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ABSTRACT A series of (+)-negamycm 1 analogues were synthesized, and their readthrough— = OH
promoting activity was evaluated for nonsense mutations in Duchenne muscular dystrophy HzN\'/'\/\/l'I\N/\[l/OH
(DMD). A structure—actmty relatlonshlp study indicated that 11b was the most potent drug : g

candidate. Immunolnstochemlcal analyses suggested that treatment with 11b restored :
dystrophin expression in mdx mice, a2 DMD mouse “model. Furthermore, 11b decreased 11b
serum creatine kinase (CK) levels, an md1cator of muscle fiber destruction. Most unportantly, '

11b demonstrated lower tox1c1ty than 1, and thus, it could be a useful canchclate for long term treatment of DMD

KEYWORDS Negamycm, readthrough promotmg acthty, Duchenne muscular dystrophy, nonsense mutatzons, hydmzmo dzpeptzde,
,genetzc dzsease o . , r o

D uchenne muscular dystrophy (DMD), characterized by mice, an animal model of DMD with a nonsense mutation in

progressive muscle degeneration, is one of the most the dystrophin gene. In spite of these positive results, long-term
common hereditary disorders, affecting approximately 1 in administration of gentamicin is not recommended due to its
3500 live male births." This disorder is caused by mutations in severe side-effects including ototoxicity® and nephrotoxicity.”
the DMD gene, located on the X-chromosome. The DMD Small molecules possessing readthrough-promoting activity
gene encodes the protein dystrophin, which plays a crucial role have also been’ described for DMD treatment, including
linking the intracellular cytoskeleton and the extracellular aminoglycosides,'® RTC compounds,'! and an oxadiazole
matrix via the dystrophin-associated protein complex (DAPC). derivative, ataluren (PTC-124, phase 1B)."”
The loss of dystrophin function causes destabilization of the In the same vein, Arakawa et al.'® reported that the dipeptidic

DAPC, which results in the breakdown of muscle fibers, loss of antibiotic (+)-negamycin (1, [2-(3,6-diamino-5-hydroxyhexa-
membrane integrity, and difficulty in walking and breathing, noyl)-1-methylhydrazino]acetic acid, Figure 1)'* also induced
and it ultimately leads to death. Nonsense mutations, which

lead to premature termination codons (PTCs) in the reading OH NH, O | O
frame of the DMD gene, are responsible for up to 20% of DMD HaN. A N

. . . N OH
cases. The nonsense mutations yield truncated dystrophm H

proteins, which have no valuable biological function.” Presently,
although the molecular basis for the chsease is clear, there is no
cure for DMD.? The only available treatment is glucocorticoid
therapy, which can prolong ambulation and reduce the
incidence of severe scoliosis, although it is limited to relatively
short-term treatments due to severe side effects.*”

Recently, a unique therapeutic strategy, so-called “read-

Figure 1. Structure of (+)-negamycin 1.

the readthrough of PTCs in both a prokaryotic translational
system'® and mdx mice."® Therefore, 1 has been recognized as
a potential therapeutic agent for diseases caused by nonsense
mutations. Here, we designed and synthesized a series of

through drugs”, was proposed to target genetic diseases caused negamycin analogues, and their biological activity was evaluated
by nonsense mutations.” These drugs promote a translational using a transgenic mouse strain, READ (readthrough evaluation
“skip” of PTCs, but not of normal termination codons, resulting and assessment by dual reporter),w which expresses a dual-
in the production of full-length proteins. Specifically, reporter gene segmentalized with a PTC. Once the most potent
gentamicin, an aminoglycoside antibiotic, was reported to

promote the readthrough of disease-causing PTCs in Received: October 19, 2011

mammalian cells. Furthermore, its treatment partially restored Accepted: January 2, 2012

dystrophin expression in skeletal and cardiac muscles of mdx Published: January 2, 2012

