442 H. Wada et al.

trudes. Other causes are wide aneurysm neck or loose
packing of coils. We could not help ending in such a situa-
tion in the acute stage. If a little more coil can be packed
into the aneurysm tightly regardless of the coil type, this
complication would not occur. Assisting techniques with
balloon or stent are effective and used worldwide to
reduce migration of the coil. On the other hand, delayed
coil migration after embolization has been recently report-
ed. There are two main reasons for the migration. One rea-
son is the stent technique used with the embolization.24
Although stent devices are expected to stably support em-
bolizing coils, fine coils might escape from the stent struts
with loose mesh design. The other reason is the combina-
tion of the ultrasoft coil, which was recently developed for
better embolization, and the balloon remodeling tech-
nique.%8 This technique may simply compress the
ultrasoft coils in the coil complex by the balloon. In our
case, no stent, balloon, or ultrasoft coil was used. There-
fore, our endovascular strategy had less risk of coil migra-
tion than previous methods. Coil migration usually occurs
during or within a day after the embolization procedure
{acute phase). Since vessel endothelium cells might
proliferate within a-week after treatment, the coils might
become stable in the subacute phase. Delayed coil migra-
tion, as experienced in the present case, is relatively rare.
Surgical removal failed to retrieve the migrated coils be-
cause of severe adhesion related to endothelial prolifera-
tion and inflammation on the arterial wall. On the basis of
our experience, we have to carefully check for coil migra-
tion, even some weeks after completing treatment with no
negative occurrences.

Our patient had two associated pathological conditions,
vasospasm and tortuous cervicel ICA. In particular, the
tortuous cervical ICA hindered balloon remodeling and
fine control of the microcatheter. As a result, the coil pack-
ing ratio did not reach adequate values. Such multiple fac-
tors might still make endovascular treatment complex.
Catheterization to treat peripheral severe tortuous arteries
is difficult. Treatment must be planned on the assumption
of difficulty in using a balloon in the acute phase, and the
possibility of clipping. To employ catheterization to com-
plete treatment without a balloon, we should use a triple
coaxial system, such as the Cerulean catheter (Medikit), or
the head position should be rotated beforehand to release
coiling of the cervical ICA.

The coil placed in the aneurysm was displaced and
embolization became incomplete, so we performed
craniotomy and clipping to prevent re-rupture. Coil em-
bolectomy, vessel repair, and clipping of the aneurysm are
necessary for surgical treatment after such distal coil
migration. Coil embolectomy and neck clipping is the opti-
mum treatment strategy. However, removal of intravascu-
lar coils is not always possible due to adhesion to the ar-
terial wall. Symptomatic arterial stenosis has been caused
by a coil which migrated into the peripheral artery during
an operation.®) Therefore, surgical management that con-
siders even revascularization procedures such as superfi-
cial temporal artery-MCA bypass is necessary. Coil
manipulation should be carefully performed because the

dynamics of coils inserted into the human body are
difficult to predict.®10

The present patient with SAH was treated with coil em-
bolization in the spasm phase, but part of a protruding coil
migrated distally in the chronic phase. Although endovas-
cular treatment is useful for SAH in the spasm phase, ap-
plication may be difficult in some cases and should be
carefully performed. If a protruding coil is detected at the
finish of endovascular treatment, we should consider ad-
ditional endovascular treatment in the chronic stage. Sur-
gical treatment of a migrating coil may be difficult due to
adhesion to the vascular wall.
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1. Intreduction

Magnetoencephalography (MEG) is a totally non-invasive tech-
nique for providing spatially and temporally accurate information
about the distribution of current sources in the cerebral cortex.
Spatial resolution of MEG is considered superior to that of scalp
electroencephalography (EEG), because magnetic fields recorded
outside the scalp are unaffected by the electrical and geometrical
properties of brain, skull and scalp. MEG can visualise travelling
impulses from the thalamus to the primary somatosensory cortex
(Kimura et al., 2008), but it has been believed insensitive to radially

oriented currents; activated area confined to the cortex of a certain

geometry that produces radially oriented currents, such as gyral
cortices of the lateral surface.of the brain, can be overlooked in
MEG records. As to clinical application of MEG for epilepsy, MEG
is reportedly limited to detect spikes originating from mesial tem-
poral lobes based on a combination study of electrocorticogram
(cortical EEG) and MEG (Agirre-Airizubieta et al., 2009). In this
sense, one should be modest about accuracy regarding the spatial
resolution of MEG, Further, as compared to EEG, MEG has a great
disadvantage of much higher cost for maintenance such as keeping
an appropriate level of liquid helium; a recycling system for helium
at each MEG facility is awaited from an economical and ecological
point of view.

