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Feature Space Quantization for Data-Driven Search
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Abstract—There is a growing need to be able to detect
arbitrary patterns and trends in large data sets. Practically
detecting arbitrary patterns in neuroimaging databases requires
a fast and computationally inexpensive method. Here we present
an unsupervised and fast alternative to existing methods of recog-
nition for brain activity. We suggest transforming the decoding-
relevant features from brain activity data into signatures repre-
sented by binary vectors, to enable computationally inexpensive
comparison. We then apply this method to ECoG data recorded
from two human subjects and we introduce the results of a
binary classification task. We then compare the accuracy of
SVM classifications based on spectral power features to those
using the binary signatures. Our results demonstrate that SVM
classifications using binary signatures can perform significantly
above chance level and are comparable to classifications based
on feature vectors, for some criteria.

Keywords-pattern  recognition, dimensionality reduction,
database, data quantization, neuroimaging

I. INTRODUCTION

Data-driven approaches learn characteristic properties from
a set of observed instances. As opposed to hypothesis-driven,
data-driven approaches often do not rely on prior knowledge
of or assumptions about the structure of a data set in order to
perform a task, such as decoding or discriminating between
presented visual stimuli. Thus, data-driven approaches can be
employed in analyzing neuroimaging data because they offer
the flexibility to discriminate between previously unobserved
brain states. Recent research has demonstrated the efficacy of
pattern-based, data-driven classification methods for decoding
the contents of brain activity [1]-[6]. However, the applicabil-
ity of data-driven, search-oriented methods to neuroimaging
data has received comparably little attention.

One of the greatest restrictions in testing new techniques of
analyzing neuroimaging data is the availability of applicable
data sets. Thus it is increasingly important to form databases
of experimental data such as http:/brainlinerjp for inter-
institutional collaboration. Consequently, there is also a grow-
ing necessity for methods that can detect arbitrary patterns and
trends in large data sets and that can be used to enable search
for specific patterns. However, mining large databases of brain
data requires a pattern-recognition algorithm that not only
accurately detects similar patterns, but is also fast and compu-
tationally inexpensive. Searching for patterns using currently
available methods, such as the searchlight algorithm [7], can

Corresponding author: Yukiyasu Kamitani (e-mail: kmtn@atr.jp).

be slow and memory-intensive, thus a more practical approach
is needed for large collections of data.

In this paper, we present an unsupervised, data-driven
method for pattern recognition. Our method is feature-based
and is aimed at searching large data sets for similarities
between data. We address the practical issues of speed and
computational complexity by adopting a video-frame copy
detection algorithm [8]. Our method quantizes the feature
space of a data set to generate binary vectors, which are
considerably smaller in size than the original feature vectors.
This enables us to do fast comparisons between individual
data vectors. We present the performance of our method in
predicting the category of presented visual stimuli using ECoG
data from two human subjects. Finally, to quantify the loss
of information relevant to discriminating between stimuli, we
compare the performance of an SVM classifier trained using
power spectral features extracted from the raw data to its
performance when trained using the binary signatures.

Our results show that while classification performance can
vary considerably between subjects, SVM classifiers trained
with binary signatures can perform significantly above chance
level. Importantly, it is demonstrated that SVM can classify the
binary signatures as successfully as spectral power features, for
some categories of stimuli. This has implications for searching
for patterns of similar activity in large databases.

II. DATA ANALYSIS
A. Experimental Design

To demonstrate the performance of our method, we used
ECoG data from two subjects: S1 and S2. The subjects were
human, male epilepsy patients with electrodes implanted for
the medical purpose of localizing seizure foci for epilepsy.
Experimental protocols were approved by the institutional
review board at the hospital the recording took place. The
recordings were performed with a sampling rate of 400 Hz.
In both subjects, the recording sites were focused around
the temporal and occipital areas. However, the number of
implanted electrodes (127 for S1; 120 for S2) as well as
their exact cortical locations differed considerably between the
two subjects. The recording sites are displayed in figures 1
and 2. Since our goal was to create a method of quantizing
data for fast search and discovery of patterns, even when
electrode positions are not available in a computer-readable
form, differences in positions for S1 and S2 were viewed as
advantageous for validating our method.
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Fig. 1. Recording sites (blue markers) in subject S1.