ACS Publications  © 2012 American Chemical Society 118 dx.doi.org/10.1021/mi200245t | ACS Med. Chem. Lett. 2012, 3, 118-122
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Table 1. Readthrough-Promoting and Antimicrobial Activities of Synthetic Negamycin Analogues

| Yield Readthr ouOh Antimicrobial
Compound Structure %)* activity © activity
OH
Gentamicin T o MFZ NP 1.00+0.24 NT®
OH&WNW
1 OH NH; O | O .
mogamyein "2N‘/\MH'N\)L°H NA! 1.00 £ 0.25 32/128/2/32/8
OH NH, O | O
6 v A A AN A, 32 L0016 >50/>50/25/>50/50
H
QH (o] ] o]
ma AL AN A 0.83+0.13 -
H
o o
11b ”2“\/‘\/3\/"\«\“/0“ 27 136 £0.14 -
L}
QH [e]
1le “2”\/'\/\)LN/\[(°E' - 43 0.81 +0.11 -
Hoo
(:DH o]
1d He"v\/\)L.?/YOH 44 0.92 % 0.09 NT®
o]
l:)H 0 o]
e  HN AN AN, 2 <038 -
H
(:JH [o]
1f A A~y oon g3 <08 NT®
GOH
OH 0
14 M Ao 2 <08 -
)

“Synthetic yields were calculated from intermediates 3 or 7 for analogues 6 or 11a—f and 14, respectively. PNA; not applicable, see ref 18. “Relative
in vivo readthrough-promoting activity, which is expressed as a ratio compared to gentamicin. Samples were subcutaneously injected at the abdominal
region of the READ mouse with a dosage of 0.1 mg/day/20 g body-weight for 7 days. Data are mean + SD (n = 4). “The antimicrobial activity
(MIC) against several microorganisms (Staphylococcus aureus FDA 209P/Bacilus subtilis NRRL B-558/Escherichia coli BEM11/Shigella dysenteriae ]
S11910/Pseudomonas aeruginosa A3, respectively). “— ” denotes >128 ug/mL (MIC). See ref 24. °NT: not tested.

11b had been identified (Table 1), we used mdx mice to assess
the effect on dystrophin expression, serum creatine kinase
levels,"” which are a clinical indicator of DMD, and general
toxicity. We found that 11b performed better than 1, with
markedly reduced toxicity, thus making it a promising
therapeutic candidate.

(+)-Negamycin 1 was first isolated in 1970 from a
microorganism closely related to Streptomyces purpeofuscus.™*
In an attempt to synthesize chiral 1, we developed shortened,
highly efficient synthetic routes.'®'? Using one of these routes
as a starting point,19 here, we synthesized a series of analogues.
Briefly, for the synthesis of analogue 6 (Scheme 1A),
intermediate 3 was prepared from the commercially available
ester 2 over 7 steps.” Then, 3 was converted to the N-
protected tert-butyl ester 4 as a single diastereomer
(diastereomeric excess (de) >99%) over 3 steps using Node’s
asymmetric Michael addition,*°
au:dliary,21 and protection of the inserted 3-amino group.
The obtained intermediate 4 was then efficiently converted to
the acid form by a microwave-assisted saponification, and it was
subsequently coupled with a hydrazino ester using an EDC-
HOBt (EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide;
HOBt, 1-hydroxybenzotriazole) method™ to yield 5. Depro-
tection of § with 4 M HCl/dioxane and purification by ion
exchange chromatography afforded 6 (specific rotation: found
[a]pX* +14.0 (c 0.94, H,0), literature data® [a]p?2° +8.5 (c
0.70, H,0)).

removal of the chiral .

