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Chapter 9

Optimizing RNA/ENA Chimeric Antisense
Oligonucleotides Using In Vitro Splicing

Yasuhiro Takeshima, Mariko Yagi, and Masafumi Matsuo

Abstract

A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from
out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is
now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping ther-
apy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize
AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the
process of identifying the best AO.

Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series
of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligo-
nucleotides consisting of 2'- O-methyl RNA and modified nucleic acid (2'- O, 4'- C-ethylene-bridged nucleic
acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is
analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by
comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized
the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are
examined. Finally, one AO is determined as the best for the molecular therapy.

Ovur simple and reliable methods using an in vitro splicing system have enabled us to identify optimized
AOs against many exons of the DMD gene.

Key words: Antisense oligonucleotide, Duchenne muscular dystrophy, Dystrophin, Exon skipping,
In vitro splicing, 2'- O, 4'- C-ethylene-bridged nucleic acid

1. Introduction

A molecular therapy for Duchenne muscular dystrophy (DMD),
which converts dystrophin mRNA from out-of-frame to in-frame
using antisense oligonucleotides (AOs) to induce exon skipping
during splicing, is now approaching clinical application. The resul-
tant in-frame mRINA enables the production of semifunctional,
internally deleted dystrophin protein. In a previous study, we
reported that intravenous administration of a phosphorothioate

Annemieke Aartsma-Rus (ed.), Exon Skipping: Methods and Protocols, Methods in Molecular Biology, vol. 867,
DOI 10.1007/978-1-61779-767-5_9, © Springer Science+Business Media, LL.C 2012

131



132

Y. Takeshima et al.

AO against exon 19 resulted in dystrophin expression in the skeletal
muscle of one DMD patient with an exon 20 deletion by produc-
ing in-frame mRNA lacking the exon 19 sequence (1). More
recently, it has been reported that local administration of AOs
against exon 51 induced exon skipping and dystrophin expression
in the muscle of DMD patients (2, 3). These findings strongly sup-
port the rationale for the clinical application of AO therapy.

The exon skipping approach is mutation specific because
different mutations require skipping of different exons. Genomic
deletions of one or more exons of the DMD gene cluster in proxi-
mal (exons 2-20) or distal (exons 45-55) hot spots are categorized
into various patterns (4). Therefore, a series of AOs inducing the
skipping of various exons of the dystrophin transcript are required
to treat the majority of DMD patients.

To develop the broad therapeutic applicability of this exon
skipping strategy, the identification of an AO that causes efficient
skipping of a particular exon is a critical step. There are presumed
target sequences to which AOs bind: exonic splicing enhancer
(ESE) sequences and splicing consensus sequences. Many exons
contain ESEs, which facilitate the inclusion of genuine exons (5).
We found an ESE in exon 19 by analyzing one DMD patient in
whom an intraexonal 52-bp deletion in exon 19 resulted in exon
skipping (6). In vitro and in vivo splicing analysis revealed that the
deleted sequence in the index case functioned as an ESE, and the
skipping of exon 19 was induced by an AO against this ESE
sequence in cultured cells and in a patient (1, 7-9). The mecha-
nism of AO-mediated exon skipping is considered to be blocking
the binding of splicing factors to the ESE.

An alternative mechanism is to use AOs to block the function
of splicing consensus sequences. However, this approach runs the
risk of unintentionally inducing the skipping of other exons because
highly conserved sequences are present in most splice sites.
Therefore, ESEs are favorable targets for AOs.

ESEs can, in theory, be identified by Web-based algorithms
(10-12), but none has 100% predictive accuracy. Therefore, in
general, a trial and error procedure is still required to identify
potent AOs. This must be a reliable and simple process. In this -
chapter, we describe a method for AO optimization using an
in vitro splicing system with cultured DMD myocytes. As exam-
ples, we show the optimization of AOs against exons 44 and 6. In
this method, AOs are synthesized that cover the whole region of
the target exon sequence. The AOs are then individually trans-
fected into cultured DMD myocytes, and dystrophin mRNA
expression is analyzed to determine the ability of each AO to induce
exon skipping. |