Fig. 3. Examples of stimuli from different categories (faces, body parts, text,
landscapes, etc.).

The experiment consisted of a passive visual stimuli viewing
task, where 120 images spanning 24 categories were presented
in random order, one per trial, in a single run. 10 runs were
conducted, thus each stimulus was presented a total of 10
times. Each trial lasted 1200 ms, where a gray screen with a
fixation point was shown for a 900 ms inter-stimulus interval,
followed by a 300 ms presentation of an image. The data for
one subject included a total of 1200 trials. Example images
from different categories are presented in figure 3.

B. Feature Extraction

To search for similarities between trials in the data set, we
extracted features from every trial. In this case, we used the
spectral power values from the ECoG signal in 5 different
frequency bands: theta 4-7 Hz, alpha 8-12 Hz, beta 12-28 Hz,
low gamma 32-44 Hz, and high gamma 60-100 Hz. For each
trial, we used the signal extracted from 9 time windows that
were spaced linearly (with 50 ms between their centers) within
the interval from 125 ms before to 525 ms after stimulus onset.
We then computed the discrete Fourier transform of each time
window. The power values were calculated as the square of
the absolute value of the resulting transformed signal and were
averaged over the individual frequencies within each band.
Thus, 45 values, each representing the mean power of the
signal in one band and one time window, were obtained for
every channel in every trial. The values were subsequently
normalized to be comparable between trials.

C. Data-Driven Search Algorithm

In previous work in the domain of content-based image re-
trieval (8], features were extracted from each video frame in a
large video database and the feature space was partitioned into
cells. Characteristic signatures were created for every frame in
the form of binary vectors, where every bit corresponded to
one of the cells. If a cell was occupied by at least one point
in the feature space for a single frame, the corresponding bit
in the frame’s signature was set to one, otherwise it was set
to zero.

In our case, directly quantizing the feature space into even
cells was not preferable. Due to the sparse coding of infor-
mation relating to different stimuli, the data points were not
evenly dispersed throughout the spectral power feature space.
In order to obtain informative signatures, the feature space
would need to be divided into an unreasonably large number of
cells. This would result in considerably long binary signatures,
thus negating our goal of reducing the computational load
for finding patterns. Another problem was the putative noisy
recordings, or signals from uninformative electrodes included
in an arbitrary data set. To circumvent further pre-processing
of the data (e.g. filtering, feature selection, etc.), we used t-
distributed stochastic neighbor embedding (t-SNE) [9] in order
to reduce the dimensionality and in effect filter out the noise.

t-SNE is an unsupervised dimensionality-reduction algo-
rithm that assigns locations to high-dimensional data points
in a lower-dimensional map. The location assignment process
is based on the probability of a data point to choose another
point as its neighbor, which is determined by the distance
between them in the high-dimensional space. We chose t-SNE
specifically because of the t-distributed output, which aims
to prevent distinct clusters from overlapping. In this way, we
obtained a lower-dimensional t-SNE-mapped space, which was
possible to quantize without resulting in overly-sparse binary
signatures.

Lower-dimensional t-SNE-maps were obtained indepen-
dently for each of the 9 time windows and 5 frequency
bands. To generate a single t-SNE map for a single time
window and frequency band, 1200 vectors, one per trial,
were used as input. The dimensionality of the input vectors
was equal to the number of channels for each subject. The
t-SNE algorithm reduced the dimensionality of the feature
space to three. Thus, we obtained (9x5=)45 three-dimensional
maps, each containing 1200 points. Subsequently, the resulting
maps were normalized and merged (superimposed) to create a
single map. Through the merging process, information about
the frequency band and time window a single data point
belonged to was lost. However, the distances between single
data points, representing the similarity of trials in a single map,
were conserved. The merging allowed for every trial to be
represented by 45 data points in the resultant t-SNE-mapped
space. This was important since the number of data points
corresponded to the maximum number of bits that could be
set to one in binary signatures and a small number of data
points per one trial restricted the amount of information that
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could be encoded in its signature.

