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The genomic DNA samples from the six patients were treated with
the MethylEasy Xceed Rapid DNA Bisulphite Modification Kit (Human
Genetics Signatures Pty Ltd, Australia), according to the manufacturer’s
instructions. The methylation and unmethylation primers for POTAGE
were designed using the CpG island searcher (http://cpgislands.usc.
edu/) (Takai and Jones, 2003) and MethPrimer (http://www.urogene.
org/methprimer/index1.html) web sites (Li and Dahiya, 2002). After
the amplification, the PCR products were separated by electrophoresis
on an agarose gel, and fragments in the expected range were excised
and purified using the QlAquick Gel Extraction Kit (Qiagen, Valencia,
CA). The purified PCR products were ligated using the pGEM-T Easy
Vector System (Promega, W1, USA), and at least 20 independent clones
were sequenced with the T7 (5-TAATACGACTCACTATAGGG-3') and
SP6 (5’-ATTTAGGTGACACTATAGAA-3') primers.

3. Results
3.1. Analysis of tiling array data

Our goal was to evaluate all the mRNAs expressed in human pros-
tate cells, using the tiling array in triplicate. The signal intensity and
P-value for each probe were determined by quantile normalization
(Bolstad et al., 2003), after the raw intensity data from triplicate
microarrays were transformed with the Affymetrix Tiling Analysis
Software ver. 1.1. All of the extracted signal data were mapped to
their genomic position and visualized in the IGB. Because the tiling
array was designed based on information from NCBI Build 34, the re-
sults were translated to Build 36 automatically.

Because the thresholds determining positive signal intensity were
determined on the basis of the signals from all the probes in each til-
ing array, the thresholds were slightly different for each array (see
Materials and methods). The values for two other parameters (Max
gap and Min run) were the same for all the arrays (see Materials
and methods). The three parameter settings enabled us to predict
the genomic locations likely to contain transcribed sequences. After
comparing the sequences from our predicted regions with those of
annotated genes (NCBI Build 37.1), we found 319 regions in the entire
genomic sequence that encoded undiscovered transcripts. After the
novel regions were obtained, the novel zones were defined by tiling
data analysis. Finally, we defined 17 zones containing two or more
regions within 5-kbp of each other (Fig. 1A, Supplemental Fig. 1 and
Supplemental Table 1).

3.2. RT-PCR and RACE analysis of the novel region of human chromosome
12

We next designed primer sets for each region that were appropri-
ate for performing RT-PCR analysis with the single-strand cDNA
obtained from normal prostate cells. Each RT-PCR product was se-
quenced to confirm the amplification of the target sequences. Even
when a positive tiling array signal was confirmed, no region was stud-
ied further without the successful amplification of the correct se-
quence. In addition, single regions that did not have any positive
regions in the flanking regions were also excluded. After the RT-PCR
analysis, primers for 5’- and 3’-RACE were designed on the basis of
both the tiling array data and information from NCBI Build 37.1. All
of the 5- and 3’-RACE experiments were performed with single-
stranded cDNA obtained from normal human prostate tissue.

Finally, we obtained the full-length sequence of POTAGE on chro-
mosome 12q24.13 (Supplemental Table 2, primer Nos. 1-4, Supple-
mental Figs. 4, 5). However we succeeded to obtain the 17 zones by
tiling array data, we failed to confirm 16 zones by RT-PCR and/or
RACE.

The novel mRNA sequence we obtained consisted of 26 exons within
an mRNA of 5841 bp. The gene was located on chromosome 12q24.13.
Assuming that the tiling array data might indicate one of the exons in

the novel transcripts, we performed RT-PCR and RACE of the regions
in this zone. From these results, we found that 4 of the 6 5’-most
exons of POTAGE belonged to the hypothetical protein LOC100287871
(http://www.ncbi.nlm.nih.gov/gene/?term=L0C100287871). More-
over, 18 of the 19 3’-most exons overlapped with part of the 5’-end of
predicted gene C12o0rf51 in NCBI Build 37.1. There were three novel
exons in POTAGE: exons 1, 10, and 26. Exon 23 of POTAGE contained
a 30-bp deletion compared with the 5-end of C120rf51 exon 22. The
remaining 22 exons of POTAGE shared 100% identity with C12o0rf51
(Figs. 1B-F, Supplemental Table 3).

We also investigated the sequence flanking exons 25 and 26 of
POTAGE in detail. We found at least two human isoforms of these
exons. One isoform included exon 26 of POTAGE as its 3/-end; this
isoform was equivalent to POTAGE. The other isoform had a different
3’-end; that is, some other exon followed exon 25. For example,
C12o0rf51 was partially encoded by the other isoform.

To explore the possible function of POTAGE, motif and homology
searches were performed using the MOTIF Search (http://motif.
genome.jp/), Pfam (http://pfam.sanger.ac.uk/), and NCBI web sites.
No major motif was found in the nucleotide acid sequence or the de-
duced protein sequence.

3.3. Comparison of POTAGE expression level in multiple human tissues

We evaluated the expression levels of POTAGE with region-specific
primer pairs in multiple human tissues (Human MTC Panels I and II),
using semi-quantitative real-time RT-PCR (Supplemental Table 2, prim-
er No. 5). POTAGE was expressed in every human tissue examined. The
relative expression levels were calculated as the levels normalized to
the beta-actin expression in each sample. The highest expression level
of POTAGE was observed in the testis (Fig. 2). We created primer
pairs to evaluate the level of expression of the other isoform, and
performed real time RT-PCR using the same conditions as for POTAGE.
While the expression level of the other isoform also was higher in testis,
it was different from that of POTAGE, in that the other isoform was also
highly expressed in skeletal muscle {data not shown).

3.4. Methylation assay for the 5'-upstream CG-rich region of POTAGE

Because DNA methylation in the 5/-upstream CG-rich region of a
gene is related to the repression of gene expression, we investigated
the methylation status of POTAGE using a methylation-specific PCR
assay, to discover if differences in methylation could explain the
lower expression level of POTAGE in normal prostate tissue compared
to other tissues (Jones and Baylin, 2007; Laird, 2003; Ting et al., 2006;

Relative Quantity (dRn)
~ w £ wm aN ~

Fig. 2. The expression levels of the novel gene in multiple human tissues using
semi-quantitative real-time RT-PCR. The novel gene was expressed in every human tis-
sue examined in this study, and its level was highest in the testis.
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Table 1
Homology among exons of the novel gene in human, mouse, rat, and fugu (pufferfish).

cDNA (translated region)
Human Mouse Rat Fugu
Human 89.18% 88.80% 70.60%
Amino acids Mouse 97.27% 95.14% 72.59%
Rat 97.05% 98.19% 72.47%
Fugu 81.15% 81.00% 80.92%

The percentage of identical amino acids was essentially constant across species.

Vanaja et al., 2009). In addition, we examined the methylation condi-
tion in prostate cancer tissue, to assess any relationship between the
level of expression and prostate oncogenesis. We examined the methyl-
ation of CpG 101 (UCSC (http://genome.ucsc.edu/) GRCh37/hg39), a
CpG island located 557 bp upstream of POTAGE (Supplemental Table
2, Nos. 6-7, Supplemental Fig. 6). However, the CpG island was not
methylated in normal or cancerous prostate tissues.