119

Next, analogues 1la—f were synthesized (Scheme 1IB).
Weinreb amide 7' was prepared from 2 over six steps, and
then it was reduced with diisobutylaluminium hydride (DIBAL-
H) to the corresponding aldehyde, directly followed by
treatment with (benzyloxycarbonylmethylene)triphenyl-
phosphorane in THF under reflux conditions. After purification
by flash chromatography on silica (Silica Gel 60N, KANTO
CHEMICAL), we obtained 8 in 69% yield over two steps. After
8 was treated with Pd/C under a H, atmosphere, the resultant
9 was coupled with various amino acid tert-butyl esters or a
hydrazinoacid tert-butyl ester'® using an EDC-HOBt method to
obtain 10a—f. Deprotection of 10a—f with 4 M HCl/dioxane
and purification by reversed-phase HPLC afforded 11a—f with
30—96% yield.

In the synthesis of analogue 14 (Scheme 1C), 7 was
converted to the intermediate 12 by a procedure similar to that
employed for 8 (Scheme 1B). Then, 12 was converted to the
acid form by saponification and subsequently coupled with
HCI-H-Gly-O#-Bu using an EDC-HOBt method to yield 13.
Deprotection of 13 with 4 M HCl/dioxane and purification by
reversed-phase HPLC afforded 14 with 85% yield. The purity
of each synthesized analogue for biological evaluation was over
95%.

To evaluate the readthrough-promoting activity, we adapted
an m vwo dual-reporter gene expression system using READ
mice.'® This system encodes p-galactosidase and luciferase
genes connected with a PTC (see the Supporting Information).
P-Galactosidase activity is present constitutively, but luciferase

dx.doi.org/10.1021/ml200245t | ACS Med. Chem. Lett. 2012, 3, 118-122
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Scheme 1. Synthesis of Analogue 6“
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16a: R = NHN(Me)CH,CO,t-Bu, 63%
10b: R = NHCH,CO,tBu, 63%

10¢: R = NHCH,COLE, 95%

10d: R = N(Me)CHoCOt-Bu, 79%
10e: A = NHCH,CH,CO,+Bu, 58%
10f: R = N(CH,CO,tBu)p, 63%

11a: R = NHN(Me)CH,CO,H, 63%
11b: B = NHCH,CO,H, 62%

11¢: R = NHCH,CO,Et, 96%

11d: R = N(Me)CH,CO,H, 81%
116: R = NHCH,CH,CO4H, 59%
11£: R = N(CH,CO.H),, 30%

C
%Q o a)
Boo’N\/—-\/U\Nf()Me

13 14

“Reagents and conditions: (A) Synthesis of 6: (a) (i) KOH, MeOH,
microwave (300 W), 100 °C, 10 min; (ii) PTSA-H,N-N{Me)-
CH,CO,t-Bu, HOBt-H,0, Et;N, EDC-HCI, CH,CL,, rt, 4 h, 62% (2
steps); (b) (i) 4 M HCl/dioxane, rt, 1 h; (i) ion exchange
chromatography, 98%. (B) Synthesis of 11a—f: (a) (i) DIBAL-H,
toluene, —78 °C, 2 h; (i} Ph,P = CHCO,Bn, THEF, reflux, overnight,
69% (2 steps); (b) Pd/C, H,, MeOH, rt, 1.5 h, quant; (c) amino acid
t-Bu esters or hydrazinoacid #-Bu ester, HOBt-H,0, Et;N, EDC-HC],
DMF, 1t, 3 b to overnight, $8—95%; (d) (i) 4 M HCl/dioxane, rt, 1 h;
(ii) reversed-phase HPLC, 30—96%. (C) Synthesis of 14: (a) (i)
DIBAL-H, toluene, —78 °C, 2 h; (ii) Ph;P = CHCO,Me, THF, reflux,
overnight, 63% (2 steps); (b) (i} KOH, MeOH/H,0 (2:1), rt, 4 b;
(i) HCIH-Gly-Ot-Bu, HOBtH,0, Et;N, EDC-HCl, DME, rt,
overnight, 44% (2 steps); (c) (i) 4 M HCl/dioxane, rt, 1 h; (ii)
reversed-phase HPLC, 85%.

activity is only detected when readthrough occurs. Therefore,
the activities of both enzymes in skeletal muscle were measured
to calculate the activity ratio of luciferase to f-galactosidase
after negamycin analogues (0.1 mg) were subcutaneously
administered in the abdominal region of READ mice for 7 days.
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‘The antimicrobial activity was also measured.”* The results of

these biological evaluations are shown in Table 1.