Using a fixed-size grid structure, as in the original image
retrieval paper ([8]), to quantize the final t-SNE-mapped space
was ineffective in our case, since any such arbitrary division
risked dividing the clusters in the t-SNE output into different
cells. To get around this, we used k-means [10] to perform
cluster-based quantization of the feature space, from which
we generated signatures, as shown in figure 4.

a) Points in t-SNE-mapped space

Clusters in +-SNE-mapped space

1-ENE dimension 2
1-SNE dimension 2
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Fig. 4. Signature generation process using a 2D t-SNE map. a) The t-SNE-
mapped space is partitioned into cells using k-means clustering. b) Binary
signatures are generated for every trial based on these cells. The number of
bits in a signature is equal to the number of clusters k. A bit in a signature
was set to 1 if the corresponding cell contained at least one data point for
that trial. If the cell was empty, the corresponding bit was set to 0.

After signatures were generated for each trial, the pairwise
similarities were quantified using the Dice coefficient (DC),
DC(s1,s2) = 2‘1}:"_'_"‘21, where s; 2 denote the two binary
signatures, oo the subsets of bits that are set to 1 in their
corresponding signatures, and |.| set cardinality. For classifica-
tion purposes, when the DC for a pair of signatures exceeded
a threshold, DCy, the trials corresponding to the signatures
were taken to belong to the same group (e.g., same stimulus
image). One of the advantages of this method is that DCy can
be increased to detect coarser similarities (e.g., same-category
images) and decreased for finer ones (e.g. same images).

III. RESULTS AND DISCUSSION

To determine the efficacy of our data-driven search algo-
rithm, we attempted to classify trials into those containing face
and non-face images, using the binary signatures generated for
the data from subjects S1 and S2. To this end, we searched
for similarities between trials containing face images and all
other trials. The search consisted of computing the DCs of all
unique face/face pairs and face/non-face pairs. Any trial whose
pair-wise DC with a face-image trial exceeded DCy was

classified as a face. To validate classification performance, we
plotted receiver operating characteristic (ROC) curves, which
plot the true- versus false-positive rates. Figure 5 shows the
ROC curves obtained for the face/non-face classification for
S1. The points on the ROC curves were obtained by varying
DCy between 0 and 1. To investigate the optimal number of
clusters to be used for k-means, the signatures were generated
using several different values of k& (number of clusters).

The ROC curves for S1 indicate that it is possi-
ble to effectively differentiate between the face and non-
face image trials by comparing the binary signatures. Us-
ing optimal values for & and DCjp, derived from the
ROC curves, classification performance for S1 is acceptable
(Matthews correlation coefficient = 0.61). However, classifi-
cation performance was considerably worse using S2’s data
(Matthews correlation coefficient = 0.14). Thus while the sig-
natures seem to capture information pertaining to stimuli,
the effectiveness of the approach is likely to be dependent
on individual differences and differences in placement of
electrodes and granularity of data recording.

ROC Curve for S1
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Fig. 5. ROC curve for the face/non-face binary classification task for S1.

The classification was performed several times, using signatures generated for
different values of k. The dashed line denotes chance performance.

In order to better quantify how much of the information
relevant to decoding was lost when we quantized the powers
into signatures, we performed five different SVM classification
tasks, using an SVM library with a linear kernel [11]:

1) identifying a stimulus image out of 120 stimulus images

2) identifying a face out of 5 faces in the face category

3) identifying a text image out of 5 images in the text

category

4) face versus non-face images

5) text versus non-text images

We performed leave-one-out cross-validation to calculate
the accuracy of SVM classification. For tasks 4 and 5 given
above, the testing set consisted only of the trials in the target
category (face or text respectively). SVM classification was
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performed twice for each task: once using the spectral power
features as a control, and then training the SVM using the
binary signatures. Results of the classification tasks for S1
and S2 are shown in figure 6.

SVM Classification Accuracy (S1)
100

— Binomial Test, p < 0.05

Percentage
- =]
o (=]
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text

120-image face face text
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image) image)

SVM Classification Accuracy (S2)

B Spectral Powers

10 signatures

—— Binomial Test, p < 0.05
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8 8
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Fig. 6. The results of the SVM classification using the spectral features and
the binary signatures generated from the same features. The chance level and
the 5% significance level of a binomial test are also plotted for both subjects.