4, Discussion

New genomic technologies have yielded much useful information
about the whole human genome, and both experimental and compu-
tational approaches have been developed to handle the accumulation
of data. Our approach using the tiling array supported the importance
of choosing the appropriate settings for the three parameters, thresh-
old of signal intensity, Max gap, and Min run, when examining the til-
ing data to evaluate mRNA expression or discover novel genes. The
settings of these parameters were critical to our finding the few
pieces of relevant information among the enormous quantities of
tiling array data. Because our data demonstrated that the signal pat-
terns of many undiscovered regions were very short or very close to
annotated genes, we excluded unknown regions with these patterns
to obtain novel genes that were independent of the known genes.
Therefore, the three parameters in our data were chosen to be strin-
gent, to reduce the amount of data that would require further
investigation.

First, our parameter settings allowed us to extract 17 zones
containing novel regions from our entire set of tiling array data. All
of the zones consisted of two or more novel regions within about
5-kbp of one another. We assumed that each novel region might rep-
resent one or more exons of a novel gene. In 16 of the 17 zones, each

— Homo sapiens Feb 2009

Mus musculus July 2007

Rattus norvegicus Nov 2004

region was confirmed as encoding a transcript. However, no amplifi-
cation product included neighboring sequences.

Finally, we determined the sequence of a full-length novel gene
from the RT-PCR and RACE results of 1 of the 17 zones. The novel
mRNA was 5841 bp in length and contained 26 exons, which were
encoded by sequences spread over 133,876 bp in the genome, on
chromosome 12q24.13. There were two predicted genes, hypotheti-
cal protein LOC100287871 and C120rf51, that were close to our dis-
covered gene (NCBI Build 36.3). The information on hypothetical
protein LOC100287871 was replaced with the predicted region of
C120rf51 in NCBI Build 37.1. To confirm the sequence of POTAGE,
we also referred to the sequence of the predicted transcript at NCBI
Build 37.1.

Among the 26 exons of POTAGE, three were novel (exons 1, 10,
and 26). POTAGE also shared 23 exons with C12orf51 (NCBI Build
37.1), and the 22nd exon of POTAGE (the 23rd exon of C120rf51)
contained a 30-bp deletion.

The expression level of POTAGE was lower in the prostate than in
most other tissues. To investigate whether POTAGE's expression was
suppressed by methylation, we examined the genomic methylation
in the 5’-upstream CpG island of POTAGE in normal prostate and
prostate cancer, to look for possible associations between malignan-
cies and expression of POTAGE. However, the region we assayed
was not methylated in normal or cancerous prostate tissue. Therefore,
the different expression levels in several tissues, including prostate
cancer, are unlikely to be regulated by the methylation of the 5-up-
stream CG rich region of POTAGE.

POTAGE has no major motif in the nucleotide acid sequence or the
deduced protein sequence. Interestingly, the sequence of POTAGE had
high homology to transcripts in other species, such as mouse and rat.
The predicted protein had a 97% sequence identity between human
and mouse, and almost the same homology between human and rat
(Table 1). The alignment of the amino acid sequences, which was
constructed using CLUSTAL W ver. 1.83 (http://clustalw.ddbj.nig.ac.
jp/top-j.html) with Kimura's correction, between human and five
other species, showed the closest matches among different species
(Supplemental Fig. 7). Furthermore, the phylogenetic relationship
based on the amino acid alignments of these six species also revealed
high protein homology among human and other species (Fig. 3). On
the other hand, the nucleotide sequence identities between human
and mouse of two housekeeping proteins (beta-Actin and GAPDH)
are 92% and 89%. The between-species percent identity of POTAGE
was higher than that of these housekeeping genes. Therefore, al-
though the function of POTAGE is currently unknown, its high se-
quence homology among different species suggests that it may have
an important or essential biological function.

Gallus gallus May 2006

Xenopus tropicalis Aug 2005

0.1

Takifugu rubripes Oct 2004

Fig. 3. Phylogram depicting the relationship between the deduced amino acid sequence encoded by the novel gene in humans and its homologues in five other species, using Tree
View {ver. 1.6.6). The phylogram was based on the alignment of the amino acid sequences (see Supplemental Fig. 7).
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In summary, we identified a novel gene in a search of the whole
human genome using the powerful new tiling array tool. Although
analyzing the tiling array data was no simple matter, it was still useful
for detecting a novel gene.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.gene.2012.11.076.
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Proteomic Pattern Analysis Discriminates
Among Multiple Sclerosis—Related
Disorders
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Objective: To use a new, unbiased biomarker discovery strategy to obtain and assess proteomic data from
cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS)-related disorders.
Methods: CSF protein profiles were analyzed from 107 patients with either MS-related disorders (including relapsing
remitting MS [RRMS], primary progressive MS [PPMS], anti-aquaporind antibody seropositive-neuromyelitis optica
spectrum disorder [SP-NMOSD], and seronegative-NMOSD with long cord lesions on spinal magnetic resonance
imaging [SN-NMOSD]), amyotrophic lateral sclerosis (ALS), or other inflammatory neurological diseases (used as
controls). CSF peptides/proteins were purified with magnetic beads, and directly measured by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry. The obtained spectra were analyzed with multivariate
statistics and pattern matching algorithms. These analyses were replicated in an independent sample set of 84
patients composed of those with MS-related disorders or with other neurological diseases (the second cohort).
Results: MS-related disorders differed considerably in terms of CSF protein profiles. SP-NMOSD and SN-NMOSD,
both of which fit within the NMO spectrum, were distinguishable from RRMS with high cross-validation accuracy on a
support vector machine classifier, especially in relapse phases. Some peaks derived from samples of relapsed SP-
NMOSD can discriminate RRMS with high area under curve scores (>0.95) and this was reproduced on the second
cohort. The similarity of proteomic patterns between selected neurological diseases were demonstrated by pattern
matching analysis. To our surprise, the spectral differences between RRMS and PPMS were much larger than those
of PPMS and ALS.
Interpretation: Our findings suggest that CSF proteomic pattern analysis can increase the accuracy of disease
diagnosis of MS-related disorders and will aid physicians in appropriate therapeutic decision-making.

ANN NEUROL 2012;71:614-623

ultiple sclerosis (MS)-related disorders are inflam-
matory diseases of the central nervous system
(CNS), and are characterized by different degrees of
autoimmune involvement and neurodegeneration. Cate-
gories of MS-related disorders include relapsing-remitting
MS (RRMS), secondary progressive MS (SPMS),

primary progressive MS (PPMS), progressive relapsing
MS (PRMS), Balo’s concentric sclerosis, and neuromyeli-
tis optica (NMO). It is crucial to differentially diagnose
these disorders in order to select the appropriate treat-
ment course that will benefit the patient. Since effective
therapy has only been established for RRMS, it is
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necessary that we gain a comprehensive understanding of
how RRMS pathogenesis is similar to the other MS-
related disorders so that similarly efficacious treatments
may be developed. It is particularly important o differ-
entiate RRMS and NMO, given their largely overlapping
clinical characteristics, their particular prevalence in East
Asia, and because the optimal treatments for the diseases
differ considerably. The current Mayo NMO diagnos-
tic criteria® requires clinical episodes of both optic neuri-
tis and myelitis to definitively identify NMO. Anti-aqua-
porin-4 (AQP4) antibody was discovered as a biomarker
of NMO>® however, this designation has evoked some
controversy. First, the clinical spectrum of disorders
defined by the presence of anti-AQP4 antibody” encom-
passes recurrent optic neuritis or myelitis alone and Asian
“optic-spinal MS” with long cord lesion (LCL) on spinal
magnetic resonance imaging (MRI),>” which are not
included in the 2006 Mayo NMO criteria.* NMO-spe-
cific brain lesions have also been classified.® Second,
although LCL is 1 of the most characteristic features of
NMO, a considerable number of subjects with LCL pres-
ent as seronegative for the anti-AQP4 antibody. Even for
those patients fulfilling the 2006 Mayo NMO criteria,
24% to 67% have been reported as being seronegative
for the anti-AQP4 antibody.*>>'* Although the term
“NMO spectrum disorder (NMOSD)” has been used for
these disorders, it is not clear whether these seronegative
subjects are the result of inadequate clinical diagnostic
criteria, suboptimal assay sensitivity, or different targeted
antigens. Moreover, it remains unknown whether sero-
positive and seronegative NMO patients have shared or
distinct pathogenesis.

