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optimal AOs against many exons of the DMD gene.
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myocytes derived from DMD cases are preferable to those
from normal subjects.

. Splicing is regulated in a tissue-specific manner; this is the rea-

son why myocytes should be used for in vitro splicing analysis.

. Geletin-precoated culture dish is prepared as follows: Allow 1%

gelatin in PBS to stand in culture dish at room temperature for
4 h, aspirate excess gelatin, and dry the dish.

. Eighty percent confluency is considered as semiconfluent.

. Differentiated myocytes are recognized by the cell shape. After

the differentiation, cells are elongated and fused to each other.

. The AO which induces the exon skipping in 100% of mRNA is

ideal, whereas the ideal AO cannot be identified in some exons.
Therefore, the most potent AO is selected after the second
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may be clinically effective according to the analysis of BMD
case with nonsense mutation, in which the exon with nonsense
mutation was skipped and in-frame mRINA was produced (22).
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Mutation Spectrum of Dystrophin Gene in Malaysian Patients with Duchenne/
Becker Muscular Dystrophy
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Bin Alwi lefalll3 Masafuml Matsuo" and Z.A. M. I—I

Abstract: We undertook the clinical feature examination and
(MLPA) and direct DNA sequencing of selected exons in a cof

deletlon, and 4 patients with nonsense mutations (i
cases showed compliance to the reading frame rule;

the mutations (62.8%) are located in the di
those found in other populations.

Keywords: Becker muscular dystrop

INTRODUCTION

a widely used
tion among pa

ers (Beggs et al., 1990; Ch ., 1988) with
60% of detection rate, MLPA has increased the detection
rate up to 70% of the DMD/BMD cases (Lai et al., 2006;
Lalic et al., 2005; Takeshima et al., 2010). Additional
direct DNA sequencing could further increase the
mutation detection rate (Takeshima et al., 2010). This
report described and analyzed genotype and phenotype
spectrum of Malaysian patients with DMD/BMD using
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e same exon). Although most
ame deletion of the gene Two

ide coverage of MLPA coupled by direct DNA
equencing.

MATERIALS AND METHODS
Patients

Thirty-five Malaysian patients from unrelated families
were referred to our laboratory with a clinical diagnosis
of DMD or BMD. This study has been approved by the
Ethical Review Board (Human) of the School of Medical
Sciences, Universiti Sains Malaysia.

DNA Extraction

Genomic DNA was extracted from peripheral lympho-
cytes using a commercial kit according to the company’s
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protocol (QlAamp DNA Blood Mini Kit; Qiagen,
Gaithersburg, MD, USA).

MLPA

MLPA screening of all of\Dystrophin exons employed two
sets of probes (SALSA-MLPA P034-A2 and P035-A2)
(MRC Holland, Amsterdam, The Netherlands).

DNA Sequencing

Direct DNA sequencing was performed using an auto-
mated DNA Sequencer (model 3130; Applied Biosystems,
Forster City, CA, USA) for cases where MLPA found an
apparent deletion of only one exon or no exon deletion/
duplication at all.

In Silico Splicing Analysis of Nucleotide Mutations

Due to the absence of RNA specimens in our possession,
we decided to perform in silico analysis to predict the
effect of all nucleotide mutations on splicing. We used
ESEfinder 3.0 (Cartegni et al., 2003) software (http://
cb.utdallas.edu/cgi-bin/tools/ESE3/esefinder.cgi) that
analyzes five exonic splicing enhancer (ESE) motifs (SF2/
ASF, SF2/ASF (IgM-BRCA1), SC35, SRp40, and SRp55)
to predict disruption of exonic splicing enhancer motifs by
analyzing the splicing score created by the mutations as
compared with the score in the wild-type exon sequence.
In addition, we also analyzed the possibility of cryptic
splice site using Human Splicing Finder software version
2.4.1 (www.umd.be/HSF/4ADACTION/input_SSF).

RESULTS
Clinical Diagnoses and Patients Characteristics

All patients were clinically examined and diagnosed
as having DMD/BMD based on their clinical features
and creatine kinase (CK) levels (Table 1). Among these
patients, only 18 had an identifiable family history of
DMD (51.4%). All patients were positive for the Gower’s
sign and showed an average increase in serum CK lev-
els by 22.8 = 14.6 times (mean 10002.3 +4576.3 U/L),
except those within the early stage of disease progression
(65-F59 and 66-F60).

Dystrophin Mutation of the Malaysian
DMD/BMD Cohort

This study included 35 DMD/BMD patients (Table 1).

We identified five different types of disease-causing.

A. Q. Rani et al.

Dystrophin mutations: exonic deletions in 27 patients,
exonic duplications in 2, nonsense in 3, missense in 2, and
nucleotide deletions in 2. Two patients showed closely
spaced combined mutations. They are patient 43-F41 with
two concurrent nonsense mutations in exon 8 (¢.701C—A
and ¢.745C—T), which we reported in detail elsewhere
(Rani et al., 2011), and patient 55-F51 with closely spaced
missense mutation and nucleotide deletion (c.4741G—T
and c.4742delA).

Mutations frequently clustered in two hotspots:
62.8% (22 out of 35) were localized within the distal
hotspot. Two out of 30 (6%) deletion cases were in-frame
(41-F39 and 45-F43, exons 8-19 and 3-13, respectively)
but resulted in DMD phenotype.

In Silico Splicing Analyses

Mutations in our patients’ cohort that underwent this
analysis are the missense in patients 37-F35 and 55-F51,
nonsense in patients 38-F36, 43-F41, and 49-F47, and
nucleotide deletion in patients 55-F51 and 73-F63.
Among them are patients with double nonsense in one
exon (43-F41) and missense coupled by single-nucleotide
deletion in one exon (55-F51), of which we analyzed them
as combined events or separately.

We found that c.701C—A in patient 43-F41 decreases
the best-hit scores in 2 out of 5 analyzed ESE motifs, SF2/
ASF and SF2/ASF (IgM-BRCA1), by 0.14 and 0.16,
respectively. Our in silico analyses did not show any
effects of other nucleotide mutations on either ESE motifs

or splice sites (raw data not shown).

DISCUSSION

A few studies have reported screening of selected
Dystrophin exons only for deletions among Malaysian
patients (Thong et al., 2005; Marini et al., 2008). This
report is the first comprehensive molecular analysis of
Dystrophin mutations among Malaysian DMD/BMD
patients. We suggested that direct sequencing of addi-
tional exons could be done if MLPA could not identify
any mutations. Although cDNA analyses could be an
alternative, genomic DNA analyses are still preferable
due to its practical reasons and use in molecular diagnosis
with direct clinical relevance to patient/family counseling.
Our data fit in a diverse spectrum of mutations.

We have also noted in this study that MLPA does
improve the diagnostic technique, especially in detecting
small mutations (patients 55-F51 and 73-F63).