The SVM classification results show that for some search
criteria, the signatures contain as much discriminative power
as the spectral power features do. In many cases, even if some
information is lost, SVM can still perform significantly above
chance level when using the signatures. This is impressive con-
sidering the vectors of binary signatures we use are up to 600
times smaller (in memory load) than the feature vectors. As
this approach is completely unsupervised, meaning that labeled
training data is not needed, this has important implications for
practically searching for specific brain-activity patterns in large
corpora of data. Future work should explore the merits of this
approach using a database of neurophysiological data.

IV. CONCLUSION

In this contribution we introduced a fast and computa-
tionally inexpensive alternative to current methods of pattern
recognition in large data sets. For validation, we applied this
new method to spectral power feature vectors extracted from
ECoG data from two human subjects. We applied t-SNE to

the feature vectors for dimensionality reduction and used k-
means clustering on the t-SNE output. The resulting clusters
were employed in quantizing a t-SNE-mapped space and gen-
erating binary signatures representing the input trials. We then
performed a search query for a single category of trials, where
similarity above a certain threshold mimicked a binary clas-
sification. ROC curves obtained from this classification task
showed that inter-subject variance in stimulus-discrimination
performance has the potential to be considerably large and
thus warrants further investigation. To quantify how much of
this variation was due to information loss during the signature
generation process, SVM classification tasks were performed.
The SVM comparisons indicate that it is possible to capture
decoding-relevant information in binary signatures, which are
substantially smaller in size than the spectral power vectors.
These results suggest that it is feasible to perform lossy data
compression on feature vectors for faster pattern-recognition
algorithms, at least for some categories of stimuli.

Future work should explore the generalization of this ap-
proach to data obtained from other imaging techniques, such
as fMRI, and to different experimental paradigms. Developing
faster and non-memory-intensive algorithms will likely have
many practical applications for dealing with large databases
of brain data.
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ARTICLE INFO ABSTRACT

Article history:

A sensation of depth can arise from two-dimensional (2D) movies without any stereoscopic depth cue.
Available online 30 December 2011

Depth perception in three-dimensional (3D) space depends on the stability of stereoscopic gaze by ver-
gence - coordinated movement of the two eyes in opposite directions - compensating the misalignment
of the retinal images from the two eyes (i.e. binocular disparity) [1]. On the other hand, the oculomotor
mechanisms that stabilize stereoscopic gaze and depth perception in 2D movie space remain unclear [2].
Here, we propose a hypothesis that vergence eye movements signifying 3D depth perception persist dur-

Keywords:
Vergence eye movement
Proximal depth cues

?g:ci‘:;:e ing prolonged 2D movie presentation without binocular disparity cues. By measuring eye positions while
Oculimomr the subject viewed moving random-dot video stimuli, we show that sustained vergence is induced during
Stereopsis 30-s exposure to radially expanding 2D optic flow. Moreover, a 2D video movie showing a passenger’s

view of a roller coaster induces continuously changing vergence. In the absence of binocular disparity
cues, the pictorial depth information within a 5° » 5° gaze window and optic flow in the movie simulta-
neously and independently influence vergence. The pictorial gaze-area depth information affects ver-
gence mainly in the virtual far space, whereas optic flow robustly affects vergence irrespective of the
nearness. These findings demonstrate that vergence serves as a reliable marker signifying 3D depth per-
ception from 2D movies, imposing critical constraints on creation of an effective and safe virtual reality.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Virtual reality, a key technology for 3D entertainments and clin-
ical, educational, or industrial innovations, creates an environment
with a dynamic and strong sensation of depth based on 3D stereo-
scopic vision [3]. However, even in the absence of stereoscopic
depth cues, a sensation of depth arises from 2D movies with prox-
imal cues such as object size changes or optic flows [2]. Depth per-
ception in real 3D space depends on the stability of stereoscopic
gaze maintained by vergence eye movements [1,2,4]. The vergence
angle between the axes of the two eyes increases (convergence) or
decreases (divergence) to adjust the misalignment of the retinal
images from the two eyes (i.e. binocular disparity) [5,6]. Vergence
eye movement has also been implicated in depth perception in vir-
tual 3D environments [7,8]. On the other hand, the oculomotor
mechanisms that enable depth perception in 2D conditions have
not been fully clarified [9,10]. A key factor to elicit vergence in
2D conditions is optic flow [11,12]. Ultra-short latency vergence
was triggered, as a rapid ocular response, by transient 2D visual
stimulation with radial eptic flows [13]. Transient convergence