PPMS carries a poor prognosis, and no successful
therapeutic trials have been accomplished to date.'’ The
notion that RRMS and PPMS can be treated as a single
disorder is unproven, although sufficiently large and
lengthy research studies are underway.'” It is necessary to
know whether the 2 forms of MS have distinct pathogen-
eses as they may require different therapeutic strategies.
It also remains uncertain, although it has been specu-
lated, that the progressive form of MS undergoes more
significant neurodegeneration than does the relapsing
form of MS."?

The cerebrospinal fluid (CSF) is considered by
many to be a window into the brain through which one
might identify promising new biomarkers of neurodege-
nerative disorders. Indeed, several biomarkers for MS-
related disorders have been reported from studies on
CSE'*?2 Recently, CSF glial fibrillary acidic protein
(CSE-GFAP) and S100B were proposed as promising
biomarker candidates of NMO attacks.”> CSF-GFAP was
found to be elevated more than 1,000-fold in NMO
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patients, as compared to control cases, and the increased
concentrations were determined to be the result of astro-
cyte destruction. However, complex traits of MS-related
disorders defy strict association with a single biological
process. CSE-GFAP elevation can result from multiple
diseases in which astrocyte destruction is induced.”?

The advent of mass spectrometry technologies have
made it possible to uncover distinct molecular compo-
nents associated with particular disease states.’*?*%
However, as illustrated by the CSF-GFAP example above,
similar changes of single components can be induced by
multiple mechanisms. Hence, it may not be realistic to
expect to find a single biomarker for complex disease
processes that involve multiple underlying molecular
mechanisms in their pathogenesis. Proteomic pattern
analysis, a new method to search for biomarkers, is suita-
ble for this purpose as it examines a panel of molecules;
moreover, this approach can effectively distinguish seem-
ingly closely-related diseases of a complex nature, such as
MS-related disorders.

In this study, we analyzed CSF proteomic patterns
from MS-related and non-MS control diseases by using
magnetic bead-based enrichment of CSF peptides and
proteins followed by matrix-assisted laser desorption/ioni-
zation time-of-flight (MALDI-TOF) mass spectrome-
try.?® The current study reveals distince CSF proteomic
patterns between MS and anti-AQP4 antibody-defined
disorder, confirmed by the 2 separated analysis with the
same protocol but for different patient sets (which we
have designated the first cohort and the second cohort).
While the disorder characterized by LCL was found to
have a proteomic pattern similar to the anti-AQP4 anti-
body-defined disorder in the first cohort, the result of
the second cohort was inconsistent, indicating that this
disorder have more than 1 proteomic pattern, and that
the proteomic pattern is useful in classifying the disorders
with LCL. We also succeeded in evaluating and visualiz-
ing the similarity of the proteomic pattern between neu-
rological diseases analyzed.

Patients and Methods
Study Design

Patients were enrolled on the basis of clinical and laboratory
features consistent with MS-related disorders. RRMS and
PPMS subjects were diagnosed based on the revised McDonald
criteria from 2005 (Polman and colleague327), Patients seroposi-
tive for anti-AQP4 antibody were defined as seropositive
NMOSD (SP-NMOSD), regardless of the distribution of their
lesion. Seronegative NMOSD (SN-NMOSD) was applied to
those who were seronegative for anti-AQP4 antbody and
fit the McDonald MS criteria,”” but exhibited LCL on
spinal MRL
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CSF Proteomic Pattern for MS related disorders

FIGURE 1: General workflow. This study was composed of
2 cohorts: the original one (n = 107) and the second one (n
= 84). C8 = reversed phase column; DWT = discrete wave-
let transformation; MALDI-TOF = matrix assisted laser de-
sorption ionization-time of flightt PCA = principal
component analysis, ROC = receiver operating characteris-
tic curve; SVM = support vector machine.

Anti-AQP4 antibody was assayed in all patients with
MS-related disorders. The assay was performed in a blinded
manner (no patient information) by the standard method.?®
Patients with RRMS, SP-NMOSD, and SN-NMOSD were fur-
ther divided among 2 clinical phases: relapse and remission.
CSF samples from patients in the relapse phase were obtained
prior to any treatment being administered to counter acute
worsening, such as high-dose intravenous corticosteroid injec-
tion. The amyotrophic lateral sclerosis (ALS) group was consid-
ered as the control group and represented other degenerative
neurological disease. The other inflammatory neurological dis-
ease (OIND) group was composed of patients suffering from
aseptic encephalomeningitis (AEM), Guillain-Barr syndrome
(GBS), and chronic inflammatory demyelinating polyneurop-
athy (CIDP). The second cohort study was also performed with
the same protocol and it included RRMS, SP-NMOSD, SN-
NMOSD, and OIND composed of AEM, GBS and CIDP.

The study protocol was approved by our ethics commit-
tee prior to enrolling patients, and all subjects provided written
informed consent. The general workflow is illustrated in
Figure 1.

Preparation of CSF samples for ClinProt
Analysis

CSF samples were sent for routine diagnostics, including quan-
tification of total protein, calculation of immunoglobulin G
(IgG) index based on serum albumin and IgG concentration,
and presence of oligoclonal IgG bands (OCB) as detected by
isoelectric focusing and immunofixation. No sample contained
more than 500 erythrocytes per microliter. All samples were
centrifuged for 10 minutes at 3,000 rpm to separate the cellular
clements for removal before storage at —80°C. Samples were
prepared for analysis immediately upon thawing. A 5ul aliquot
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of the CSF was purified using magnetic beads with functional-
ized surface (hydrophobic interaction C8, MB-HIC 8; Bruker
Daltonik GmbH, Bremen, Germany), according to the manu-
facturer’s protocol. For mass spectrometric analysis, 1ul of the
bead elute was mixed with 104l of matrix solution (0.6g/liter a-
cyano-4-hydroxycinnamic acid in 2:1 ethanol/acetone); 1yl of
the mixture was then spotted in quadruplicate on a MALDI
target MTP AnchorChip 600/384 (Bruker Daltonik GmbH).

Mass Spectrometry

Samples applied to the chip were analyzed on an Autoflex II
MALDI-TOF mass spectrometer, operating in positive-ion lin-
ear mode (Bruker Daltonik GmbH). To generate a spectrum,
1,000 laser shots were acquired from random positions for each
matrix spot. Four independent spectra were acquired for each
spot. Acquisition was controlled by flexControl 3.0 software
(Bruker Daltonik GmbH), using the AutoXecute tool and fuzzy
control of laser intensity. The mass range analyzed was 1,000 to
15,000 mass to charge ratio (m/z). Spectra were externally cali-
brated using a mixture of standardized protein/peptide cali-
brants (ClinProt Standard, Bruker Daltonik GmbH).