Since synthetic 1 showed similar levels of readthrough-
promoting activity to the extracted native 1 (data not shown)
and gentamicin, we first evaluated the importance of stereo-
chemistry at the 3-amino group. The (+)-3-epi-negamycin 6
exhibited equipotent activity to 1, suggesting that the
stereochemistry of the 3-amino group might not be important
for the activity. Next, analogue 11a with no 3-amino group was
prepared (Table 1). However, complete removal of the amino
group led to a decrease and a loss of the readthrough-
promoting and antimicrobial activities, respectively. Thus, the
presence, but not the stereochemistry, of the 3-amino group
was important for both biological activities.

In striking contrast, however, we observed that when both
the N-methyl and amino groups were omitted from 11a, the
corresponding glycine analogue 11b was a potent promoter of
readthrough activity, demonstrating a 1.4-fold increase in
functionality as compared to the case of 1. Importantly, 11b
also did not display antimicrobial activity, making it a more
selective readthrough-promoting analogue than 1. In other
words, it means that the readthrough-promoting activity can be
distinguished from the antimicrobial activity.

Encouraged by these results, we synthesized additional
analogues based on the chemical structure of 11b. However,
both the ethyl ester analogue 1lc and the N-methyl glycine
analogue 11d demonstrated decreased activities. From these
results, we inferred that the glycine residue with a free
carboxylic acid was functionally important, a hypothesis that we
confirmed using 1le and 11f Moreover, 14, with the
unsaturated amide structure, did not show any significant
activity.

To understand the biological effects in detail, the most active
11b was chosen for further in vivo immunohistochemical and
biochemical evaluations. Regarding the immunohistochemical
evaluation, 11b was subcutaneously injected in the abdominal
region of mdx mice at a dosage of 1 mg in phosphate-buffered
saline (PBS, 0.2 mL)/day/20 g body-weight for 4 weeks.
Dystrophin expression was clearly observed in the skeletal
muscle of wild-type B10 mice (Figure 2A), while mdx mice

B10 +saline(n=1) - mdx + saline (n = 2)

mdx +11b (n = 3)

Figure 2. Dystrophin expression in skeletal muscles. Immunofluor-
escent staining of dystrophin in mouse muscle tissues was performed
on 8 um transverse cryosections.”> (A) wild-type B10 mouse; (B)
untreated mdx mouse; (C) 11b-treated mdx mouse. Bar = 200 um.

lacked this signal (Figure 2B). In contrast to these controls,
dystrophin expression was only partially restored in the skeletal
muscle of 11b-treated mdx mice (Figure 2C). However, this
result suggested that 11b promotes PTC readthrough and is
therefore a potential therapeutic candidate for DMD.
Regarding biochemical evaluation, we assessed levels of
serum creatine kinase (CK)'7 in mdx mice treated subcuta-
neously with 11b at a dosage of 1 mg in PBS (0.2 mL)/day/20

dx.doi.org/10.1021/mi200245t | ACS Med. Chem. Lett. 2012, 3, 118~122
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g body-weight for 4 weeks. As controls, the CK level in a wild-
type B10 mouse was very low, while levels in mdx mice were
very high. A statistically significant reduction of serum CK
levels in 11b-treated mdx mice was observed in comparison to
the case of the untreated controls (Figure 3A). This result
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. 8000
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T s
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Figure 3. (A) Serum CK levels in mdx mice: wild-type B10 (n = 1);
mdx (n = 2); 11b-treated mdx (n = 3). (B) Effect of 11b on the body-
weight of mdx mice. The body-weight of 1- and 11b-treated mice (n =
4, 1 mg/day/20 g body—weight) over the course of 4 weeks was
measured in comparison to that of saline-treated mice (n = 2) as a
control. (C) Effects of the administration of high doses of 11b on the
readthrough-promoting activity in READ mice. P: Probability-value.
Error bar indicates SD.

suggested that 11b could enhance the strength of muscle fibers
by increasing functional protein expression.