Two of our patients showed DMD phenotype despite
harboring in-frame deletions (41-F39 and 45-F43). The
two in-frame deletions were located in the N-terminus
of dystrophin. Thus, the most likely explanation for the
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Table 1. Genotypes and phenotypes of Malaysian DMD/BMD patients in this study.

Genotypes Clinical information
Age  Onset
Patient ID Mutations Type (year) (year) CK u/ FH Best cumrent motor ability Lower limb muscle Phenotype
1-F1 Del 43-52 Out 8 7 8540 Y  Waddling gait Calf hypertrophy DMD
3-F2 Del e44-51 Out 8 7 12690 N Unstable gait Calf hypertrophy DMD
5-F4 Del e46-52 Out 12 5 6430 N  Bed-ridden Contracture reflexes depressed MD
6-F5 Del e46-50 Out 8 3 10000 Y  Waddling gait Calf hypertrophy OMD
10-F9 Del e46-50 Out 7 5 4354 Y Frequent falling, difficulties climbing stairs Mild limb hyperextensibility OMD
12-F11 Del e45 Out 9 5 Unknown Y Abnormal gait Muscle weakness OMD
13-F13 Del e46-53 Out 8 5 5794 Y Gross motor development delay Progressive muscle weakness OMD
15-F14 Del e45-52 Out 9 6 2149 Y  Abnormal gait Lower limb weakness, calf hyj OMD
17-F16 Del e46 Out 8 7 8880 N  Abnormal gait and trequent falling Weakness, reflex negative OMD
18-F17 Del e48-54 Out 55 4 7355 Y  Waddling gait, not able to stand up Wasting the muscle bulk, calf : OMD
pseudohypertrophy
25-F23 Del e46-50 Out 1.5 5 8450 N  Waddling gait Calf hypertrophy DMD
26-F24 Del el6-17 Out 7 7 10260 N  Waddling gait Calf pseudohypertrophy DMD
27-F25 Del e50 Out 7 6 11770 N  Waddling gait Calf pseudohypertrophy DMD
28-F26 Del e18-32 Out 16 8 > 10000 N  Wheelchair bound Muscle wasting DMD
30-F28 Del e45-54 Out 9 6 12170 N Wheelchair bound Small muscle bulk DMD
33-F31 Del e8-30 Out 9 7 13325 N Tip-toe gait Calf pseudohypertrophy and tendon reflex absent DMD
37-F35 c.8810A> G;p.E2937R (e59) MS 8 5 18114 N  Waddling gait Muscle weakness more of lower limbs, no tendons DMD
response
38-F36 ¢.3709A> T;p.K1237X (e27)* NS 9 7 11456 N  Waddling gait Progressive loss of muscles, calf pseudohypertrophy DMD
39-F37 Del e44 Out 4.5 4 25320 Y  Frequent falling, not able to stand up Calf pseudohypertrophy DMD
40-F38 Del e 49-51 In 7 6 4363 Y  Still able to walk Calf pseudohypertrophy BMD
41-F39 Del e8-19 In 6 4 24590 Y  Wheelchair bound Calf pseudohypertrophy and tendon reflex absent DMD
43-F4} ¢.701C> A; p.5234X and NS 16 6 5408 N  Wheelchair bound Calf pseudohypertrophy DMD
¢.745C> T;p.Q249X (e8)
45-F43 Del e3-13 In 7 5 9000 Y  Wheelchair bound Calf pseudohypertrophy DMD
49-F47 ¢.10171C> T;p.R3391X (e70) NS 3 3 7000 Y  Tip-toe walking Calf hypertrophy, lumbar lordosis, and hypotonic DMD
lower limbs
50-F48 Del e8-11 Out 7 6 Unknown N Frequent falling, difficulties climbing stairs ~ Calf pseudohypertrophy, oreflexia DMD
51-F49 Del e49-50 Out 8 6 8076 Y  Waddling gait Calf pseudohypertrophy DMD
53-F50 Del e48-54 Out 6.5 6 18,104 N Waddling gait, difficulty climbing stairs Calf pseudohypertrophy DMD
55-F51 ¢.4741G> T;p.M1580I and MS and Out 17 6 8440 Y  Bed-ridden Muscle weakness DMD
c.4742delA;p.
N158 IMFsX1583*
59-F54 Del el4-17 Out 10 8 6000 N Sitting, shuttling Weakness, calf hypertrophy DMD
60-F55 Dup ell Out 8 2 2466 Y  Bottom shuffling Progressive weekness of both lower limb muscles DMD
65-F59 Del e17-43 Out 6 5 162 N Waddling gait Bilateral calf swelling DMD
66-F60 Del e3-43 Out 7 7 313 N Waddling gait Calf pseudohypertrophy DMD
71-Fe61 Dup ed5 Out 11 7 13310 N Wheel chair bound Weakness of lower limbs DMD
73-F63 c.6804DelACAA Out 8 7 11920 Y  Waddling gait Bilateral lower limb weakness DMD
74-F64 Del e45-50 Out 7 7 >10000 N  Not able to run or climb stairs Calf pseudohypertrophy DMD

e, exon; Out, out-of-frame; In, in-frame; NS, Nonsense; MS, Missense; CK, creatinine kinase level; FH, family history; Y, yes; N, no. Gower’s sign was positive in all the cases. *Novel as of 18 September 2012
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more severe phenotype in these two patients is a probable
disruption of the actin binding domain (Muntoni et al.,
1994; Cutiongco et al., 1995). Another reason might be
that exon skipping has occurred at the RNA level, result-
ing in the skipping of these exons or creation of cryptic
splice sites (Shiga et al., 1997; Melis et al., 1998; Ginjaar
et al., 2000). Meanwhile, the presence of multiple muta-
tions as possible phenotype modifiers, which have not
been detected in the DNA of these two cases could not be
excluded (Rani et al., 2011).

Our in silico analyses found that one mutation in
exon 8 (c.701C—A) of patient 43-F41 altered the best-
hit scores of two ESE motifs. However, it is difficult to
postulate that this alteration may lead to changes in the
splicing of exon 8. The effects of this nucleotide change
on the ESE motif scores are still less than that of the clas-
sical example of exon skipping event in SMN2 exon 7
(Cartegni et al., 2003). Our analyses of SMN1/SMN2
exon 7 showed that the C—T change decreased the best-
hit scores in 4 out of 5 analyzed ESE motifs: SF2/ASF,
SF2/ASF (IgM-BRCA1), SC35, and SRp40, by 1.23,
0.28, 1.73, and 0.23, respectively.

Our analyses showed that exon 50 followed by exon
49 were the two most frequently deleted exons among
Malaysian patients. This has further informed therapeu-
tic studies, especially those focusing on targeted exon
skipping (Takeshima et al., 2006; van Deutekom et al.,
2007). In order to rescue the phenotype of at least 24% of
Malaysian patients with DMD, skipping of exon 45 could
be suggested.