Analysis of Proteomic Profile Spectra

The resulting spectra were analyzed using ClinProTools 2.2 bio-
informatic software (Bruker Daltonik GmbH); the process
included intensity normalization and spectral alignment using
prominent internal peaks. As ClinProTools allows for discovery
of discriminative peaks of spectra and can estimate how dis-
criminative they are, we used the program to generate estimates
of the respective potential for accurate diagnosis for each peak.
Concomitant measures of specificity and sensitivity were also
calculated. Peaks of interest were selected from the total average
spectra, using a signal-to-noise threshold of 5.0. Finally, the
ClinProTools was used to carry out comparative analysis of
peak intensities between groups/disease classes, and to calculate
corresponding statistics. When comparing 2 groups, we used
analysis of variance (ANOVA) or the Wilcoxon-Mann-Whitney
test. A cross-validation was performed on the same darta by ran-
domly assigning a group number to each CSF sample and then
repeating the Wilcoxon-Mann-Whitney test.

Multivariate statistical analysis techniques, including prin-
cipal component analysis (PCA)* and the support vector
machine (SVM) algorithm (from ClinProTools), were employed
to extract, display, and rank the variance within each data set.
Through the calculation process of principal components
(PCs), different weightings were assigned to each variable based
on their contribution to the explained variance of a PC; in this
manner, the contribution of single peaks to the variance covered
by the respective PC was determined. To confirm the accuracy
of SVM analysis, discrete wavelet transformation combined
with SVM (DWT)?® was employed.

We performed leave-l-out cross-validation (LOOCYV)
experiments using the SVM algorithm. In these analyses, differ-
ent combinations of peptides selected by the Mann-Whitney
U-test at different adjusted p value cutoffs were used to build
the models and find significant peaks. The best models, ie, the
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- Clinical phase Relapse
~ Total patients 12
Male/female 6/6
Mean age at sampling, yr (range) 30 (17-40)
Disease duration, yr (range) 1.3
(0.1-17.3)
Average Expanded Disability 2.3
Status Scale of Kurtzke (0.0-6.0)
(range)
Optic neuritis/total patients 5/12
Spinal MRI evidence of long 0/12
cord lesions/total patients
Serum anti-AQP4 antibody 0/12
positive/total patients
Fulfilling NMO criteria/total 0/12
patients
- CSF protein concentration, mg/dl 36.0
: (range) (21.0-45.0)
IgG index, mg/dl (range) 0.67
(0.44-1.51)

7/11

TABLE 1: Clinical and Laboratory Values for the First Cohort

Remission
17
6/11

37
(16-57)

4.0
(0.3-27.3)

1.0
(0.0-6.5)

4/17
0/17

0/17
0/17

30.0
(16.0-47.8)

0.61
(0.44-1.03)

8/15

0/9

Relapse
11

3/8

54
(33-64)

4.7
(0.3-8.1)

7.5
(3.0-9.0)

9/11
11/11

11/11
9/11
60.0

(33.0-170.0)

0.62
(0.43-0.82)

Remission ~ Relapse

11 6

0/11 0/6

48 41

(17-81) (37-60)

2.3 7.1
(0.2-10.0) (1.4-10.0)
5.0 8.0
(2.0-8.5) (6.0-9.0)
8/11 5/6

9/11 6/6

11/11 0/6

7/11 5/6

30.1 65.1
(16.0-61.0) (45.0-85.0)
0.53 0.57
(0.42-0.69) (0.45-0.77)

0/6 0/3

Remission
6
0/6

50
(38-58)

4.1
(0.5-19.0)

8.3
(1.0-9.0)

4/6
6/6

0/6
4/6
33.0

(21.0-65.0)

0.49
(0.44-0.59)

12 17 15

4/8 13/4 11/4

42 67 46

(32-51) (44-72) (15-62)

6.0 1.3 0.1

(0.5-20.0) ’(0.1—10.0) (0.0-1.3)

4.5 n.e. n.e.

(2.5-9.0)

0/12 n.e. n.e.

0/12 n.e. n.e.

0/12 n.e. n.e.

0/12 n.e. n.e.

39.5 35.8 54.8 -
(27.0-63.0) (28.1-68.1) (20.0-534.0) .
0.87 0.49 0.65 ‘

(0.44-2.49) (0.40-0.65) (0.41-0.78)
o
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TABLE 2: Clinical and Laboratory Values for the Second Cohort

~ Clinical phase Relapse Remission  Relapse Remission  Relapse Remission
_ Total patients 15 15 4 7 2 5 2 18 16
 Male/female 10/5 5/10 0/4 2/5 0/2 2/3 2/0 10/8 12/4
- Mean age at sampling, yr (range) 39 43 47 48 48 48 58 62 48
, (19-54) (29-68) (44-52) (30-62) (35-60) (22-66) (51-64) (42-78) (22-74)
Disease duration, yr (range) 4.4 5.3 2.3 1.2 3.3 7.1 7.9 2.2 0.9
(0.1-20.0)  (0.2-24.0) (0.1-7.0) (0.2-6.3) (0.3-6.3) (2.0-18.2) (3.8-12.0) (0.3-6.0) (0.0-6.0)
Average Expanded Disability 3.3 4.3 7.7 4.1 7.8 6.3 6.3 n.e. n.e.
Status Scale of Kurtzke (range) (2.0-6.5) (1.0-7.5) (7.5-8.0) (1.0-7.0) (7.5-8.0) (6.0-6.5) (5.5-7.0)
Optic neuritis/total patients 3/15 3/15 2/4 517 1/2 2/5 1/2 n.e. n.e.
Spinal MRI evidence of long cord 0/15 0/15 4/4 417 2/2 5/5 0/2 n.e. n.e.
lesions/total patients
Serum anti-AQP4 antibody 0/15 0/15 4/4 717 0/2 0/5 0/2 n.e. n.e.
positive/total patients
CSF protein concentration, 36.6 36.4 86.7 39.7 58.0 44.0 29.8 41.7 81.5
mg/dl (range) (23.0-76.1) (22.0-51.0) (52.0-126.0) (27.8-72.0) (49.0-67.0) (25.0-52.0) (28.5-31.0) (26.0-90.5) (20.0-347.0)
. IgG index, mg/dl (range) 0.89 0.54 0.70 0.47 0.55 0.52 0.59 0.51 0.56
; (0.43-2.12) (0.37-0.94) (0.43-0.71) (0.42-0.51) (0.46-0.62) (0.47-0.62) (0.40-0.79) (0.35-1.01) (0.46-0.64)
. Oligoclonal IgG bands/total 8/14 4/12 0/4 0/7 0/2 0/4 1/2 n.e. n.e.
pauents o
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ones giving the smaller classification error rate in the cross-validation
of the first cohort, were tested. We then examined an independent
collection of 84 CSF samples as a second cohort and replicated the
above mentioned calculation as shown in Figure 1.