Nevertheless, the total non-invasiveness of MEG has the benefit
of repeat examinations in patients suffering from epilepsy or pro-
gressive neurodegenerative diseases and children with such dis-
eases. However, MEG has not been either widely used or reached
a high status for a functional brain mapping methed as yet, though
the number of MEG facilities was gradually increased worldwide
(more than 140 in the year 2011). It is more than 30 years since
MEG was introduced to basic and applied neuroscience, but stan-
dardisation of the MEG technique, which includes a recording or
stimulating procedure of MEG and publication criteria of results,
has not been established, This may have caused MEG to meet with
severe criticism from inside and outside the MEG community;
among the published papers on MEG, though novel, some articles
are not rigorous enough because no original waveforms of MEG
but a root mean-squared (RMS) waveform alone or the traces ob-
tained from a couple of sensors (out of 100-200 sensors!) are pre-
sented as figures or because, without any MEG waveforms, the
location of equivalent current source superimposed onto the sub-
ject's brain magnetic resonance imaging (MRI) alone is shown. It
seems as if authors of such kind of papers wanted to avoid the re-
sults from standing up to a searching scrutiny. Inappropriate pre-
sentation of the results in experimental papers does not give the
details of how the experiments were carried out and what results
were obtained and analysed; therefore, other researchers cannot
fully evaluate and replicate the data. As a result, since the year
2005 the number of annual original articles on MEG has begun to
plateau.

There are other embarrassing situations in analysis of MEG; one
is an inverse problem. At the time when MEG was introduced to
neuroscience, a single dipole modelling method was developed
to compute localisation of the equivalent current source. It works
well for analysing the initial cortical response of stimulus-evoked
MEG and localising the equivalent current source. When activated

areas are overlapping in a time course or when two or more areas
are simultaneously activated, recorded MEG waveforms become
more complicated and difficult to analyse by using a single dipole
method. Then, many algorithms to calculate the localisation of the
multiple equivalent current sources have been published (e.g., for
minimum norm estimates, see Himaldinen and limoniemi, 1994;
for spatial filtering, see Taniguchi et al., 2000; and for hierarchical
Bayesian estimation, see Sato et al., 2004), but unfortunately, one
cannot judge which kind of method among the previously pub-
lished algorithms is the best to use as their accuracy or correctness
has not been proven yet by a proper method between the research-
ers. In fact, a recent bibliographic survey on the clinical application
of MEG for epilepsy has disclosed that a single dipole method is
commonly used to verify accuracy of MEG in localisation of epilep-
togenesis as compared to other methods such as cortical EEG
(Hirata et al., 2012). Anather problematic issue in MEG is that sev-
eral different sensors for MEG systems have been developed to pick
up magnetic flux from the outside of the brain: a magnetometer
and two types of gradiometer. Among them, two types of gradiom-
eter, axial and planar, have been used worldwide. However, the
waveforms of individual MEG sensors inherently differ between
the two types of gradiometer; for the planar gradiometer (Elekta
Neuromag VV (Elekta Oy, Helsinki, Finland)), the response with
the maximal amplitude is recorded from the sensor located just
above the equivalent current source; for the axial gradiometer,
the maximal positive and negative responses are obtained from a
pair of sensors apart from each other that sandwiches the equiva-
lent current source. Whereas a unit of amplitude of EEG waveforms
is the ‘micro Volt' regardless of which EEG equipment is used for
recording, a unit of amplitude of MEG waveforms differs between
the two types of gradiometer: ‘femto Tesla' in the axial gradiome-
ter and ‘femto Teslafcm' in the planar gradiometer. Therefore,
when looking at responses from individual sensors, original MEG
waveforms alone are inadequate for evaluating and replicating
evoked-MEG responses. As a result, users of an axial gradiometer
sometimes cannot appropriately evaluate the results of MEG re-
corded from the planar gradiometer, and vice versa. Furthermore,
as previously described, some researchers of the MEG demonstrate
an RMS waveform alone in an article (see Haueisen et al., 2600);
and others do not show any waveforms (see Mogilner et al.,
1993: Elbert et al,, 1995: Braun et al.,, 2000: Breier et al., 2004;
Peridiiez et al,, 2004). Therefore, neuroscientists or physiologists
both familiar and unfamiliar with MEG cannot fully evaluate some
of the results on MEG that have been published. Perhaps, the situ-
ations described above have made it difficult to conduct a multi-
centre study on MEG or to expand clinical application of MEG
testing. To make the MEG become a more favourable and reliable
too) for mapping human brain function, we consider it obligatory
to find a way to present MEG data common to the two different
MEG systems, to build a consensus an the minimum requirement
for publication criteria of MEG data and thereby, to allow warkers
to compare and replicate the results of published MEG data easily.