* Corresponding author. Present address: Graduate School of Science and
Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata
9502181, Japan.

E-mail address: a-iijima@eng.niigata-w.acjp (A. lijima).
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was induced by an expanding optic flow, whereas divergence
was induced by a contracting flow. Nonetheless, it remains unclear
whether prolonged 2D visual stimulation can sustain vergence
after elaboration of depth perception through higher-order cortical
interactions [14,15]. Here, we propose a hypothesis that vergence
signifying 3D depth perception should persist during prolonged
2D movie presentation in the absence of binocular disparity. To
test the hypothesis, we firstly examined whether vergence in 2D
condition would sustain or not during the prolonged presentation
of expanding random dot stimuli with constant velocity. Second,
we examined how sustained vergence eye movements, if any,
would be affected by multiple depth cues such as binocular dispar-
ity, optic flow, and other pictorial cues in 2D and 3D realistic
movies.

2. Materials and methods
2.1. Subjects

Six young, healthy subjects (3 males, 3 females; age: 19-
36 years) with normal or corrected-to-normal visual acuity and
oculomotor functions (tracking and stereopsis) for their age partic-
ipated in the experiments. Informed consent was voluntarily
obtained from all subjects, and the subjects were free to withdraw
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from the study at any time. All the experimental protocols fol-
lowed the tenets of the Declaration of Helsinki and were approved
by the human experimentation committee of Niigata University
School of Medicine.

2.2. Experimental setup for visual stimulation

All subjects participated in both a random-dot movie experi-
ment in 2D condition, and roller-coaster video movie experiments
in 2D and 3D conditions (see below).

Two liquid-crystal projectors (TH-L795], 700 ANSI lumen, Pan-
asonic, Osaka, Japan) were used to back-project the movie on an
80-inch (64 x 48 inch) translucent tangent screen located 2.0 m
in front of the subject with an image field extending 44 x 35°.
The size of the visual stimulus was expressed as arc (°) of visual
angle unless otherwise mentioned. Experiments were conducted
at designated times (from 9 AM to 12 PM). The illumination
(101x) and temperature (22 °C) in the experimental room were
controlled. After scotopic adaptation (approximately 10 min), a 5-
min rest period with no movie projection was scheduled pre and
post movie exposure. At the end of the experiment, we conducted
a questionnaire to the subject on depth perceptions in the 2D and
3D condition during the movies (see Supplementary Fig. 1).

2.3. Random-dot movie experiment

2D random-dot movie was generated by ViSaGe (Cambridge Re-
search System Ltd., Rochester, UK), with a constant-velocity radi-
ally expanding optic flow that simulated a forward self motion at
70 km/h. Camera’s axis was simulated toward the center of the
screen (pan 0°, tilt 0°). The focus of expansion was the center of
the screen. The number of dots (n = 800) and the size of each dot
(0.25°) were constant. Dot density was 0.52 dots/deg? The optic
flow stimuli presented at 90 Hz refresh rate. The random-dot mo-
vie with a 30-s duration was repeatedly shown for three times at
intervals of 30 s. The subject was required to fixate on a 0.01° spot
at the center of the screen through the trial, or was instructed to
gaze at the screen center where no fixation spot was presented.