Pattern Matching of the CSF Proteomic Spectra
We applied the MALDI Biotyper algorithm (Bruker Daltonik
GmbH)*"** 10 the spectra obtained from the CSF samples,
according to the manufacturer’s protocols. For phylogenetic
analysis, we hierarchically clustered mass spectra corresponding
to each disease group. For graphical correlations, an average sta-
tistical algorithm was implemented in the MALDI Biotyper
software. Reference spectra were analyzed and compared for the
nine disease stages (ALS, PPMS, RRMS remission, RRMS
relapse, OIND, SP-NMOSD remission, SP-NMOSD relapse,
SN-NMOSD remission, and SN-NMOSD relapse). Based on
the distance values obtained, a list of mass signals and their
intensities was taken into consideration, and a dendrogram was
produced by a similar scoring method using a set of mass spec-
tra to determine distance values between disease groups.
According to previous analogous bacterial identification experi-
ments for group-by-group comparisons,”’ distance levels <500
were considered to indicate “reliable similar classification.” We
applied this standard of distance values to our evaluation of the
similarity of CSF protein patterns.

Results

Subject and CSF Characteristics of the First and
the Second Cohort

We analyzed 107 CSF samples from patients diagnosed
with RRMS (n = 29), SP-NMOSD (n = 22), SN-
NMOSD (n = 12), PPMS (n = 12), ALS (n = 17),
and OIND (n = 15). The OIND group was composed
of patients suffering from AEM (n = 7), GBS (n = 4),
and CIDP (n = 4). Clinical information, including rou-
tine CSF and MRI findings, are summarized in Table 1.
Of the 22 SP-NMOSD patients, 16 (72.7%) fulfilled
the 2006 Mayo NMO criteria,* as did 9 of the 12
(75.0%) SN-NMOSD patients. The remaining 6 indi-
viduals with SP-NMOSD and 3 with SN-NMOSD
lacked detectable optic nerve lesions or spinal lesions.

We put 84 CSF samples from patients diagnosed
with RRMS (n = 30), SP-NMOSD (n = 11), SN-
NMOSD (n = 7), PPMS (n = 2), ALS (n = 18), and
OIND (n = 16) as the second cohort. OIND includes 8
CIDP, 4 GBS, and 4 AEM. Clinical information of these
patients is summarized in Table 2.

Discrimination Among MS-Related Disorders by
PCA

In the mass range analyzed (m/z 1,000-15,000), an
average of 108 peaks per subset spectrum were detected
at a signal-to-noise threshold of 5.0 (Supplementary
Figure 1). The loading coefficients were found to indi-
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FIGURE 2: Representation of the principal components
(PCs) generation from a data set. For each CSF sample, 4
measurements were automatically performed and repre-
sented a combination of clinically manifested CNS lesion
sites. O = optic nerve; S = spinal cord; B = brain. (A) Princi-
pal component analysis (PCA) score plot indicating that
RRMS relapse patients (red) clustered separately from SP-
NMOSD relapse patients (green) based on the first cohort.
(B) PCA score plot indicating that RRMS relapse patients
(red) clustered separately from SP-NMOSD relapse patients
(green) based on the second cohort.

cate that more than 50 peaks predominantly contributed
to the separation of RRMS relapse and SP-NMOSD
relapse groups (Supplementary Figure 2).

Comparative analysis of spectra between disease
groups revealed a number of peaks with significant differ-
ences in intensity. PCA showed that discrimination
between each disease category was distinct. For example,
RRMS relapse and SP-NMOSD relapse was clearly dis-
criminated by PCA (Fig 2A). This result is also repli-
cated by the second cohort (see Fig 2B). Furthermore,
distribution of CNS lesions do not have significant
power on proteomic pattern discrimination.

One can argue a possibility that difference in the
sex ratio, age, disease severity, presence or absence of
OCB, or distribution of CNS lesions have significant
power on proteomic patterns. To address this question,
the PCA analysis was carried. The results statistically and
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FIGURE 3: Heat map of the SVM analysis to differentiate
patients with SP-NMOSD, SN-NMOSD, RRMS, PPMS, OIND,
and ALS. Cross-validation analysis provided an estimate of
the success rate for the SVM model to separate user-defined
groups of spectra. RRMS and SP-NMOSD were well-sepa-
rated by SVM. The distinct proteomic profiles of RRMS and
SP-NMOSD were confirmed in relapse phase and, to a lesser
extent, in the remission phase. The variation of proteomic
profiles between relapse and remission phases was robust
for SP-NMOSD, but less so for RRMS. The x-axis and y-axis
represent the samples, ordered by group. The accuracy is
denoted by color: 90% to 100% (red); 80% to 89% (pink);
70% to 79% (purple); and 60% to 69% (blue) (see inset key).

reproducibly showed that each of the above differences
had little impact on distinction of proteomic patterns of
relevant diseases (Supplementary Figure 3A and B).

Discrimination Among MS-Related Disorders by
SVM

To automatically detect differences of the obtained spec-
tra at different disease stages, we applied a supervised
model generation procedure in combination with SVM,
an approach based on machine learning. Cross-validation
analysis provided an estimate of the success rate for the
SVM model to separate user-defined groups of spectra
(Fig 3). For example, SVM analysis between RRMS
remission and OIND resulted in cross-validation accu-
racy of 84.9%; between RRMS relapse and OIND, accu-
racy was determined to be 94.2%. The RRMS and SP-
NMOSD groups were well separated by SVM (96.0%,
RRMS relapse vs SP-NMOSD relapse; 70.8%, RRMS
remission vs SP-NMOSD remission). Therefore, this
method was able to confirm that patients with RRMS
and SP-NMOSD exhibited distinct proteomic profiles in
the relapse phase, and to a lesser extent in the remission
phase. The change of proteomic profiles that occurred
between relapse and remission phases was found to be
more prominent in SP-NMOSD, and less so in RRMS.
SVM cross-validation accuracies were 76.4% for RRMS
and 87.2% for SP-NMOSD. SVM analysis between
RRMS remission and PPMS yielded an accuracy rate of
81.1%; moreover, SVM between RRMS relapse and
PPMS had an accuracy of 83.2%. RRMS and SN-
NMOSD showed distinct features (91.8%, RRMS
relapse vs SN-NMOSD relapse; 77.8%, RRMS remission
vs SN-NMOSD remission). SVM analyses between SP-
NMOSD and SN-NMOSD were found to have an
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FIGURE 4: Analysis by receiver operating characteristic curves. (A) Average spectral features and box-and-whisker plots at m/
z 8567 and 8604, representative markers for RRMS vs SP-NMOSD in relapse phase. SP-NMOSD relapse (green); RRMS relapse
(red). The x-axis and y-axis represent the relative intensity and m/z, respectively. (B) Changes in key markers of RRMS relapse
and SP-NMOSD relapse were validated by ROC curve of m/z 8567 and 8604.
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TABLE 3: AUC Determined by ROC Analysis for
Each Peak Used in the Cluster to Differentiate
RRMS and SP-NMOSD/SN-NMOSD Relapse Phases

rni/z"“"‘ \RRM \relapse . RRM rclapse vs

- 8604

; 0.996/1 0.991/0.810
6970 0.980/0.884 0.990/0719
4644 0.970/0.617 0.979/0.559
8567 0.957/0.979 0.976/0.734

0.956/0.542

7033 0.950/0.810

accuracy of 74.3% in relapse and 76.3% in remission.
DWT emphasized the distinction between RRMS and
SP-NMOSD in relapse stages, with 86.5% double
cross-validation accuracy. These observations are well
validated by the second cohort as shown in Supplemen-
tary Figure 4.