Next, we examined the acute in vivo toxicity of 11b as
compared to 1 by measuring the body-weight change of mdx
mice for 4 weeks. Improving the in vivo toxicity profile of 1 was
an important goal for the development of readthrough drugs
based on the negamycin structure. As shown in Figure 3B, over
the course of 4 weeks, the body-weight of saline-treated mice
gradually increased, while that of 1-treated mice (1 mg in 0.2
mL saline/day/20 g body-weight) markedly decreased.
Conversely, the body-weight of 11b-treated mice (1 mg in
0.2 mL saline/day/20 g body-weight) slowly increased during
this time frame, indicating that 11b exhibited a lower toxicity
profile than 1. We postulate that this lower toxicity is due to the
absence of the hydrazine structure in 11b. This improved
toxicity profile strongly supports the potential of 11b for the
long-term treatment of DMD.
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Finally, inspired by the low toxicity observed with 11b, we
tested the effects of high doses of 11b on PTC readthrough-
promoting activity. Accordingly, 11b, or gentamicin or saline, as
positive and negative controls, respectively, was administered
subcutaneously in READ mice for 7 days. As shown in Figure
3C, the readthrough-promoting activity of 11b was not dose-
dependent at the levels tested. However, at a 3 mg dose, 11b
was more effective than gentamicin. For unknown reasons,
there appeared to be a reduction in readthrough-promoting
activity at the highest dosage of 11b, an observation that we will
pursue in the near future.

In summary, we have synthesized a series of (+)-negamycin
analogues and evaluated their readthrough-promoting activity
for DMD. On the basis of SAR studies, we identified 11b as the
most potent candidate. This analogue was then taken forward
through immunohistochemical and biochemical studies, which
demonstrated that treatment with 11b restored some
dystrophin expression in mdx mice and decreased their serum
CK levels, indicating that the drug was protecting muscular
tissues from collapse. Most importantly, 11b was shown to have
a lower toxicity profile than 1, which might be useful for the
long-term treatment of DMD. Further SAR studies to develop
more efficient derivatives are under investigation.
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1. Introduction

Calcium deposits in extra-skeletal tissues are highly correlated with lifestyle diseases. The
mechanisms and clinical effects of such deposition have been widely studied due to increase
mortality rate. Vascular calcification is a major complication in a number of diseases, including
chronic kidney disease (CKD) and diabetes (Giachelli, 2009). The number of regulation
mechanisms affecting calcium precipitation in soft tissues remains underestimated, as many
regulators are considered to be involved in this complex process (Hu et al., 2010; Kendrick et
al., 2011). Elevated serum phosphate levels which leads hyperphosphatemia is one of the
prevalent factors of vascular calcification in CKD (El-Abbadi et al., 2009). The kidneys play a
central role in the regulation of phosphate homeostasis. In individuals with normal renal
function, serum phosphate levels are strictly controlled through dietary intake, intestinal
absorption, renal excretion, and bone metabolism. When the kidneys are either mechanically
or functionally impaired, phosphate metabolism is imbalanced. Abnormalities of phosphate
metabolism related to kidney malfunction may play a central role in the deposition of calcium
and phosphate in extra-skeletal tissues. Ectopic calcification in skeletal muscle has been
reported to occur in three Duchenne muscular dystrophy (DMD) animal models; mdx mice
(Coulton et al., 1987; Kikkawa et al., 2009), dystrophic puppies (Nguyen et al., 2002), and
hypertrophic muscular dystrophy cats (Gaschen et al., 1992). In this chapter, we review the
mechanisms of ectopic calcification in mdx mice and report a new finding of effects of dietary
phosphate intake on calcium deposits and muscle function in mdx mice.