In conclusion, we showed for the first time comprehen-
sive clinical and molecular genetic findings in Malaysian
patients with DMD/BMD. We found that MLPA coupled
with further direct sequencing of 16 selected exons may
increase the detection rate of Dystrophin mutation. Our sec-
ond finding of closely spaced nucleotide changes implied
that multiple Dystrophin mutations among DMD/BMD
patients may be more frequent than previously thought.
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Molecular characterization of an X(p21.2;q28)
chromosomal inversion in a Duchenne muscular
dystrophy patient with mental retardation reveals
a novel long non-coding gene on Xq28

Thi Hoai Thu Tran'>%, Zhujun Zhang*®, Mariko Yagi!, Tomoko Lee!, Hiroyuki Awano!, Atsushi Nishidal®,
Takeshi Okinaga?, Yasuhiro Takeshima'! and Masafumi Matsuo-®

Duchenne muscular dystrophy (DMD) is the most common inherited muscular disease and is characterized by progressive
muscle wasting. DMD is caused by mutations in the dystrophin gene on Xp21.2. One-third of DMD cases are complicated by
mental retardation, but the pathogenesis of this is unknown. We have identified an intrachromosomal inversion,
inv(X)(p21.2;q28) in a DMD patient with mental retardation. We hypothesized that a gene responsible for the mental
retardation in this patient would be disrupted by the inversion. We localized the inversion break point by analysis of dystrophin
complementary DNA (cDNA) and fluorescence in situ hybridization. We used 5’ and 3’ rapid amplification of cDNA ends to
extend the known transcripts, and reverse transcription-PCR to analyze tissue-specific expression. The patient’s dystrophin
cDNA was separated into two fragments between exons 18 and 19. Exon 19 was dislocated to the long arm of the
X-chromosome. We identified a novel 109-bp sequence transcribed upstream of exon 19, and a 576-bp sequence including a
poly(A) tract transcribed downstream of exon 18. Combining the two novel sequences, we identified a novel gene, named
KUCG1, which comprises three exons spanning 50 kb on Xq28. The 685-bp transcript has no open-reading frame, classifying it
as a long non-coding RNA. KUCG1 mRNA was identified in brain. We cloned a novel long non-coding gene from a chromosomal
break point. It was supposed that this gene may have a role in causing mental retardation in the index case.

Journal of Humman Genetics advance online publication, 6 December 2012; doi:10.1038/jhg.2012.131

Keywords: dystrophin; long non-coding gene; mental retardation

INTRODUCTION

Duchenne muscular dystrophy (DMD) is the most common inherited
muscle disease affecting approximately one in 3500 males and is
characterized by progressive muscle wasting during childhood. DMD
shows muscle dystrophin deficiency because of mutations in the
dystrophin gene that comprises 79 exons spanning >2500kb on
chromosome Xp21.2.! Mutations in the dystrophin gene range from
single-nucleotide changes to chromosomal abnormalities (http:/
www.dmd.nl/).?> Deletions encompassing one or more exons of the
dystrophin gene are the most common cause of DMD and account for
~60% of mutations.® Disastrous mutations such as an out-of-frame
deletion or nonsense mutation result in severe DMD.* DMD is
complicated by mental retardation in one-third of patients.”> Many

studies have been conducted to elucidate the pathogenic mechanism
of this complicating mental retardation. There are now several reports
describing that mutations at the 3’ end of the dystrophin gene are
related to complication with mental retardation.5”

In a small portion of DMD patients, gross chromosomal rearran-
gements have been reported as the cause of dystrophin deficiency. In
fact, a huge intrachromosomal deletion showing contiguous gene
deletion syndrome was used to clone the dystrophin gene?
Intrachromosomal inversions have been identified in DMD.>10
X-autosome translocations involving the dystrophin gene have also
been identified in a limited number of DMD patients,!1:12

Disease-associated chromosomal rearrangements have been
frequently used as a starting point in the elucidation of congenital
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disorders. Disrupted X-chromosomal genes are even more promising
in this respect as they often represent knockouts.!®!® In one DMD
patient with complicating mental retardation, for example, an
intrachromosomal inversion led to the identification of a Ras-like
GTPase gene that causes mental retardation.’ In addition, >20
genes have been identified by studying balanced X-chromosome
rearrangements.

The genes for X-linked mental retardation are largely
unknown.!#1 In a series of 442 Japanese mutations in the
dystrophin  gene, we have described a karyotype of 46,Yinv
(X)(p21.2;q28) to be the cause of one case of DMD.? This case was
complicated with moderate mental retardation and it is thought very
likely that the inversion disrupts one of the >40 genes responsible for
mental retardation at Xq28.17

A diverse population of non-protein-coding RNAs has been
reported in the human genome!®!” Long non-coding RNAs
(IncRNAs), defined as greater than 200 nucleotides (nt) in length,2
have a wide range of functions, including the regulation of
transcription, RNA editing and organelle biogenesis.!*?"?? It has
been suggested that a subset of IncRNAs could contribute to
neurological disorders when they become dysregulated.??

In this study, we characterized an intrachromosomal inversion
inv(X)(p21.2;q28). We identified a novel long non-coding gene named
KUCGI at the break point on Xq28. As this gene was expressed in the
brain, we propose that disruption of the KUCGI gene may have a role
in causing the mental retardation in the index case.

MATERIALS AND METHODS

Patient

The index patient is a 3-year-old Japanese boy. He is the first child of healthy,
non-consanguineous, Japanese parents. Family history was unremarkable.
When he was born at term, blood sampling was performed because of birth
asphyxia. Unexpectedly, his serum creatine kinase level was highly elevated
(25510 UL ™Y normal: <270 IU1™1). He walked unassisted at the age of 15
months, As the high creatine kinase level persisted, a muscle biopsy was
conducted at the age of 2 years to examine dystrophin expression. Dystrophin
staining using monoclonal antibodies to three different'domains revealed no
reactive material in his skeletal muscle, confirming the diagnosis of DMD. He
was referred to Kobe University Hospital for a genetic diagnosis (KUCG481).
At the age of 3 years, his serum creatine kinase was 21776 IU1~1. His growth
parameters were normal but he displayed moderate mental retardation
(developmental quotient: 40). Brain magnetic resonance imaging findings
were normal. His karyotype has been described in our previous report as 46,Y,
inv(X)(p21.2;q28).2 The inversion was inherited through his mother (data not
shown). The protocol for the following study was approved by the ethical
committee of Kobe University School of Medicine.

Dystrophin mRNA analysis

RNA was isolated from biopsied skeletal muscle and analyzed by reverse
transcription-PCR as described previously.?4?> The full-length dystrophin
complementary DNA (cDNA) was amplified as 10 separate fragments.z6 To
identify the break point within the dystrophin cDNA, fragments encompassing
exons 18 and 19 were amplified using different sets of primers. The ends of two
separate dystrophin cDNAs were confirmed by PCR amplification using newly
designed primers; a reverse primer on exon 18 and a forward primer on exon
19, respectively (Table 1).