To select optimized AOs using in vitro splicing analysis with
cultured DMD myocytes, the chemical characteristics of the AOs
must also be considered. In antisense technology, phosphorothio-
ate oligonucleotides have been most widely used, but these have a
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number of limitations, such as a low affinity for RNA. Therefore,
many studies have focused on developing modified oligonucle-
otides; phosphorodiamidate morpholino oligomers (PMOs) and
2'-O-methyl phosphorothioate oligomers (20MePS) have been
used in recent clinical trials (2, 3). A novel nucleotide with an eth-
ylene bridge between 2'-O and 4'-C ribose (2'-O, 4'-C-ethylene-
bridged nucleic acid [ENA]) was chemically synthesized and has
been shown to be highly nuclease resistant and have a high binding
affinity for the complementary RNA strand (13). Recently, we
showed that the exon skipping ability of an AO consisting of
2’-O-methyl RNA and ENA (an RNA/ENA chimera) was more
than 40 times higher than that of the corresponding phosphoro-
thioate oligonucleotide (14). Therefore, for optimization of AOs,
we have used RNA/ENA chimera oligonucleotides.

2. Materials

2.1. AO Design

2.2. Myocyte Culture

2.3. Transfection of AO

2.4. mRNA Analysis

No materials needed.

1. Trypsin 250, 5% in phosphate-buffered saline (PBS). Stored in
single-use aliquots at -20°C.

2. Sterilized scissors (to cut the muscle biopsies).

w

. 100-pm nylon cell strainers (to make single-cell suspensions).

4. Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 20% fetal bovine serum (FBS).

5. Growing medium: DMEM supplemented with 20% FBS, 2%
Ultroser-G, and 1% Antibiotics—Antimycotics.

6. Differentiation medium: DMEM supplemented with 2% horse
serum (HS) and 1% Antibiotics—Antimycotics.

7. Gelatin (to coat tissue culture dishes).

1. Medium for transfection: O?tiMEM (Invitrogen).

2. Reagents for transfection: Plus Reagent (Invitrogen) and
Lipofectamine (Invitrogen).

3. Horse serum.

4. AQs.

1. RNA isolation reagent, e.g., from ISOGEN.
2. PBS.

3. Reagents for reverse transcription (RT)-PCR: e.g., moloney
murine leukemia virus reverse transcriptase (MMLV-RT)
(Invitrogen) and random hexamer primers.

4. Plasmid for subcloning of RT-PCR products, e.g., pT7 Blue T
vector (Novagen).
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3. Methods

3.1. Design of AOs
for the First Screening
Step

3.2. Myocyte Culture

Design a series of 15-20-mer AOs to cover the whole target exon
sequence (see Notes 1-3). AOs consist of 2'-O-methyl RNA and
ENA residues, and ENA residues are incorporated at cytosines and
thymines or at both the 5’-end and 3'-end. They are synthesized
using a DNA synthesizer as described previously (15).

The procedure for myocyte culture is shown in Fig. 1.

1. Obtain the muscle biopsy sample from the biceps or quadri-
ceps muscle of DMD patients with informed consent (see
Notes 4 and 5).

biopsied muscie tissue

; >€ mince with sterilized scissors

incubate with 5% trypsin for 30 min at 37°C,
wash twice with DMEM with 20% FBS, and
replace the medium with growing medium

disperse the cells by pipetting
50 times through a Pasteur pipette

pass through a 100-um nylon cell strainer

culture in growing medium
in gelatin-precoated culture dishes

@ / subculture in six-well culture plates

Fig. 1. The procedure for myocyte culture preparation.
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3.3. Transfection of AQ

3.4. mRNA Analysis

2

o8]}

. Mince the muscle biopsy sample with sterilized scissors and

wash three times with PBS.

. Incubate minced tissue with 5% trypsin in PBS for 30 min

at 37°C.

. Collect dissociated cells by centrifugation at 200 x g for 2 min,

wash twice with DMEM supplemented with 20% FBS, and
then replace this medium with growing medium. Disperse cells
by pipetting 50 times through a Pasteur pipette and then pass
through a 100-pm nylon cell strainer to generate a single-cell
suspension. Culture cells in growing medium in culture dishes
precoated with gelatin (see Note 6).

. When the number of primary myoblasts is sufficient, subculture

by seeding in 6-well culture plates precoated with gelatin.

. When the myoblasts reach semiconfluency, replace the medium

to differentiation medium to induce cell differentiation (see
Notes 7 and 8).

The procedure for the transfection of AOs is shown in Fig. 2.

1.

i

On day 7, after induction of the differentiation, transfect DMD
primary myotubes with an AO.