2. Ectopic calcification in animal mOdels of muscular dystrophy

The mdx mouse, dystrophic canine, and hypertrophic muscular dystrophy feline develop

_progressive muscle lesions and calcium deposits in skeletal muscle during muscle
regeneration. The pathological features of dystrophic golden retriever puppies are particularly
severe and are similar to those of DMD boys, who are characterized by progressive muscle
necrosis that leads to early death. Nguyen et al. (2002) detected early ectopic calcification in
muscles from 4-day-old and 2-month-old puppies. Thus calcium deposition in skeletal muscle
appears to be an early event associated with muscle degeneration.

In mdx mice, the observed muscle pathology is relatively mild compared with DMD patients
but calcifying lesions are commonly seen in the lower limbs and diaphragm of mice from
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approximately five weeks of age. Recently, ectopic calcification (Fig. 1) has been reported to be
a characteristic feature of muscular pathology (Korff et al., 2006; Verma et al., 2010). For
example, Korff et al. (2006) found that myocardial calcification commonly occurs in mice
following necrosis induced by mechanical stresses and proposed that calcification in the heart
is dependent upon genetic background. Verma et al. (2010) suggested that the absence of
ectopic calcification in the diaphragm serves as a marker of amelioration of mdx pathology. In
addition, one of the prednisone-induced side effects in a canine model of DMD is skeletal
muscle calcification (Liu et al., 2004). However, a palliative glucocorticoid therapy using
prednisone is a feasible and effective treatment approach for DMD despite of the serious
potential side effects (Wong et al., 2002; Khan, 1993). Studies in these animals have revealed
that the percentages of calcified myofibers in necrotic lesions increase dose dependently. It is
speculated that calcium deposits in skeletal muscle are occurred as results of abnormal calcium
and phosphate homeostasis and delayed muscle degeneration and regeneration cycle.

o s , |
Fig. 1. Ectopic calcification in mdx mice (90 days old). Transverse (left and center) and
longitudinal (right) sections, stained with H&E (left and right) and Evans blue (center). The
bar represents 100 pm.

3. Identification of calcium deposits in mdx mice skeletal muscle

Our group is actively studying ectopic calcification in mdx mice skeletal muscle (Kikkawa et
al., 2009). We performed experiments with 90-day-old mdx and control mice (C57BL/10:
B10) fed a commercial standard chow (CE-2; Clea Japan, Tokyo, Japan) and water ad libitum.
Following sacrificed of the mice, high-resolution X-ray micro-computed tomography (CT)
imaging of the hind limbs of mdx and B10 mice using a SkyScan-1074 scanner (SkyScan,
Kontich, Belgium) revealed that all mdx mice had muscle calcification in the hind limb,
whereas no calcium precipitation was observed in the control mice (Fig. 2).

Fig. 2. Images of the hind limb of a two-month-old mdx mouse. X-ray-absorbing materials
are shown as gray shadows and the femeur can be seen in the center of the X-ray image. (A)
CT image. (B) Reconstructed 3D image. (Kikkawa et al., 2009)
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The main composition of calcium deposits in the skeletal muscle was identified using an
back-scattered electron imaging and energy-dispersive X-ray spectrometry (EDS) analysis
by S-4500 SEM (Hitachi, Tokyo, Japan). In a cross-section of the muscle from an mdx mouse,
spotty and bright crystals were observed. The EDS spectra obtained from the crystals
indicated the presence of both calcium and phosphorus (Fig. 2A-B). To determine whether
the composition of the deposits consisted of a calcium phosphate phase, muscle samples
were analyzed using a JEM-2010 TEM (JEOL, Tokyo, Japan) equipped with an EDS detector.
The electron diffraction pattern from an obtained TEM image of the specimen nearly was an
identical match with a simulated diffraction pattern of hydroxyapatite (Ca5(PO4)30H; HA)
(Fig. 3C). Based on these results, we concluded that the calcification of mdx skeletal muscles
is due to the precipitation of hydroxyapatite.