PCR amplification

PCR amplification was performed in a total volume of 20 pl, containing 2 pl of
cDNA, 2ul of 10 x ExTaq buffer (Takara Bio, Inc., Shiga, Japan), 0.5U of
ExTaq polymerase (Takara Bio, Inc.), 500nM of each primer and 250 pm
deoxyribonucleotide triphosphates (Takara Bio, Inc.). Thirty-five cycles of
amplification were performed on a Mastercycler Gradient PCR machine
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Table 1 Primers used in this study

Primer name Primer sequence (5-3)

Dystrophin cDNA
Exon 18r GCAGAGTCCTGAATTTGCAATC
Exon 19f CATTCACCATCTGTTCCACCA
5-RACE
c24r CAGCCATCCATTTCTTCAGG
c2lr TTGTCTGTAGCTCTTTCTCT
c20r ACTGGCAGAATTCGATCCAC
3-RACE
clef CTGATCTAGAGGTACCGGATCC
c18f GCAGAGTCCTGAATTTGCAATC
KUCG1 mRNA
Bf GGTGAACCCCTCAATGTAAG
Cr CTCTTGTATTCGCTGCAGTG
Cr2 CAGCAAACTTGTACAGTTGC

Abbreviations: cDNA, complementary DNA; RACE, rapid amplification of cDNA ends.

(Eppendorf, Hamburg, Germany) using the following conditions: initial
denaturation at 94°C for 5min, subsequent denaturation at 94°C for
0.5min, annealing at 59°C for 0.5min and extension at 72°C for 1min.
The conditions were sometimes slightly modified for optimization. For nested
or semi-nested PCR, 2 pl of the first reaction mixture was used as the template
for the second amplification. The amplified PCR products were electrophor-
esed on 2% agarose gels with a low-molecular weight DNA standard (¢pX174-
Hae III digest; Takara Bio, Inc.) and stained with ethidium bromide.

Fluorescence in situ hybridization

Fluorescence in situ hybridization was conducted on metaphase spreads from
the patients’ lymphocytes with digoxigenin-labeled PCR product containing
exons 18 or 19 of the dystrophin gene in combination with DXZ1 spectrum
green probe for the X centromere (Vysis, Inc., Downers Grove, IL, USA).
The exon 18 and 19 probes were detected by immunocytochemistry. This assay
was carried out commercially by Mitsubishi Chemical Medience Co.

(Tokyo, Japan).

5'-Rapid amplification of cDNA ends

5'-Rapid amplification of cDNA ends (RACE) was performed to obtain the
5'-end of the transcript using the 5-RACE System Version 2 (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions, with primers
specific for the dystrophin mRNA (Table 1). Total RNA isolated from the
patient’s skeletal muscle was reverse transcribed using a gene-specific primer
(c24r) and SuperScript II, a derivative of Moloney Murine Leukemia Virus
Reverse Transcriptase (Invitrogen). PCR amplification was then performed
using Taq DNA polymerase (Takara Bio, Inc.), a nested gene-specific primer
(c21r), and a deoxyinosine-containing anchor primer provided with the system.
A nested amplification using an inner gene-specific primer (c20r) and the
anchor primer from the provider was also performed.

3'-Rapid amplification of cDNA ends

3'-RACE was performed to obtain the 3'-end of the transcript using the
3'-RACE System Version 2 (Invitrogen) with primers specific for the dystrophin
mRNA (Table 1). First-strand cDNA synthesis was initiated at the poly(A) tail
of mRNA using the adapter primer from the provider, After first-strand cDNA
synthesis, the original mRNA template was destroyed with RNase
H. Amplification was performed using a gene-specific primer (cl6f) and a
universal amplification primer from the provider that targets the cDNA
complementary to the 3'-end of the mRNA. A nested amplification using an
inner gene-specific primer (c18f) and the anchor primer from the provider was
also performed.
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Figure 1 FISH analysis revealing disruption of the dystrophin gene. Results of FISH examination are shown with an enlarged panel (below). Centromeric
signal is marked by arrowheads. (a) Exon 18 probe. Hybridization signals (arrow) are present on the short arm of the X-chromosome. (b) Exon 19 probe.
Signals (arrow) are present on the long arm of the X-chromosome. A full color version of this figure is available at the Journal of Human Genetics journal

online.

DNA sequencing

PCR-amplified bands were excised from the gel with a sharp razor blade,
pooled and purified using a QIAGEN gel extraction kit (QIAGEN, Inc,
Hilden, Germany) according to the manufacturer’s instructions. Purified
products were sequenced either directly or after subcloning into the pT7 Blue
T-vector (Novagen, San Diego, CA, USA). DNA sequencing was performed
using a BigDye 1.1 Terminator Cycle Sequencing kit (Applied Biosystems,
Foster City, CA, USA) in a Mastercycler Gradient (Eppendorf). The DNA
sequences were determined using an automated DNA sequencer (ABI 310;
Applied Biosystems).

mRNA expression of KUCG1
The expression of the KUCGI transcript was examined by reverse transcrip-
tion-PCR. Human total RNA from 21 tissues (adrenal gland, bone marrow,
brain, colon, fetal brain, fetal liver, heart, kidney, liver, lung, lymphocytes,
placenta, prostate, salivary gland, skeletal muscle, spinal cord, testis, thymus,
thyroid gland, trachea and uterus) was obtained from a human total RNA
Master Panel II (Clontech Laboratories, Inc.,, Mountain View, CA, USA).
cDNA was synthesized as described previously?’ from 2.5 ug of each total RNA.
The KUCGI transcript spanning exon 2 to exon 3 was amplified by semi-
nested PCR using primers Bf and Cr2, then Bf and Crl (Table 1), yielding a
314-bp fragment.

To check the integrity and concentration of the cDNA, the glyceraldehyde-3-
phosphate dehydrogenase gene was also reverse transcription-PCR amplified,
as described previously.?

Database searches and multiple sequence alignments

Homology searching was performed using the National Center for Biotech-
nology Information BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
The cloned 658-bp sequence was searched using NONCODE v3.0.%° The core
promoter of the KUCGI gene was analyzed using Genety X (Ver. 8.2.0)
(GENETYX corporation, Tokyo, Japan).

RESULTS
We performed a molecular characterization of an intrachromosomal
inversion in a DMD patient, inv(X)(p21.2;q28). We were able to

amplify all 79 dystrophin exon-encompassing regions from the patient’s
genome (data not shown), indicating that the overall structure of the
gene was intact. We examined the full-length dystrophin cDNA as 10
separate fragments. All the cDNA fragments could be obtained by PCR
except one that covered exons 17 to 25 (data not shown). This
suggested that the dystrophin cDNA was separated into two fragments;
one from exons 1 to 18 and the other from exons 19 to 79 (data not
shown). We used fluorescence in situ hybridization to confirm this. As
expected, an exon 19 probe hybridized to the long arm of the
X-chromosome, while an exon 18 probe hybridized to the short arm
(Figure 1). We concluded that the exon 19 dislocation from the short
arm to the long arm was the cause of DMD.