Analysis by Receiver Operating Characteristics
Curves

The sensitivity and specificity of each peak was calculated
by the receiver operating characteristics (ROC) analysis

Komori et al: Proteomic Pattern Analysis

(Fig 4A, B; Table 3). Each of the peaks showed high accu-
racy in discriminating RRMS from SP-NMOSD in
relapse phases, by using the area under the ROC curve
(AUC). The areas of these peaks in the spectra were found
to be statistically different. Moreover, 5 of these peaks had
AUC > 0.95 when RRMS relapse was compared with
SP-NMOSD relapse. This analysis was even better repli-
cated by the second cohort (see Fig 4B). In Table.3, while
discrimination between RRMS relapse and the SP-
NMOSD relapse phase was well validated by the first and
second cohort, discrimination between RRMS relapse and
SN-NMOSD was not replicated. In Supplementary Figure
5A and 5B, this situation is visualized by 2D distribution
view of 2 selected peaks, x = 8604 and y = 8567 in the

spectrum of loaded model generation classes.

“Pattern Matching” Spectral Differences Among
Reference Disease Groups

Using the MALDI Biotyper 2.0 software, 9 reference dis-
case groups were analyzed and their similarities were
visualized in a dendrogram (Fig 5). The CSF proteomic
patterns of disease were clearly divided into 3 main
groups with distance values >500. One group was com-
posed of RRMS, PPMS, and ALS, while a second group
included SP-NMOSD, SN-NMOSD, and OIND.
Except for the comparison between SP-NMOSD and
SN-NMOSD, the distance values of proteomic patterns
between relapse and remission phases for the same disor-
der were shorter than that in comparison to different dis-
ease groups. The distance value of proteomic patterns
between the remission phases of SP-NMOSD and SN-
NMOSD was 88, but the distance value increased to
446 for the relapse phases; this finding indicated that the

ALS
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REMS remission

446

503

383

RRMS reflapse

SP-NMOSDrelapse

SN-NMOSD relapse

SN-NMOSD remission

835
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OIND
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FIGURE 5: Score-oriented dendrogram of MALDI-TOF mass spectral profiles generated by the MALDI! Biotyper. Reference
spectra were generated for each of 9 different disease groups. Similarity was visualized by a rooted tree. The distance level is

presented as percentage.
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patterns still resembled each other at relapse, but the dif-
ferences were clearer than in remission stages. Surpris-
ingly, PPMS, RRMS, and ALS classified with the same
group. The distance values of proteomic patterns between
PPMS and ALS was 167, and distinctly shorter than that
of PPMS and any of the other inflammatory diseases,
including SP-NMOSD and SN-NMOSD.

Discussion

In this study, we demonstrated that CSF proteomic pat-
terns can effectively discriminate MS from other MS-
related disorders. Proteomic profiles of CSF from the
relapse phase of SP-NMOSD and SN-NMOSD are dis-
tinct from those of RRMS. As there is a strong need to
develop therapeutic guidelines specific to each of the
MS-related disorders, detection of process-specific bio-
markers represents an important new direction toward
this end. As we have shown here, CSF proteomic pattern
analysis could afford clinicians the possibility to make
clear distinctions among MS-related disorders that are
much less influenced by the size and distribution of dis-
ease lesions. CSF sampling without trypsin digestion
presents an advantage in analyzing the native CSF pro-
teome, thus potentially allowing for the direct measure-
ment of enzymatically cleaved proteins of pathological
relevance.”

SVM, a mathematical algorithm based on super-
vised learning methods, has proven to be a useful tool to
detect differences between created models, especially
when small datasets are applied. To confirm the accuracy
of SVM in this study, in a completely different approach
of spectral processing we employed DWT, which is a
specific kind of Fourier transformation. This method is
also considered to be superior in treating relatively small
number of samples. In the relapse phase of RRMS and
SP-NMOSD, discrimination of each disease by CSF pro-
teomic profiling was much easier to accomplish than in
the remission phase, indicating that dynamic autodestruc-
tive processes may be reflected in the CSF proteomic
profiles.

SN-NMOSD and SP-NMOSD have only recently
be recognized as components of the NMO-spectrum.”
However, controversy exists as to where SN-NMOSD
should be classified between RRMS and SP-NMOSD.
Hence, the rational selection of therapy for SN-NMOSD
remains unclear. In the first cohort, 5 common discrimi-
native mass spectra peaks with high AUC scores (>0.95)
between SN-NMOSD and SP-NMOSD were found to
be discriminative between the 2 NMO-spectrum disor-
ders and RRMS in relapse phases. We believe from this
result that most of SN-NMOSD has similar or identical

622

pathogenesis to SP-NMOSD. However, the 2 samples
with SN-NMOSD in the second cohort have a different
pattern (see Table 3; Supplementary Figure 5A and B).
There is little possibility that the difference was due to a
methodological error since the reproducibility was quite
robust for the other disorders in analysis. It is more likely
that SN-NMOSD have more than 1 population with
distinct pathogenesis. Indeed, LCL findings in MRI can
admit more than 1 condition. Adjacent spinal lesions in
advanced stage of MS can be indistinguishable to a single
continuous long lesion in the MRI study. The result may
show that proteomic pattern can be a strong tool for
clarifying multiple disorders not easy to separate by con-
ventional methods.

The MALDI Biotyper was developed as a mass
spectrometry-based platform for identification and classi-
fication of microorganisms.>® The patterns of protein
masses observed by MALDI-mass spectrometry have
been successfully used for accurate classification and
identification of bacteria. In this study, we have applied
the MALDI Biotyper software solution for discriminating
proteomic patterns in human neurological disease. To
our surprise, the resulting dendrogram was composed of
3 major “islands.” ALS and PPMS were classified as the
disease entities nearest to RRMS, with relapse and remis-
sion stages composing the first island. These disease enti-
ties were clearly discriminated from SP-NMOSD and
SN-NMOSD, with relapse and remission stages compos-
ing the second island on the dendrogram. OIND, which
included disorders with a prominent CNS inflammatory
feature, produced the third island, which was closer to
the second island of SP-NMOSD and SN-NMOSD.
The finding that PPMS was situated next to ALS may
indicate that the CSF proteomic patterns for PPMS and
ALS represent less inflammation or merely a small skew
from the normal state. However, recent reports have sug-
gested another possibility in that PPMS has more neuro-
degenerative features than other MS-related disor-
ders.'*?>3*  Alternatively the observation here may
support involvement of the immune system in ALS to
mediate either neurotoxicity or neuroprotection events.”
These are open questions that will likely be answered in
future studies.

MRI evidence of LCL is currently considered the
most characteristic feature of NMO,* and is indispensa-
ble for NMO diagnosis. However, early therapeutic inter-
vention can prevent the extension of spinal cord lesions.
In this situation, tracking of disease progress can be
impeded by the relative stabilization of lesions. Our pro-
cedure is not influenced by size and distribution of
lesions, and will provide more solid information to
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differentiate among MS-related diseases, especially for

SP-NMOSD/SN-NMOSD.