2, Recommended representation of evoked MEG data

For the analyses of stimulus-evoked MEG, we use the following
information: original waveforms obtained from sensors, the iso-

—520—



2118 1. Ozaki et al./Clinical Neurophysiology 123 (2012) 2116-2121

contour field distributions of the magnetic field representing flux-
out and fiux-in at a certain time, orientation and location of an
equivalent current source that produces a recorded magnetic field
and results of spatial filtering such as Beamformer (Sekihara et al,,
2001) and LORETA (Pascual-Marqui et al., 1994). Among various
methods of MEG-data presentation, we consider it preferable to
represent original waveforms of selected channels covering a re-
gion of interest, an RMS waveform in the region of interest and
an isccontour field map at a certain time for evoked MEG as this
three set of presentations will be shared between the axial and
the planar gradiometer systems. R
2.1. The need for presenting raw records: original waveforms of
selected channels covering a region of interest and an RMS waveform
in the region of interest

As emphasised in the publication criteria for studies of evoked
potential (EP) (Donchin et al., 1977), an absolute acceptance crite-
rion for all papers on stimulus-evaked MEG should be that they in-
clude actual records of averaged MEG waveforms. [t is not required
to publish all data of experiments; it is the authors® responsibility
to select data to be presented, but figures should honestly reflect
the quality of the data collected. It is also important to represent
replications of the records under the same conditions to confirm
reproducibility of the results and indicate the quality of the record-
ing process. For EEG recording, as electrode placements are deter-
mined according to the International 10-20 system and are
unchanged during experiments, it has been recommended to show
duplication of representative waveforms at a certain electrode
placement for two or more trials: for example, superimposed
waveforms recorded from the Cz electrode for auditory evoked or
event-related potentials (ERPs) or those obtained from the (3/4
electrode for somatosensory-evaked potentials after median nerve
stimulation, In the case of recording MEG, sensor placements are
fixed on the dewar but not on the subject’s head so that sensor
positions relative to the subject’s head are changeable from one

-trial to another when the subject moves his or her head even a lit-

tle within a dewar during an experiment. It is, therefore, quite dif-
ficult to choose a particular sensor channel for demonstrating a
representative MEG waveform and- to show superimposed records
obtained from the particular sensor channel. In addition, as de-
scribed previously, the response waveforms of individual sensors
inherently differ between the planar and the axial gradiometer.
For the planar gradiometer, the response with the maximal ampli-
tude is recorded from the sensor located just above the equivalent
current source; polarity change of the waveform directly indicates
the apposite direction of the equivalent current dipale. For the ax-
ial gradiometer, the maximal positive and negative responses are
obtained from a pair of sensors apart from each other that sand-
wiches the equivalent current source; a polarity change from posi-
tive to negative in the waveform at a certain sensor indicates the
change from magnetic flux-out to flux-in across the scalp. Hence,
to demonstrate raw MEG records that can be shared between users
of a planar gradiometer and those of an axial gradiometer, we
suggest that one should represent original waveforms of selected
channels covering a region of interest in the case of stimulus-
evoked or event-related MEG. When they are presented as super-
imposed records, the figure will reflect the quality of the data
collected. In addition to original waveforms of selected channels
* covering a region of interest, we suggest that an RMS waveform
should be presented because it easily shows culmination of a stim-
ulus-evoked MEG response. To show replication of the results un-
der the same conditions, two sets of the superimposed raw records
obtained from selected channels covering a region of interest will
be presented; or the calculated RMS waveforms for two trials can
be superimposed.