We were surprised the distal dystrophin ¢cDNA (exons 19 to 78)
could be PCR amplified, because this indicated that it formed a new
fusion gene after dislocation. We, therefore, examined the full-length
transcript using skeletal muscle RNA from the patient (Figure 2). We
obtained a 5'-RACE product from exon 20, which contained 109 bp
between the adapter and dystrophin exon 19 sequence (Figure 2).
Homology searching of the identified sequence revealed that,
although it did not match any known gene, it was identical to a
portion of Xq28 (GenBank ID: NW001842413.1). The first nucleotide
of the cloned sequence was 89,813bp downstream from the mela-
noma antigen family A, 9 (MAGEA9) gene (Figure 3). Examnination of
the genomic sequence 3’ of the cloned 109-bp sequence revealed a GT
dinucleotide, a splice donor consensus sequence (Figure 2). Although
an AG dinucleotide-a consensus splice acceptor sequence was not
present at the 5'-end, we did identify a TATA-box 5'-(ATATATAA
CAATTTA)-3', GC-box 5-(TAAGGGCATACCCT)-3' and CCAAT-
box 5'-(CCTAGCCAATAG)-3' at 168, 266 and 372 bp upstream of the
cloned sequence, respectively (Figure 2). Additionally, a cap signal
sequence (TCAGCAAC) was present 24 bp upstream. These charac-
teristics indicated that the cloned sequence was the first exon of an
unknown gene that is transcribed in the centromere-to-telomere
direction. We concluded that, in the patient, the first exon of the

o @
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Figure 2 5-RACE of dystrophin transcript. (a) Product of 5/-RACE of skeletal muscle RNA from the patient is shown (5-RACE). Mk refers to ¢X174-Hae [I/
molecular weight marker. (b) Schematic description of the amplified product. Numbered boxes indicate dystrophin exons. The open box indicates the novel
109-bp sequence. Arrows indicate primers used for PCR. (c) Part of Xq28 genomic sequence indicating the identified 109nt (upper case). The boxed
regions indicate the TATA-box, GC-box and CCAAT-box at 168, 266 and 372 bp upstream, respectively. A cap signal (thick underline) was identified 24 nt

upstream of the 109-bp sequence.

unknown gene spliced to the dislocated part of the dystrophin gene,
producing a chimeric dystrophin transcript.

To identify the rest of the novel gene, we conducted 3'-RACE using
a primer in exon 16, and obtained one clear product (Figure 4).
Sequencing of the amplified product revealed a 583-bp sequence
inserted between dystrophin exon 18 and the adapter sequence
(Figure 4). Homology searching revealed that this sequence, apart
from the last seven ‘A’ nt, matched two separate regions of Xq28. The
first 123bp that were continuous with the 3’-end of exon 18
completely matched nt 148986563-148986685 and the last 453bp
matched nt 149008147-149008599 (NC 00023.10). The last nucleo-
tide was located 4448 bp upstream of the melanoma antigen family A,
8 (MAGEAS) gene (PFigure 3). Examination of the genomic sequences
flanking the first 123 bp revealed consensus splice donor and acceptor
sites at the 3’ and 5’ ends, respectively, indicating that it is an internal
exon of an unknown gene. The last 453bp had an AG dinucleotide
immediately upstream but no GT dinucleotide downstream. Instead,
a consensus polyadenylation signal (AATAAA) was identified 14bp
upstream of the 3'-end (Figure 4).>° Considering the stretch of seven
‘A’s as part of a poly(A) tail, we concluded that the 453 bp sequence
was the last exon of the unknown gene. The dystrophin promoter
would produce a chimeric transcript comprising dystrophin exons
1-18 and two novel exons at the 3'-end.

Combining the results of 5" and 3’-RACE, we had cloned a 685-bp-
long transcript, the sequence of which we deposited in GenBank
under the accession number JX283354. Homology searching did not
reveal any transcript with significant similarity. The transcript had no

significant open-reading frame, but because of its mRNA-like -

structure and length of >200bp, we concluded that it was a novel
IncRNA. We named it KUCGI. KUCGI spans nearly 50kb on Xq28
and is located 9.0 kb downstream of MAGEAY and 4.4 kb upstream of
MAGEAS8 (Figure 3). It has three exons separated by two introns
(32kb and 20kb long, respectively). The site of recombination of the

Journal of Human Genetics

intrachromosomal inversion inv(X)(p21.2;q28) was intron 1. The
inversion caused a head-to-tail fusion of KUCGI and dystrophin at the
recombination sites, We searched for homologous IncRNAs using
NONCODE v3.0,%° but did not identify any significant matches. This
indicated that KUCGI is a novel IncRNA. It was found that exon 3 of
KUCGI overlaps with the antisense transcript RP5-869M20.2, an
IncRNA of unknown function (Figure 3).

We next examined the tissue-specific expression of KUCGI in
humans. We amplified a fragment comprising exons 2 to 3 by reverse
transcription-PCR of total RNA from 21 human tissues. The expected
size product was obtained by semi-nested PCR from four tissues
(lung, thyroid gland, brain and placenta), whereas no product was
obtained from the other 17 tissues (Figure 5). Considering the brain
expression of KUCGI, we consider that its disruption may be
responsible for the moderate mental retardation in the index case.

DISCUSSION

In this report, we describe molecular characterization of an inverted X
(p21.2;g28) chromosome in a patient with DMD and mental
retardation. The inversion disrupted both the dystrophin gene,
presumed to be the cause of the DMD, and a novel IncRNA, KUCGI,
which may be the cause of the mental retardation. This is the third
intrachromosomal inversion to be molecularly clarified in DMD,>10
but the first to disrupt unknown gene directly.

The KUCGI mRNA was detected in 4 out of 21 tissues: lung,
thyroid gland, brain and placenta (Figure 5), indicating tissue-specific
gene regulation despite the presence of three common consensus
sequences in the promoter. The tissue-restricted expression and low
expression level (semi-nested PCR was required to detect a product)
could explain why this IncRNA has not been previously detected
among the thousands of ncRNAs identified by high-throughput
sequencing.’!
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Figure 3 Schematic description of the gene and X-chromosome. (a) Schematic description of the KUCGI gene, The KUCGI gene that spans nearly 50kb
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matched two separate regions on Xg28.

Journal of Human Genetics



Molecular characterization of an X inversion
THT Tran et &l

[e)}

KUCGH1

GAPDH

Figure 5 Tissue-specific expression 'of KUCGI mRNA. Products of reverse transcription-PCR amplification of KUCGI mRNA are shown. Reverse
transcription-PCR amplification of 21 human tissues revealed a product in lung, thyroid gland, brain and placenta. The correct identity of the product was
validated by sequencing. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA levels were used as a reference.