. Dissolve the AO in 100 pl OptiMEM mixed with 6 ul Plus

Reagent and incubate for 15 min at room temperature. Mix
the incubated solution with 8 pl Lipofectamine dissolved in
100 pl OptiMEM and incubate for a further 15 min.

. Add the mixture to culture medium (800 pl OptiMEM) to a

final AO concentration of 200 nM.

. After 3 h of incubation, add HS to a final concentration of 2%

and incubate for another 2 days before RNA isolation.

. Two days after transfection of the AO, wash cultured myocytes

twice with PBS, dissolve in 500 pl RNA isolation solution, and
extract total RNA according to the manufacturer’s instructions.

Plus Reagent
AO + Lipofectamine

induction of differentiation

v : yctes
4 | ) V‘ _ il 1"' 7‘:7 v o -
myoblasts 7 days ays
from a DMD patient ﬂ
RNA exiraction
and RT-PCR

Fig. 2. The procedure for AO transfection.
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3.5. The Second
Screening Step

2. Prepare cDNA from 2 pg total RNA using, e.g., MMLV-RT
and random hexamer primers according to the instructions of
the RT enzyme supplier.

3. Perform a PCR amplification on c¢DNA spanning the
AO-targeted exon, and confirm the nucleotide sequence of the
amplified product by direct sequencing or after subcloning of
the product into a plasmid vector, e.g., pT7 Blue T.

4. Examine the potency of each AO by comparing the amount of
PCR product with and without the targeted exon, and assess
the most effective AO for each exon.

When an optimal AO cannot be selected in the first screening step
(see Note 9), design another set of AOs based on the results of the
first screening, in which a potential target region has been roughly
identified. Analyze the ability of the new AOs to induce exon skip-
ping using the same procedure, until an optimal AO is identified.

Examples of the optimization for exon 44 and exon 6 are
shown in Figs. 3 and 4.

a
AQQy s AQ104 mumme
AQHOQ e AQ106 s
AO10Y e AQ105 wmmm=
AO107 === AQ1 (7 mmm—
AC103 =
b

_NT 99 100 101 102 103 104 105 106 107

Fig. 3. Analysis of AOs designed to induce exon 44 skipping. (a) Barsrepresent the location
of the AOs targeting exon 44, in which ENA residues are incorporated at cytosines and
thymines, and 2'-0-methyl RNAs are incorporated at the other positions. The fength of
sach AO is 18 mer, and the location is as follows: AO99 (6293-6310),A0100 (6311-6328),
A0101 (6329-6346), A0102 (6347-6364), A0103 (6365-6382), A0104 (6383-6400),
A0105 (6406-6423), A0O106 (6400-6417), and AQ107 (6418-6435), according to the
CDNA reference sequence in GenBank, accession number NM_004006.1, in which the “A”
of the start codon is nucleotide 1. The box and lines on either side represent exon 44 and
its flanking introns, respectively. (b) RT-PCR results of AO-induced dystrophin exon 44
skipping. The RT-PCR products shown span exons 43-45 of the DMD gene after transfec-
tion of AOs designed to induce exon 44 skipping. Lane NT represents nontreated myo-
cytes, and the numbers above each lane represent the name of the AO. The exons in the
amplified products are shown schematically on the right, and the shaded box represents
the AO target exon. AG100 induced exon skipping in 100% of the mRNAs, whereas A099,
A0101, and A0107 did not induce exon skipping. For the other AOs, both skipped and
unskipped products were detected. A0102, A0103, and A0104 resulted in less skipped
product than unskipped product, whereas AO105 and A0106 induced exon 44 skipping in
the majority of mRNAs. Because A0100 induced complete exon skipping, further screen-
ing was not necessary and A0100 was selected as the optimal AO for exon 44,
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a

AD154 AQ157mmemm ]

AQ155 s A g == First step
AD156 B AQ15¢ sy i
AQ2 7EmmER A()DD() SRR
AQ21g AQ221 wemmms Second siep