In conclusion, our applied proteomic pattern analy-

sis facilitated the effective distinction of similar MS-

related disorders, and revealed a possibility that these pat-

terns, themselves, can be used as biomarkers for each

disorder.
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ABSTRACT: The differential diagnosis of Parkin-
son’s disease and multiple system atrophy can be chal-
lenging, especially in the early stages of the diseases.
We developed a proteomic profiling strategy for parkin-
sonian diseases using mass spectrometry analysis for
magnetic-bead-based enrichment of cerebrospinal fluid
peptides/proteins and subsequent multivariate statisti-
cal analysis. Cerebrospinal fluid was obtained from 37
patients diagnosed with Parkinson’s disease, 32
patients diagnosed with multiple system atrophy, and
26 patients diagnosed with other neurological diseases
as controls. The samples were from the first cohort and
the second cohort. Cerebrospinal fluid peptides/pro-
teins were purified with C8 magnetic beads, and spec-
tra were obtained by matrix-assisted laser desorption
ionization time-of-flight mass spectrometry. Principal
component analysis and support vector machine meth-
ods are used to reduce dimension of the data and
select features to classify diseases. Cerebrospinal fluid

-

\

proteomic profiles of Parkinson’s disease, multiple sys-
tem atrophy, and control were differentiated from each
other by principal component analysis. By building a
support vector machine classifier, 3 groups were classi-
fied effectively with good cross-validation accuracy. The
model accuracy was well preserved for both cases,
training by the first cohort and validated by the second
cohort and vice versa. Receiver operating characteris-
tics proved that the peak of m/z 6250 was the most im-
portant to differentiate multiple system atrophy from
Parkinson’s disease, especially in the early stages of
the disease. A proteomic pattern classification method
can increase the accuracy of clinical diagnosis of Par-
kinson’s disease and multiple system atrophy, espe-
cially in the early stages. © 2012 Movement Disorder
Society

Key Words: Parkinson’s disease; multiple system
atrophy; proteomics; cerebrospinal fluid; biomarkers

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, increasing in prevalence
with age.! Multiple system atrophy (MSA) is a rare
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atypical parkinsonian disorder and has a relatively
poor prognosis compared with PD because of much
more widespread neurodegeneration.? The diagnoses
of PD and MSA are still based on clinical features,'™
and differential diagnosis may be challenging, espe-
cially in the early-disease stages.! The development of
reliable biochemical markers would have profound
implications for clinical management and basic
research.

By its direct communication with the extracellular
fluid surrounding brain cells, cerebrospinal fluid (CSF)
directly reflects the metabolic and pathological status
of the central nervous system and is an ideal source
for biochemical markers for parkinsonian disorders.
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Although previous studies have shown differences in
the levels of certain CSF proteins such as o-synuclein
and DJ-1 between patients with PD and those with
other forms of parkinsonism, their potential as differ-
entiating biomarkers for these diseases has not yet
been validated.>® It may not be realistic to expect to
find a single biomarker for complex disease processes
involving multiple underlying molecular mechanisms
of pathogenic importance. With emerging state-of-the-
art technology,”™® proteomic pattern analysis, a new
method to search for biomarkers, is suitable for this
purpose, as it examines a panel of molecules; more-
over, this approach can effectively distinguish appa-
rently closely related diseases of a complex nature by
computational statistical methods."

In the current study, we asked whether the CSF pro-
teomic profile analyzed by the ClinProt protocol
(Bruker Daltonik GmbH) could classify PD, MSA, and
controls.'>® Various statistical and machine-learning
methods have been used to analyze the high-dimen-
sional data generated by mass spectrometry.'* Princi-
pal component analysis (PCA) is an unsupervised
dimension reduction method generating orthogonal
projections of the data, which is useful to highlight
distinctive patterns in multivariate data. In contrast,
support vector machine (SVM) is a powerful super-
vised machine-learning method for classification and
pattern recognition. Here we have demonstrated the
suitability of the SVM classifier in the CSF proteome
when trained in the first cohort to classify the samples
in the second cohort and demonstrated the suitability
when trained in the second cohort to classify the sam-
ples in the first cohort. Furthermore, we evaluated
classification performance of the SVM by considering
the area under the receiver operating characteristics
(ROQC) curve, and the most optimal mass was nomi-
nated for the classification of PD and MSA.

Our findings suggest that CSF proteomic pattern
analysis can increase the accuracy of disease diagnosis
of PD-related disorders and may ultimately aid physi-
cians in appropriate therapeutic decision making.

Patients and Methods

Subjects

We enrolled 26 patients with clinically defined PD
and 23 patients with probable and possible MSA as
the first cohort (Table 1). These subjects were
recruited from the Department of Neurology, Kyoto
Prefectural University Hospital, Kyoto, Japan, between
April 2002 and February 2009. The patients with PD
or MSA were diagnosed according to the United King-
dom Parkinson’s Disease Society Brain Bank clinical
diagnostic criteria' and the second consensus criteria
for MSA,> respectively. Clinical data were retrieved
from patient charts and confirmed by 3 board-certified

TABLE 1. Patient demographics and clinical data from
the first and second cohorts

Duration of

disease (n)
Number  Sex Mean age —_—
ofcases (F/M) (= SD)atLP(y) <3years >3years

Diagnosis
First cohort
PD (total) 26 11/15 663 = 11.2 13 13
H&Y 1-2 1 5/6 69.5 + 11.8 7 4
H&Y 3-4 15 6/9 63.9 + 10.5 6 9
MSA (total) 23 6/17 624 £ 75 15 8
Probable 7 2/5 60.6 + 8.5 4 3
Possible 16 412 632 = 7.1 1 5
Controls 26 12114 634 = 124 —_ —
Second cohort
PD (total) 11 4/7 64.6 = 11.7 — —_
MSA (total) 9 5/4 561 = 7.7 _— —

Abbreviations: PD, Parkinson's disease; MSA, multiple system atrophy;
H&Y, Hoehn and Yahr stage; LP, lumbar puncture.

neurologists. We defined the patients with PD and
MSA who were examined fewer than 3 years after
onset as the patients in the early stage of the disease.
The 26 age-matched control subjects (Table 1) in the
first cohort were neurologically normal individuals
who underwent lumbar puncture as part of the diag-
nostic process (n = 13), and controls with various
neurologic disorders without involvement of the brain
(n = 13), including patients with peripheral neuropa-
thy (n = 6), myelopathy (n = 3), epilepsy (n = 3), and
myopathy (n = 1).

The second cohort, which was collected for valida-
tion, included 11 clinically defined PD patients whose
CSF samples were collected and stored between Janu-
ary 2005 and January 2010 and 9 age-matched MSA
patients whose CSF samples were taken and stored
between January 1995 and January 2001 (Table 1).
Both groups of patients were diagnosed according to
the same clinical criteria applied to the first cohort.
The diagnosis of each patient was concealed prior to
experiments to facilitate blind testing.

All the study subjects provided written informed
consent to participate, which was approved by the
university ethics committee (Kyoto Prefectural Univer-
sity, Kyoto, Japan). The study procedures were
designed and performed in accordance with the Decla-
ration of Helsinki.