What is the function of the KUCGI gene? As it undergoes splicing,
is >200nt long, and contains features such as a poly(A) signal/tail,
KUCGI can be considered an mRNA-like ncRNA.*>3? [ncRNAs have
been shown to have key roles in imprinting control, immune responses
and human disease;?® for instance, an ncRNA cloned from a
chromosomal inversion was recently demonstrated to cause
autosomal dominant hypertension and brachydactyly (OMIM
112410).3* In the central nervous system, the increasing variety of
ncRNAs shown to be expressed has suggested a strong connection
between ncRNAs and the complexity of the system.>® Hundreds of
IncRNAs have been shown to localize to specific neuroanatomical
regions, cell types or subcellular compartments within the brain®® and
a subset of IncRNAs is likely to contribute to neurological disorders.?*
For instance, the levels of the linc-MD1 IncRNA are strongly reduced
in DMD, indicating a role for this IncRNA in the disease pathology
of DMD.

The mechanism of action of IncRINAs is thought to involve direct
binding to target sites on proteins and RNAs.>>* It is interesting that
exon 3 of KUCGI overlaps with the antisense transcript RP5-
869M20.2, an IncRNA of unknown function. It is possible that
transcripts from KUCGI and RP5-869M20.2 form a double-
stranded RNA that has a particular physiological role.

As KUCGI is expressed in the brain, we suspect that its disruption
is responsible for the moderate mental retardation in the index case.
Although > 40 genes responsible for X-linked mental retardation have
been annotated to Xq28,17 the gene(s) responsible for many cases of
X-linked mental retardation remain unidentified.!* To test whether
KUCGI is responsible for other cases of X-linked mental retardation,
we sequenced KUCGI in ten Japanese families with X-linked mental
retardation for which no responsible gene mutation has been
identified. No mutations were identified (data not shown).
Although we have not provided direct evidence linking mental
retardation to mutation of KUCGI, further studies of its function,
and mutation analysis in other X-linked mental retardation families,
is warranted.
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ABSTRACT: Long INterspersed Element-1 (LINE-1)
retrotransposons comprise 17% of the human genome,
and move by a potentially mutagenic “copy and paste”
mechanism via an RNA intermediate. Recently, the
retrotransposition-mediated insertion of a new tran-
script was described as a novel cause of genetic dis-
ease, Duchenne muscular dystrophy, in a Japanese male.
The inserted sequence was presumed to derive from a
single-copy, noncoding RNA transcribed from chromo-
some 11q22.3 that retrotranspesed into the dystrophin
gene. Here, we demonstrate that a nonreference full-
length LINE-1 is situated in the proband and maternal
genome at chromosome 11q22.3, directly upstream of the
sequence, whose copy was inserted into the dystrophin
gene. This LINE-1 is highly active in a cell culture assay.
LINE-1 insertions are often associated with 3’ transduc-
tion of adjacent genomic sequences. Thus, the likely expla-
nation for the mutagenic insertion is a LINE-1-mediated
3’ transduction with severe 5’ truncation. This is the first
example of LINE-1-induced human disease caused by an
“orphan” 3’ transduction.

Hum Mutat 33:369-371, 2012. © 2011 Wiley Periodicals, Inc.

KEY WORDS: LINE-1; retrotransposon; 3’ transduction;
dystrophin; Duchenne muscular dystrophy

Retrotransposons (“jumping genes”) are highly abundant mobile
genomic elements. In particular, the long interspersed element-1
(LINE-1 or L1) class comprises 17% of the human genome. A full-
length human LINE-1 isabout 6 kilobases and contains a 5’ untrans-
lated region (UTR) encoding promoter activity [Swergold, 1990],
two open reading frames (ORFs) separated by a spacer [Dombroski
et al, 1991], a 3 UTR, and a poly(A) tail. ORF1 encodes a pro-
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tein with RNA binding [Hohjoh and Singer, 1996; Martin, 1991]
and nucleic acid chaperone activity [Martin and Bushman, 2001],
while ORF2 is a protein with endonuclease [Feng et al., 1996] and
reverse transcriptase activities [Mathias et al., 1991]. LINE-1s are
autonomous nonlong terminal repeat retrotransposons that move
by a potentially mutagenic “copy and paste” mechanism via an RNA
intermediate that is reverse transcribed and inserted into the genome
[reviewed in Goodier and Kazazian, 2008). LINE-1s can also cause
disease indirectly, through mobilization of the nonautonomous Alu
and SVA (SIVE-VNTR-Alu) retrotransposons [Dewannieux et al.,
2003; Hancks et al., 2011; Ostertag et al., 2003].

Recently, the retrotransposition-mediated insertion of a new
cDNA was described as a novel cause of genetic disease, Duchenne
muscular dystrophy (MIM# 310200), in a Japanese boy [Awano
etal., 2010]. In this work, it was presumed that the inserted sequence
was derived from a nonrepetitive noncoding RNA transcribed from
chromosome 11¢22.3 that was reverse transcribed and integrated
in the antisense orientation into exon 67 of the dystrophin gene on
chromosome X, causing exon 67 skipping. The whole insertion was
327-bplong, of which 212 bp was identical to a sequence on chromo-
some 11q22.3 (chr11:105,479,198-105,479,409 of hg19/NCBI Build
37.1 Feb 2009), while the remaining 115 bp was a poly(T) stretch.

‘The inserted sequence had hallmarks of LINE-1 retrotransposition,

namely a poly(A) tail complementary to the poly(T) stretch, target
site duplication flanking the insertion in dystrophin exon 67, and
insertion at a near-consensus LINE-1 endonuclease site (TTTT/CA
instead of TTTT/AA) [Awano et al., 2010]. Another LINE-1-related
phenomenon is 3’ transduction, the co-mobilization of DNA se-
quences downstream of LINE-1s as a consequence of transcriptional
read-through due to the weak LINE-1 poly(A) signal [Holmes et al.,
1994; Moran et al., 1996]. Because LINE-1 insertions are often as-
sociated with 3’ transductions [Goodier et al., 2000; Moran et al.,
1999; Pickeral et al., 2000], we hypothesized that the insertion in
the patient might result from such an event. However, no LINE-1
was present in the DNA upstream of the single copy sequence from
chromosome 11q22.3 in the human reference genome (hg19).

On the other hand, a LINE-1 directly upstream of the transduced
sequence on chromosome 11q22.3 was present in one Japanese
individual of 15 unrelated individuals in a LINE-1-targeted rese-
quencing dataset generated in our laboratory [Ewing and Kazazian,
2010]. Based on bioinformatic analysis, this LINE-1 was absent
from the 185 HapMap phase I individuals, including 30 individ-
uals with self-reported Japanese ancestry, whose genomes were
sequenced by the 1000 Genomes Consortium [1000 Genomes

© 2011 WILEY PERIODICALS, INC.
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Figure 1. A: Orphan 3 transduction event in the patient. The trans-
duced sequence is in black. Black triangles indicate target site duplica-
tions (3 bp in exon 67, 21 bp at chromosome 11q22.3). B: PCR analysis of
the 3 junctions of the presumed progenitor (LRE4) of the DNA sequence
inserted into the dystrophin gene with the primers indicated in A. Geno-
typing primer pairs L1Hs {5'-GGGAGATATACCTAATGCTAGATGACAC-
3')and Fs (5'-CGTTACATTTCACCACAGATTG-3') amplify the filled (F) site
(around 686 bp), while primers Es {5'-AGCACAATACCTTGCACATTAG-3')
and Fs amplify only the empty (E) site (828 bp) due to short primer exten-
sion time. Forty Japanese individuals (80 chromosome 11s) were also
genotyped for the LRE4 allele and five were positive (data not shown).
Thus, this allele is an uncommon variant in the Japanese population.
PCR conditions are available upon request.