A2 B

b

NT 154 155 156 157 158 159

C
217 218 219 220 221 NT

Fig. 4. Analysis of AOs designed to induce exon 6 skipping. (@) Bars represent the location of AOs targeting exon 6, in which
ENA residues are incorporated at cytosines and thymines, and 2'-0-methyl RNAs are incorporated at the other positions.
The AQs shown in the upper and the lower half were used in the first and second screening steps, respectively. The length
of each AO is 18 mer, and the location is as follows: AO154 (360-377), AO155 (376-393), A0156 (399-416), AO157
(425-442), A0158 (449-466), AO159 (485-502), A0217 (369-386), A0218 (383~400), A0219 (407-424), A0220 (418—
435), and A0221 (437—-454), designated as described in the legend for Fig. 3. The box and lines on either side represent
exon 6 and its flanking introns, respectively. (b) RT-PCR results of the first screening step for AO-induced dystrophin exon
6 skipping. The RT-PCR products shown span exons 1-8 of the DMD gene after transfection of AQs designed fo induce
exon 6 skipping. Lane NT represents nontreated myocytes, and the numbers above each lane represent the name of the
A0. The exons in the amplified products are shown schematically on the right, and the shaded box represents the AQ target
exon. AO155, A0156, and A0157 induced exon skipping in half of the mRNAs, but an optimal AO could not be determined.
(c) RT-PCR resulis of the second screening step for AO-induced dystrophin exon 6 skipping. For further screening, AOs
217-221 were designed around A0155,A0156, and AO157. A0220 induced exon skipping in almost all of the mRNAs, and
was therefore selected as the best AO for exon 6.

Briefly, for exon 44, nine 18-mer AOs were designed to cover
the whole exon sequence as shown in Fig. 3a. Representative
examples of AO-induced exon 44 skipping are shown in Fig. 3b.
AO100 induced complete exon skipping in the first screening step,
and then AO100 was selected as the optimal AO for exon 44.
In the case of exon 6, six 18-mer AOs were designed as shown in
Fig. 4a (first step); however, an optimized AO could not be deter-
mined after first screening step (Fig. 4b). Therefore, another set of
AOs were designed as shown in Fig. 4a (second step), and AO220
was selected as the best AO for exon 6 as shown in Fig. 4¢ (see
legends to Figs. 3 and 4 for more details).

3.6. Modification of For exon 44 and exon 6, the optimal AO induced exon skipping in
the Position of the ENA  almost all the mRINAs (Figs. 3 and 4). For other exons, such as
Residues (See Fig. 5) exon 46, unskipped mRNA still remained even after transfection
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AO27: CTG CTU CCU CCA ACC TENA
AO90: CUG CUU CCU CCA ACC
G CTU CCU CCA ACC

| <[

Fig. 5. The ahility of modified AOs to induce exon skipping of exon 46. (a) The location and
nucleotide sequence of each A0. A027,A090, and A092 were designed at the same posi-
tion (nt. 6677—-6691), but with differing patterns of ENA residue incorporation. Shaded
letters represent ENA-modified residues; nonshaded letters represent 2'-0-methyl RNAs,
The box and lines on either side represent exon 46 and its flanking introns, respectively.
(b) RT-PCR results of the modified AO-induced dystrophin exon 46 skipping. The RT-PCR
products shown span exons 44—48 of the dystrophin mRNA after transfection of the modi-
fied AOs. Lane NT represents nontreated myocytes and the numbers above each lane
represent the name of the AO. A092 induced the skipping of exon 46 in almost 100% of
the mRNAs, whereas unskipped mRNA still remained after AO27 transfection. The exons
in the amplified products are shown schematically on the right, and the shaded box
represents the AO target exon.

of the best AO, AO27 (Fig. 5b, lane 27). The position of the
ENA residues within the AO might affect exon skipping ability.
Therefore, the potency of the modified AOs in which nucleotide
sequence was same but the ENAs were incorporated at different
positions was examined when the optimal AO could not be deter-
mined. Modified AOs are shown in Fig. 52 (AO90 and AO92).
Representative examples of modified AO-induced exon 46 skipping
are shown in Fig. 5b. AO92 induced exon skipping in almost mRNA,
and then AO92 was selected as the optimal AO for exon 46.

4, Notes

1. AOs that are complementary to ESEs are thought to be most
effective at inducing exon skipping. There are Web-based
algorithms to identify ESEs, such as ESEfinder (10), RESCUE-
ESE (11), and SpliceAid (12), but none has 100% predictive
accuracy (16-19). Therefore, using these Web-based programs
alone runs the risk of missing the optimal AO.

2. The nucleotide sequences of AOs should be designed to cover
the whole target exon sequence, and the ability of each AO to