2.2. The need for presenting spatial distribution of the magnetic field at
an appropriate time: an isocontour field map representing flux-out
and flux-in at a peak latency of an RMS waveform

‘The raw traces recorded from individual sensor channels show
sequential changes of magnetic fields at their sensor placements;
the RMS waveform obtained from selected channels covering a re~
gion of interest represents a global time-course of the stimulus-
evoked or event-related brain responses. However, analysing
spatial distribution of the electromagnetic field at an appropriate
time is essential to know which area or areas in the brain are acti-
vated. Isocontour field distributions of the magnetic field repre~
senting flux-out and flux-in are very informative; when a
response consists of a single equivalent current dipole, the isocon-
tour field distributions of the magnetic field represent a pair of
flux-out and flux-in; when a response consists of more than two
equivalent current dipoles, they may show a complex pattern such
as two or more pairs of flux-out and flux-in. Therefore, we suggest
that isocontour field maps should be presented at a certain time
such as a peak latency of an RMS waveform or at several successive
times including an RMS peak,

2.3. Demonstration of examples of somatosensory- or audxtory~evoked
MEG signals

Fig. 1 illustrates somatosensory-evoked magnetic fields (SEFs)
following left median nerve stimulation obtained from a represen-
tative subject, using an axial gradiometer system (A) or a planar
gradiometer system (B). Locking at a topographic display of re-
corded MEG waveforms, spatial distributions of maximum and/or
minimum responses and shapes of the MEG waveforms in a certain
region differ between an'axial gradiometer system and a planar
gradiometer system. However, superimposed waveforms or RMS
waveforms of the right hemisphere obtained by an axial gradiom-
eter system and by a planar gradiometer system are quite similar.
So are isocontour field distributions of the magnetic field at the
peak latency of N20m. Another example is demonstrated in
Fig. 2 in which auditory-evoked magnetic fields (AEFs) following
left ear 1000 Hz tone-burst stimulation are obtained from the sub-
ject as in Fig. 1, using an axial gradiometer (A) or a planar gradiom-
eter (B). Isocontour field distributions of the magnetic field at the
peak latency of N1 m, superimposed waveforms and RMS wave-
forms that are obtained by an axial gradiometer system are com-
patible with those obtained by a planar gradiometer system,
though the sensor layout display of recorded MEG waveforms dif-
fers between the two systems.

3. Discussion

Stimulus-evoked or event-related changes in the electromag- .
netic fields of the brain can be extracted from the ongoing sponta-
neous MEG or EEG by means of filtering and signal averaging. As to
ERPs or EPs, the guidelines for recording standards and publication
criteria were proposed (Donchin et al,, 1977; Picton et al,, 2000)
and have been recommended by the International Federation of
Clinical Neurophysiology (IFCN) (for visual EPs, see Celesia et al.,
1993; for auditory ERPs, see Goodin et al., 1994; for somatosen-
sory-evoked potentials, see Nuwer et al., 1994) or by the American
Clinical Neurophysiology Society (2006a-d). Further, the recom-
mendations by IFCN for the clinical use of various EPs or ERPs have
been updated (Cruccu et al, 2008; Duncan et al., 2009; Holder
et al., 2010), As for MEG, the clinical practice guideline for MEG
is proposed by the Japanese Society of Clinical Neurophysiology
(Hashimoto et al., 2005) and by the American Clinical Magnetoen- -
cephalography Society (Bagic et al., 2011a,b; Burgess et al,, 2011),
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These guidelines include technical issues in relation to recording
and stimulating methods, the majority of which follow the practi-
cal standards for EEG, such as EPs and ERPs. Although the publica-
tion criteria for EPs emphasise the necessity for raw records of
averaged EPs (Donchin et al., 1977; Picton et al., 2000), there have
been no publication criteria for MEG: presentation of MEG wave-
forms as well as analysed MEG data. Here, for the first time we
have proposed the publication criteria for stimulus-evoked or
event-related MEG as the three set of presentations: original wave-
forms of sclected channels covering a region of interest, an RMS
waveform in the region of interest and an isocontour field map
at a certain time for evoked MEG. As shown in examples of SEFs
and AEFs (Figs. 1 and 2), the three set of presentations will allow
investigators of MEG to share the results of evoked MEG. Similar
to EPs or ERPs in EEG, the publication criteria for stimulus-evoked
MEG or event-related MEG we propose will help not only neuro-
physiologists to examine patients by means of MEG testing and
make a diagnosis of a neurological disease, but also scientists to
evaluate and replicate previously published MEG data.