Project Consortium, 2010; Stewart et al., 2011]. Additionally, it was
not detected in our independent whole-genome analysis of individ-
uals included in the 1000 Genomes project [Ewing and Kazazian,
2011]. The lack of evidence for this insertion in multiple analy-
ses indicates that it may represent a population-restricted variant
present at low allele frequency in the general population. To evaluate
further its gene frequency in the Japanese population, we analyzed
80 Japanese chromosome 11922.3 sites by PCR and found five sites
containing the LINE-1, corresponding to a gene frequency of 6%
(data not shown). Here, we demonstrate through PCR-based analy-
sis that this nonreference LINE-1 is full length and is situated in the
maternal and proband genomes at chromosome 11922.3, 217 bp 5'
of the retrotransposed 212-bp sequence that was inserted into the
dystrophin gene (Fig. 1A and B). Thus, the most likely explanation
for the mutagenic insertion is a LINE-1-induced 3’ transduction
event from chromosome 11¢22.3 with severe 5 truncation upon
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Figure 2. A: Schematic diagram of LRE4. Nucleotide changes dif-
fering from LRE3 [Brouha et al., 2002] are indicated. LRE4 was PCR
amplified from the patient’s blood DNA with iProof High Fidelity DNA
Polymerase (Bio-Rad, Hercules, CA) and sequenced. LRE4 belongs to
the Ta-1d class of human-specific LINE-1s [Boissinot et al., 2000], and
the Ta class elements cause most de novo pathogenic human insertions
[reviewed in Chen et al., 2005]. B: Retrotranspaosition activity of LRE4 (99-
LRE4-EGFP-Puro) in HEK293T cells. LRE4 was PCR amplified with iProof
High-Fidelity DNA Polymerase (Bio-Rad) using the primers 5-CGTTACA-
TTTCACCACAGATTG-3 and 5-AAGTAAAATAGAGGTTTTGGGGG-3.
The PCR product was cloned with the TOPO XL PCR Cloning Kit {In-
vitrogen, Carlsbhad, CA) and was subsequently cloned to replace L1RP
in the 99-RPS-EGFP-Puro reporter construct with BstZ171 and Nofl-HF
double digestion and ligation. HEK293T cells were transfected with 1 ug
of each plasmid in a 6-well plate using Fugene 6 (Roche, Indianapolis,
IN). Transfected cells were selected with puromycin, and retrotrans-
position events were evaluated 4 days later by FACS analysis of EGFP
expressing cells. 99-RPS is the highly active L1RP cloned into a modified
pCEP4 plasmid lacking the CMV promoter. Retrotransposition activity of
99-LRE3-EGFP-Puro is set to 100%. JM111 has the same sequence as
99-RPS, except that it contains two point mutations in ORF1 that abolish
retrotransposition in cis [Moran et al, 1996] and serves as a nega-
tive control. Retrotransposition activity of LIRP and LRE3 was similar
in HEK293T cells. Standard deviation of two independent experiments
done in triplicate is shown.

insertion, such that only part of the 3’ transduced sequence was
inserted (Fig. 1A). What is less clear is in which cell lineage and
at what time-point the LINE-1 RNA was reverse transcribed and
inserted into the genome. Integration into the dystrophin gene most
likely occurred in one or more of the mother’s germ cells or early
during the proband’s development, because the mother’s blood was
negative for the presence of the 3' transduced sequence.

To characterize the LINE-1 progenitor element on chromo-
some 11q22.3, hereafter referred to as LRE4 (LINE-1 Retrotrans-
posable Element 4; BankIt1482137 LRE4 JN698885 [GenBank,
http://www.ncbi.nlm.nih.gov/Genbank/}), we PCR amplified it



from the patient’s blood DNA and sequenced it from multiple in-
dependent PCR products, all of which had the identical sequence.
LREA4 is a full length Ta-1d element and contains 10 nucleotide alter-
ations relative to LRE3, the most active LINE-1 isolated to date, and
the only LINE-1 that is an exact match to the active LINE-1 amino
acid consensus sequence [Brouha et al., 2002, 2003]. Three of the
nucleotide substitutions in LRE4 resulted in amino acid changes
relative to LRE3 (Fig. 2A). All LRE4 nucleotide changes were iden-
tified in other LINE-1s present in the hgl9 assembly. However, no
reference LINE-1 contained all 10 nucleotide alterations, nor was it
present in a recent dataset of active LINE-1s [Beck et al., 2010]. To
determine the retrotransposition activity of LRE4, we cloned it into
aplasmid with an enhanced green fluorescent protein (EGFP) retro-
transposition indicator cassette, creating 99-LRE4-EGFP-Puro. This
cassette was designed so that translation of the EGFP reporter gene
occurs only after LINE-1 reverse transcription and integration of
its cDNA copy into the genome—that is, after a retrotransposition
event [Moran et al., 1996; Ostertag et al., 2000]. Upon transfec-
tion of HEK293T cells with 99-LRE4-EGFP-Puro, and selection for
transfected cells with puromycin, retrotransposition events were
evaluated by FACS analysis of EGFP expressing cells [Ostertag et al.,
2000]. 99-LRE4-EGFP-Puro demonstrated a retrotransposition ac-
tivity comparable to plasmids containing LRE3 or L1RP (Fig. 2B),
indicating that it is a highly active or “hot” retrotransposon [Brouha
etal, 2003].

This is the fifth case of LINE-1-driven insertional mutagene-
sis of the dystrophin gene [Narita et al.,, 1993; Yoshida et al., 1998;
Musova etal., 2006; and Awano et al., 2010 together with the current
study]. Therefore, mutation analyses of this gene should take into
account large insertions mediated by LINE-1s. Although, LINE-
1s are often truncated at their 5’ end, this is the first example of
LINE-1-induced human disease caused by an orphan 3’ transduc-
tion, that is, a LINE-1-mediated insertion lacking LINE-1 sequence.
Two nondisease causing retrotransposition events of gene fragments
have also been described that may have arisen by LINE-1-mediated
3’ transduction, with the transducing LINE-1 being lost [Ejima
and Yang, 2003; Rozmahel et al,, 1997]. In a previous report, we
showed that a mutagenic insertion into the a-spectrin gene was the
result of an SVA-mediated orphan 3’ transduction [Ostertag et al.,
2003]. Therefore, any insertion of a nonrepetitive sequence bearing
the hallmarks of retrotransposition should be further investigated
for a LINE-1- or SVA-mediated transduction event, as previously
postulated by Moran et al. [1999]. Our results indicate that LRE4
is a highly active, polymorphic retrotransposon with a pathogenic
history.