EDS’

Ca

ety ez

Fig. 3. SEM and TEM analyses of ectopic calcification in mdx mice skeletal muscle. (A)
Electron probe microanalysis identified the particles as calcium phosphate. (B) Energy
dispersive X-ray spectroscopy. (C) Identical match of X-ray diffraction of the particles and
HA. (Kikkawa et al., 2009).

4. Serum biochemistry of mdx and B10 mice fed a commercial diet

As we determined that ectopic calcification is composed of HA, the main component of
bones, we suspected that mdx mice have a metabolic disorder of calcium (Ca) and
phosphate (Pi) homeostasis. To examine the levels of Ca and Pi in blood, serum samples
were collected from two-month-old mdx and B10 mice fed a commercial diet (CE-2
containing 1.0 g/100 g Pi and 1.0 g/100 g Ca) and water ad [ibitum. The two minerals were
measured using an automated clinical chemistry analyzer Fuji Dri-chem 4000 (Fujifilm,
Tokyo, Japan). Comparison of the serum mineral components of mdx and B10 mice revealed
that mdx mice had significantly higher serum Pi levels (1.41 fold; P<0.05) than the control
mice, whereas no significant differences in serum Ca levels were detected. These results are
supported by a previous study in mdx and B10 mice by Brazeau et al. (1992).

The concentrations of serum fibroblast growth factor-23 (FGF-23), which is an important
regulator of phosphorus, were also measured using an FGF-23 ELISA kit (Kainos
Laboratories, Tokyo, Japan). The serum level of FGF-23 of mdx mice was significantly
higher (1.5 fold; P<0.05) than that of B10 mice.

Nearly all of the identified functions of FGF-23 are activated or operate through Klotho, a
single transmembrane protein of the p-glycosidase family that is expressed in the distal
kidney tubules and parathyroid gland (Kuro-o, 2010). Both FGF-23 and Klotho have
emerged as responsible factors for mediating phosphate homeostasis. It has been reported
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that soft tissue calcification and hyperphosphatemia are observed in mice lacking either
FGF-23 (Razzaque et al., 2006) or Klotho (Kuro-o et al.,, 1997). Klotho mutant mice also
exhibit multiple age-associated disorders, such as arteriosclerosis, osteoporosis, short-life
span, and ectopic calcification. However, as these phenotypes are rescued by the restriction
of dietary phosphorus alone in male Klotho mice (Morishita et al., 2010) we predicted that
the amount of dietary Pi intake influences the precipitation of calcium in mdx mice, and that
the restriction of dietary Pi may improve mdx muscle pathology and function.

5. Influence of phosphate diet

Based on our findings that mdx mice have calcium deposits composed of HA and exhibit
higher serum phosphate levels, we speculated that dietary phosphate intake might
modulate ectopic calcification in mdx mice. To test this speculation, mdx mice and B10 mice
were divided into three diet groups (n=30) from weaning (20 days old) that were fed diets
with Pi contents of 2.0 g/100 g (high-Pi diet), 1.0 g/100 g (mid-Pi diet), and 0.7 g/100 g (low-
Pi diet) manufactured by Oriental Yeast Company (Tokyo, Japan). Other ingredients,
including calcium (1.2 g/100 g) in the diets were present in the same amounts among the
groups. The experimental diets were based on the CE-2 and mid-Pi diet was a same
composition with CE-2 diet which was fed to pregnant and nursing mice of both genotypes.
All mice were housed in cages with pulp bedding (Palmas-p; Material Research Center,
Tokyo, Japan) in a controlled room with a 12-h light/ dark cycle and a temperature of 25C.
The experimental chows and water were available ad libitum. Mice were either sacrificed
with an overdose of diethylether at age 30, 60, or 90 days or used for measurements of
muscular function at age 60 days. Twenty-four hours before euthanasia, mice were received
an intraperitoneal injection of Evans blue dye (EBD, 100 mg/kg) which incorporates into
regenerating myofibers with permeable membranes (Matsuda et al., 1995). All procedures
were performed in accordance with the ethical guidelines of the University of Tokyo.

