to investigate the effects of focal brain cooling on epileptic dis-

Rat charges (EDs) and background rhythms in the sensorimotor cortex of anesthetized rats using spectral
Frequency analysis of electroencephalography (EEG).
Methods: Penicillin G was administered intracortically into superficial layers of the left sensorimotor cor-
tex and EDs were induced. Focal brain cooling was achieved using a cooling device attached to the cortical
surface. The cortical surface was cooled to 25 °C, 20 °C and 15 °C, and EEG was continuously recorded just
beneath the cooling device. EEG spectral powers were determined using fast Fourier transform before and
during cooling.
Results: Penicillin G induced EDs and increased the Alpha and Beta power spectra. Cooling suppressed
EDs with an effect that depended on the brain temperature. Cooling to 25 °C attenuated Beta powers,
cooling to 20 °C attenuated Alpha and Beta powers, and cooling to 15 °C suppressed spectral powers
ranging from Delta to Beta bands.
Conclusions: These results suggest that focal brain cooling can terminate EDs in the cortex and suppress
spectral powers with a temperature-dependent effect.
Significance: These findings may contribute to development of a new clinical treatment for patients with
epilepsy.
© 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights
reserved.

ABSTRACT

1. Introduction 1956; Ommaya and Baldwin, 1963; Sartorius and Berger, 1998;

Yang and Rothman, 2001; Rothman, 2009). Our previous studies

Epilepsy is a neurological disorder characterized by recurrent demonstrated that use of a focal brain cooling device could sup-

brain abnormalities that result in seizures and can be detected
by electroencephalography (EEG). Epilepsy is usually treated with
medication, but approximately one-third of epilepsy patients do
not attain seizure control (Guidelines for epidemiologic studies
on epilepsy, 1993). Surgical treatment is also used, but is not al-
ways successful. Brain cooling has been proposed for suppression
of epileptic discharges (EDs) for over 50 years (Baldwin and Frost,

* Corresponding author. Tel./fax: +81 8366 22 2211.
E-mail address: h-kida®@yamaguchi-u.ac.jp (H. Kida).

press EDs induced by cerebral infusion of kainic acid without caus-
ing histological damage in rats (Imoto et al., 2006; Oku et al., 2009).
However, little is known about the profile of the EEG frequency
spectrum during suppression by focal brain cooling.

Experimental epilepsy induced by penicillin is a classical model
of epileptic activity mediated by GABA A receptor antagonism
and has been widely used in animal experiments (Schwartzkroin
and Prince, 1977; Chen et al,, 1986; Fisher, 1989; Bertsche et al.,
2010). Recently, it was reported that intracerebroventricular
(i.c.v.) infusion of penicillin G potassium shifted the EEG spectral

1388-2457/$36.00 © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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