2.4, Roller-coaster video movie experiment

We used a 200-s-long video movie showing a passenger’s view
from a front car of a roller coaster. For the stereoscopic presenta-
tion, different movies for the right and left eye were recorded by
two video cameras. Each movie frame consisted of two images
with horizontal shift, or binocular disparity, for right and left eyes.
In 3D condition, these images were stereoscopically presented
using polarized filters. In 2D condition, the same movie for the left
eye in 3D condition was shown to both eyes. When viewing 3D
movie, subjects wore polarized filters for left and right eyes, which
were perpendicularly-placed each other. In the 2D condition, in
order to control the video brightness and glass-wearing effect as
same as 3D condition, the filters were also used but the polarizing
angles were at the same for left and right eyes. The order of 2D and
3D movie presentation was pseudo-randomized across subjects.

2.5. Measurements of eye positions

We used a head-mounted binocular video oculography (ET-60-
L, Newopto Co. Ltd., Kawasaki, Japan) to measure binocular eye
movements [16]. CCD cameras (1/3 in.) with infrared sensitivity
and infrared LED illuminations were used. The goggles had open-
ings in front of the eyes and half-mirrors that enabled the subjects
to watch anything within their visual field, and we could simulta-
neously monitor their eye movements. The opening provides

52deg horizontal visual angle and 54deg vertical visual angle for
each eye.

Eye images (NTSC video signals, 30 frame/s) from the CCD cam-
eras were captured via an image digitizing board (PCI-1410,
National Instruments, TX, USA) on a PC. We calculated the eye po-
sition using binary images in which the pupil area was displayed in
black and the other areas in white. Before and after the movie pre-
sentation, eyes were calibrated using five fixation targets in
crossed positions that were projected on the screen. Each spot
was located at 12deg shift from the center spot. Eye position data
(horizontal and vertical) were calculated by tracking the center of
the pupil coordinates by image analysis [16] using the VISION
module, (National Instruments, TX, USA). Vergence eye movement
was calculated by subtracting the right eye position from the left
eye position.

Since the subject sat on a chair without any head-fixation appa-
ratus, the head motion and eye position should be simultaneously
measured for an accurate analysis of the gaze point on the screen.
Head movement was measured using a magnetic sensor technique
(Liberty, Polhemus, VT, USA) [17].

Estimates of latency, rise time, and fall time of optic-flow in-
duced vergence were done as follows. We initially obtained the
vergence velocity from the temporal differentiation of individual
vergence position. The mean pre-response baseline level on the
vergence velocity was determined by averaging the vergence
velocity for the 300-ms period before the onset of the stimulus.
Next, we defined the latency as the time between the stimulus on-
set and the time point at which vergence velocity first exceeded
the mean baseline level by 3 SDs. Rise time was defined as the time
which required for the vergence response to increase from 10% to
90% of the plateau level. Fall time was defined as the time which
required for the vergence response to decrease from 90% to 10%
of the plateau level.

2.6. Movie component analysis

The optic flow and binocular disparity components of the movie
were calculated using custom made software on MATLAB (ver.7.1,
The MathWorks, Inc., MA, USA). We computed the horizontal/ver-
tical (pan and tilt) and radial (expansion and contraction) optic
flow components in the movie as global motion vectors (GMVs)
between two consecutive frames [18]. Using a pattern-matching
algorithm, we first obtained local motion components for each of
the 352 x 288 parts. Next, we computed the entire screen motion
as a GMV by integrating all the local motion components. Radial
optic flow was expressed by expansion rate; 100% means no flow
(initial status) and optic flow above 100% indicates that the radial
optic flow is expanding. We developed another software on MAT-
LAB to calculate the mean binocular disparity (horizontal position
differences between the right and left images identified with a pat-
tern-matching algorithm) within a 5° x 5° region of interest cen-
tered at the gaze point. When a pixel in the right image was
positioned to the left of the pixel in the left image, the pixel had
crossed disparity that we defined as positive values, and vice versa.
Zero disparity implies that there was no horizontal shift between
the two images.

2.7. Statistics

For quantitative analyses, vergence angle data during the
roller-coaster movie were sorted by a combination of optic flow
(12 classes, range: from 1 to 3.5 (x100%)) and the gaze-area depth
(7 classes, range: from —1.5 to 0.5°) into 12 x 7 matrix by discarding
temporal information based on eye movement data recorded on
30 frame/s viewing NTSC movie stimuli. The mean vergence angle
in each matrix cell was plotted against optic flow and the gaze-area
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