5.1 Changes in ectopic calcification in skeletal muscle

Changes in ectopic calcification in mdx mice skeletal muscle induced by dietary phosphate
content were observed using a modified whole body double-staining method involving
alizarin red S and alcian blue, which stain bones and cartilage respectively (Dingerkus et al.,
1977; McLeod, 1980; Webb et al., 1994). Briefly, 90-day-old mice were sacrificed and fixed in
95% ethanol (EtOH) for 7 days after the skin and organs were removed. The EtOH was then
replaced in acetone and the samples were further incubated for 3~4 days. After partial
drying, samples were stained in a mixed solution of 0.3% alcian blue 8GX (Fluka, Germany)
in 70% EtOH, 0.1% alizarin red S (WAKO, Osaka, Japan) in 95% EtOH, and 2.0% potassium
hydrogen phthalate in 70% EtOH for 3 days. Each stained mouse was washed in distilled
water and placed in 0.75% potassium hydroxide (KOH) in MilliQ water for 2 days to
initiated maceration and clearing. Clearing was continued by adding increasing
concentration of glycerol (20%, 50%, 70% and 100%) in 0.75% KOH to obtain a completely
cleared specimen (Fig. 4A). Calcified regions were stained reddish violet, similar to
appearance of stained bones.

Imaging of the stained and cleared samples showed that no bone-like red staining was
present in the skeletal muscles of B10 mice fed any of the three phosphate diets (Fig. 4A-a).
However, in mid-Pi fed mdx mice, striped and spotty red stained areas, particularly in the
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back, gluteus, and lower limbs muscles, were detected (Fig. 4A-b), while excessive
calcification was clearly observed in the samples from high-Pi fed mdx mice (Fig. 4A-c, Fig.
4B). The staining revealed severe calcification, particularly in the diaphragm, back, gluteus,
and lower limbs muscles, where severely degenerated muscle fibers were visible
macroscopically by EBD staining (Fig. 4C). In contrast, bone-like red staining was rarely
seen in the whole bodies of the low-Pi fed mdx mice (Fig. 4A-d, Fig. 4B).

Fig. 4. Results of whole-body double staining of mdx and B10 mice, and Evans blue dye
staining of mdx mice. (A) Images of the whole-body double staining of the lower body. (A-
a) Lower body of a B10 mouse fed a high-Pi diet. The lower body of mdx mice (A-b) fed a
mid-Pi diet, (A-c) high-Pi diet and (A-d) low-Pi diet. (B) Pictures of the whole body double
staining of diaphragm. Diaphragm of an mdx mouse fed a high-Pi diet (left) and low-Pi diet
(right). (C) Evans blue dye in the diaphragm (left) and lower limb (right) of an mdx mouse.
Evans blue-positive lesions are seen in blue.

Quadriceps muscle samples from low-Pi, mid-Pi, and high-Pi fed mdx mice at 30, 60, and 90
days of age were sectioned at 8 pm thickness to determine the onset of calcifying lesions.
Hematoxylin and eosin (Hé&E) and alizarin red S (1%) staining were used to observe
pathology and detect calcification in the samples (Fig. 5). Histology showed early
mineralization in degenerating myofibers in high-Pi fed mdx mice at 30 days of age (only
fed a high-Pi diet only for 10 days), whereas no alizarin red-positive areas were present in
either mid-Pi or low-Pi fed mdx mice of the same age. In addition, few calcium deposits
were seen in mid-Pi fed mdx mice by the age of 60 days or in low-Pi fed mdx mice even by