Acknowledgments

We thank John L. Goodier and Prabhat K. Mandal for their great insights
into the project and for their comments on the manuscript. Ling Cheung and
David Sigmon are acknowledged for excellent technical assistance. We thank
Dr. Christine Beck and Dr. John Moran for sharing their data concerning
hot LINE-1s.

Disclosure Statement: The authors declare no conflict of interest.

References

Awano H, Malueka RG, Yagi M, Okizuka Y, Takeshima Y, Matsuo M. 2010. Contem-
porary retrotransposition of a novel non-coding gene induces exon-skipping in
dystrophin mRNA. ] Hum Genet 55:785-790.

Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran
JV. 2010. LINE-1 retrotransposition activity in human genomes. Cell 141:1159~
1170.

Boissinot S, Chevret P, Furano AV. 2000. L1 (LINE-1) retrotransposon evolution and
amplification in recent human history. Mol Biol Evol 17:915-928.

Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H, Roos D, Kazazian
HH, Jr. 2002. Evidence consistent with human L1 retrotransposition in maternal
meiosis . Am ] Hum Genet 71:327-336.

Brouha B, Schustak ], Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH, Jr.
2003. Hot L1s account for the bulk of retrotransposition in the human population.
Proc Natl Acad Sci USA 100:5280-5285.

Chen JM, Stenson PD, Cooper DN, Ferec C. 2005. A systematic analysis of LINE-1
endonuclease-dependent retrotranspositional events causing human genetic dis-
ease. Hum Genet 117:411-427.

Dewannieux M, Esnault C, Heidmann T. 2003, LINE-mediated retrotransposition of
marked Alu sequences. Nat Genet 35:41-48.

Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH, Jr. 1991. Isolation
of an attive human transposable element. Science 254:1805-1808.

Ejima Y, Yang L. 2003. Trans mobilization of genomic DNA as a mechanism for
retrotransposon-mediated exon shuffling. Hum Mol Genet 12:1321-1328.

Ewing AD, Kazazian HH, Jr. 2010. High-throughput sequencing reveals extensive vari-
ation in human-specific L1 content in individual human genomes. Genome Res
20:1262-1270.

Ewing AD, Kazazian HH, Jr. 2011. Whole-genome resequencing allows detection of
many rare LINE-1 insertion alleles in humans. Genome Res 21:985-990.

Feng Q, Moran JV, Kazazian HH, Jr, Boeke JD. 1996. Human L1 retrotransposon
encodes a conserved endonuclease required for retrotransposition. Cell 87:905~
916.

1000 Genomes Project Consortium. 2010. A map of human genome variation from
population-scale sequencing. Nature 467:1061-1073.

‘Goodier JL, Kazazian HH, Jr. 2008. Retrotransposons revisited: the restraint and reha-
bilitation of parasites. Cell 135:23-35.

Goodier JL, Ostertag EM, Kazazian HH, Jr. 2000. Transduction of 3'-flanking sequences
is common in L1 retrotransposition. Hum Mol Genet 9:653-657.

Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH, Jr. 2011. Retrotrans-
position of marked SVA elements by human L1s in cultured cells. Hum Mol Genet
20:3386-3400. .

Hohjoh H, Singer MF. 1996, Cytoplasmic ribonucleoprotein complexes containing
human LINE-1 protein and RNA. EMBO ] 15:630-639.

Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH, Jr. 1994. A new
retrotransposable human L1 element from the LRE2 locus on chromosome 1q
produces a chimaeric insertion. Nat Genet 7:143-148.

Martin SL. 1991. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal
carcinoma cells. Mol Cell Biol 11:4804-4807.

Martin SL, Bushman FD. 2001. Nucleic acid chaperone activity of the ORF1 protein
from the mouse LINE-1 retrotransposon. Mol Cell Biol 21:467-475.

Mathias SL, Scott AF, Kazazian HH, Jr, Boeke JD, Gabriel A. 1991. Reverse transcriptase
encoded by a human transposable element. Science 254:1808-1810.

Moran JV, DeBerardinis R}, Kazazian HH, Jr. 1999. Exon shuffling by L1 retrotranspo-
sition. Science 283:1530-1534.

Moran JV, Holmes SE, Naas TP, DeBerardinis R], Boeke JD, Kazazian HH, Jr. 1996.
High frequency retrotransposition in cultured mammalian cells. Cell 87:917-927.

Musova Z, Hedvicakova P, Mohrmann M, Tesarova M, Krepelova A, Zeman J, Sedlacek
Z.2006. A novel insertion of a rearranged L1 element in exon 44 of the dystrophin
gene: further evidence for possible bias in retroposon integration. Biochem Bio-
phys Res Commun 347:145-149.

Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, Nakamura H, Matsuo
M. 1993. Insertion of a 5’ truncated L1 element into the 3’ end of exon 44 of
the dystrophin gene resulted in skipping of the exon during splicing in a case of
Duchenne muscular dystrophy. J Clin Invest 91:1862-1867.

Ostertag EM, Goodier JL, Zhang Y, Kazazian HH,]Jr. 2003. SVA elements are nonau-
tonomous retrotransposons that cause disease in humans. Am ] Hum Genet
73:1444-1451.

Ostertag EM, Prak ET, DeBerardinis RJ, Moran ]V, Kazazian HH,]Jr. 2000. Deter-
mination of L1 retrotransposition kinetics in cultured cells, Nucleic Acids Res
28:1418-1423.

Pickeral OK, Makalowski W, Boguski MS, Boeke JD. 2000. Frequent human genomic
DNA transduction driven by LINE- 1 retrotransposition. Genome Res 10:411-415,

Rozmahel R, Heng HH, Duncan AM, Shi XM, Rommens JM, Tsui LC. 1997. Ampli-
fication of CFTR exon 9 sequences to multiple locations in the human genome.
Genomics 45:554-561.

Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stutz AM, Urban AE, Gru-
bert F, Lam HY, Lee WP, Busby M, Indap AR, Garrison E, Huff C, Xing J, Snyder
MP, Jorde LB, Batzer MA, Korbel JO, Marth GT, 1000 Genomes Project. 2011.
A comprehensive map of mobile element insertion polymorphisms in humans.
PLoS Genet 7:e1002236.

Swergold GD. 1990. Identification, characterization, and cell specificity of a human
LINE-1 promoter. Mol Cell Biol 10:6718-6729.

Yoshida K, Nakamura A, Yazaki M, Ikeda S, Takeda S. 1998. Insertional mutation by
transposable element, L1, in the DMD gene results in X-linked dilated cardiomy-
opathy. Hum Mol Genet 7:1129-1132.

3N

HUMAN MUTATION, Vol. 33, No. 2, 369-371, 2012