In general, developing a standardised method for data analysis
accelerates propagation of a new research technology. In 1990,
Ogawa et al. developed a new technique, using functional magnetic
resonance imaging (fMRI) to provide focal haemodynamic changes
in the brain of humans and animals (Ogawa et al., 1980), but it was
not until the statistical parametric mapping (SPM) software was
developed as a standardised method for analysis of brain MRI (Fris-

sites and their spatial distribution differ between the axial and planar gradiometer

forms, root mean squared (RMS) waveforms and contour maps are similar ta cach other.

ton, 1995) that fMRI was used explosively for mapping the working
brain. We think, therefore, that a standardised method for data
analysis of MEG, such as the SPM for fMRI, is needed for propaga-
tion of MEG. As different types of sensors detecting MEG signals
are commonly used, the most practical approach is to transform re-
corded magnetic signals from the brain into a virtual standard sen-
sor configuration, as has been previously attempted for
magnetocardiography (Burghoff et al., 2000), If all recorded mag-
netic signals from the brain are converted into signals of a virtual
standard MEG system, direct comparison of signals obtained from
different MEG recording devices will be available. However, apart
from the impulse conduction system of the heart, there exists large
intersubject variability in the sulci of the brain, confounding the
transformation approach for MEG signals. The alternative transfor-
mation approach for each subject in which magnetic signals ob-
tained from MEG sensors are converted into signals on the
subject brain MRI will aveid intersubject variability in the sulci
of the brain. However, this approach inevitably needs the brain
MRI of the subject who undergoes MEG testing. In addition, there
has been no consensus on building a virtual standard MEG system
5o that transforming recorded signals to source space via a locali-
sation algorithm, or to signals of the virtual standard MEG system,
awaits a general agreement. Currently, we have no choice other
than to present signals from the sensors that are fixed within a de-
war of an MEG system; the locations and types of the sensors differ
among MEG recording devices. Therefore, we consider that our
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200 ms). Lower column; right lateral view of isocontour field distributions of the magnetic field at the peak latency of N1 m, superimposed AEF i and root mean

forms. Note that, although AEF

d (RMS) forms at individual

d AEF forms, root mean il

proposal on publication criteria, comprising original waveforms of
selected channels covering a region of interest, an RMS waveform
in the region of interest and an isocontour field map at an appro-
priate time{e.g. an RMS peak), will allow comparison of event-re-
lated or stimulus-evoked MEG signals recorded with different MEG
recording devices. This will specify minimal acceptance criteria for
reports of studies in patients or normal humans. We hope that our
proposal should facilitate conducting a multicentre study and
building a normal database of stimulus-evoked and event-related
MEGs in the near future, and that a standardised diagnostic proto-
col of MEG based on the normal database will be established,
thereby enhancing clinical utility of MEG.
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on the bilateral temporal bases.Face stimulation excited antero-lateral temporal
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Fig.4

(A) Normalization of 12 brains with 1323 ECoG electrodes.Density correction making
gradation of ECoG electrodes (B) uniform (C) .

Fig.5 Typical distribution of Gamma band components related to visual stimuli on the

standard brain.Face stimuli activated the bilateral temporal base including inferior
temporal and fusiform gyri with right hemispheric dominancy.Kana stimuli evoked
Gamma band components only in the left fusiform and parahipocampal gyri.
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Abstract

Localization Analysis of Cognitive Functional Regions by Electrocorticogram

 Kyousuke Kamada, Masao Sato

- Department of Neurosurgery, Asahikawa Medical University

Kyous'uke Kamada M.D., Department of Neurosurgery, School of Medicine,’
AsayhikaWaMedi;:a} Ugiii/ersity / 2-1, Midorigaoka-Hlgashi, Asahikawa, Hokkaido,
- 078-8510, JAPAN

carefm mterpretﬁtlon of spatial and temporal changes of eiectrocort;cogram k
(ECOG} with semantic tasks, we developed a software to visualize semantnc~ECoG
’Cb on mdmdua brain.Twenty patiénts underwent implantation of subdural
eiectrodes for diagnostic purpose. Semantxc—ECoG was recorded with word, figure

¢ fa\ & recogmtzon and memory tasks.The ECoG raw data was processed by ime—

freq ency analysm and the ftmcnonal promes were prmected on mdwxdual brain
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technique to defect and decode the human brain functions.

Key words: Electrocorticogram, Epilepsy, Language, Memory, Visual stimulation -
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Table 1 MNumbers of cases per m’onthk with and without endovascular physician

Endovascular Endovascular
physician {—) physician {4} , P
Total endovascuiar o . L
ot 0.52 + 0.75 241 £154 P00t |
Clipping 110085 086% 088 - p==0338 : :
~ Clipping and coil 1.14 £ 0.95 198 % 1.20 p<00001 ‘
Total neurosurgical Las ea s : i
operattons 12238 153 4% 3,9 \ Q(Q.OGG?
Total neurosurgical 7HAE 1118 78261417 p=0463

admzssson pat:ents

{Numbers of cases/month, Student 1

U & ' - #

ﬁfi’c’}ﬂ Al @ Guglielmi Iﬂlmw 4?@0)2' %, E@%@Hﬁﬁ
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