Collection and Preparation of CSF Samples

The collected CSF samples were gently mixed to
avoid gradient effects, then stored at —80°C. A 20-pL
aliquot of the CSF samples was subjected to SDS-
PAGE followed by CBB staining to ensure that no
samples were contaminated with hemoglobin (data
not shown). A 5-puL aliquot of the CSF from each sub-
ject was purified using magnetic beads with a func-
tionalized surface (hydrophobic C8-coated magnetic
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beads, MB-HIC, Bruker Daltonik GmbH, Bremen,
Germany) according to the manufacturer’s protocol.
For MS analysis, 1 uL of bead eluate was mixed with
10 pL. of matrix solution (0.6 g/L o-cyano-4-hydroxy-
cinnamic acid in 2:1 ethanol/acetone), and 1 uL of the
mixture was then spotted in quadruplicate on a
MALDI target MTP AnchorChip 600/384 (Bruker
Daltonik GmbH, Bremen, Germany).

Mass Spectrometry

Samples applied to the AnchorChip were analyzed
on an autoflex MALDI-TOF mass spectrometer
(Bruker Daltonik GmbH, Bremen, Germany) operat-
ing in positive-ion linear mode. To generate a spec-
trum, 1000 laser shots were acquired from random
positions for each matrix spot. Four independent spec-
tra were acquired for each spot. Acquisition was con-
trolled by flexControl 3.0 software (Bruker Daltonik
GmbH, Bremen, Germany) using the AutoXecute
(Bruker Daltonik GmbH), and fuzzy control of laser
intensity. The mass range analyzed was 1000-15,000
m/lz at a signal-to-noise threshold of 5. Spectra were
externally calibrated using a mixture of standardized
protein/peptide calibrants (ClinProt Standard, Bruker
Daltnik GmbH, Bremen, Germany). The same MS
analysis was replicated 3 times on different experimen-
tal days.

Analysis of Proteomic Profiles

The resulting spectra were analyzed using ClinPro-
Tools 2.2 bioinformatic software (Bruker Daltonik
GmbH, Bremen, Germany).'? Peaks of interest were
selected from the total average spectra, using a signal-
to-noise threshold of 5. Data normalization was per-
formed as (1) spectra normalization to the total ion
current; (2) spectra recalibration using the prominent
peaks; (3) baseline subtraction, smoothing, and peak
detection; and (4) calculation of peak areas for each
spectrum. First, PCA was employed to visualize the
distribution of the data.’® The feature selections of
PCA are present in the top principal components
(PCs), which separate the samples into homogeneous
clusters and can be visualized in 3-D plots in which
the calculated values for top PCs serve as x, y, and z
axes.® The loading plots, which are the variance
plots, show how PCs are related to the original peaks.
An SVM, another machine-learning approach, was
applied to the current mass data for selection of clus-
ters of signals able to discriminate the 2 objective
groups.'? Cross-validation accuracy is the percentage
of data correctly classified. To test the classifier accu-
racy, the training data set and the testing data set
were tested vice versa. Finally, ROC analysis for each
peak of interest was performed, and the area under
the curve (AUC) score was plotted for each selected
feature.'*

r PROTEOMIC

PATTERN ANALYSIS IN PD AND MSA

Results

Principal Component Analysis for the First and
Combined Cohort Data Sets

PCA scores plotted based on MALDI spectra of CSF
samples showed a clear difference between MSA and
control (Fig. 1C) and a probable difference between PD
and control (Fig. 1A) in the first cohort samples. To
our surprise, if we replicated this for the first and sec-
ond cohorts combined, it showed extremely good sepa-
ration between PD and control (Fig. 1B) and between
MSA and control (data not shown). These data indicate
that PD and MSA are quite different from the control
in terms of CSF proteomic pattern. Between PD versus
MSA, compared with the above-described compari-
sons, the differentiation was a bit decreased. However,
in analyzing the second cohort, very good separation
was observed. When we compared the early parkinso-
nian subsets, it also showed good separation. The PCA
loadings plot, which provided information about the
contribution of single peaks to the variance covered by
the respective PC, demonstrated that no single peak sig-
nificantly contributed to the variance, but many peaks
contributed to discrimination between PD and control,
between MSA and control, and between PD and MSA
(data not shown).

SVM Model for the First and Second Cohorts

For further evaluation of experiment-to-experiment
data stability, we performed mass data analysis on 3
different experimental days using the same sample sets
(Table 2). Cross-validation analysis provided an esti-
mate of the reliability of the SVM model to classify
defined groups of spectra separate from each other
(Table 2). After each model was generated, a 20%
leave-out cross-validation process was performed with
the software. We had also classified the obtained spectra
from early-stage PD (ePD) and early-stage MSA (eMSA)
by SVM, which resulted in cross-validation accuracy of
about 90% (Table 2). Thus, patients with ePD or eMSA
were well separated by SVM with better cross-valida-
tion accuracy than the patients with PD or MSA in early
and more advanced stages combined. It was also unex-
pected that when the first and second cohorts were com-
bined, the cross-validation score was extremely high
between PD and MSA (Table 2). For SVM training, the
ClinProtools software had selected several features to
enable an efficient model generation by a designated
algorithm. The features selected automatically by this
software differed from 12 to 24 peaks in each analysis.

Detecting Useful Peaks for Differential
Diagnosis between PD and MSA

When spectra were compared between subject
groups, the discriminatory peaks were ranked accord-
ing to the P value of a Wilcoxon rank sum test by
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A PD (green) vs Control (red)
1040 R S

D ePD (green) vs eMSA(red)

FIG. 1. PCA analyses of CSF proteomic profiles for the discrimination of the 2 indicated groups (A-E) displayed as scores on plots (PC, principal
component). A: PD (green) versus control (red) from the first cohort. B: PD (green) versus control (red) from the first and second combined data
sets. C: MSA (green) versus control (red) from the first cohort. D: PD of early-stage samples (ePD) from the first cohort (green) vesus MSA of early-
stage samples (€MSA) from the first cohort (red). E: PD (green) versus MSA (red) from the second cohort.

ClinProTools. Among the 3 top-ranked peaks in the
discrimination of each of the 3 pairs of comparisons,
only the peak at m/z 6250 was commonly selected in

TABLE 2. Cross-validation (%) calculated by the SVM

Differential diagnosis 1st=-1  1st-2 1st-3  1st + 2nd (2nd)
PD versus control 85.1 90.3 835 98.2 (ND)
MSA versus control 919 933 909 96.7 (ND)
PD versus MSA 857 838 862 90.2 (96.9)
Early PD versus early MSA  89.3 915 905 ND (ND)

1st-1, 1st-2, and 1st-3, results of 3 independent data analyses for the first
cohort samples, taken on 3 different experimental days; early PD, early
MSA, patients with disease duration less than 3 years after onset (only
nominated in the first cohort); 1st, first cohort; 2nd, second cohort; 15 +
2", combining the data sets from the first and second cohorts; ND, not
detected (because of a lack of data set information).

all 3 pairs. The peak at m/z 6250 was highly
expressed in control patients, but less expressed in PD
patients and expressed the least in MSA patients (Fig.
2). In addition, the same respective order of the inten-
sities of that peak was also observed for control, and
early-stage patients with PD or MSA (control > ePD
> eMSA). ROC curve analysis also proved the diag-
nostic capability of the peak at m/z 6250. The values
of the AUC were 0.669 in PD versus control, 0.826 in
MSA versus control, and 0.763 in PD versus MSA
(Fig. 2B-D, respectively). In the ROC analyses of ePD
or eMSA, the AUC values were 0.658 in ePD versus
control, 0.886 in eMSA versus control, and 0.956 in
ePD versus eMSA (Fig. 2F-H, respectively), suggesting
that patients with ePD or eMSA were well discrimi-
nated by the peak at m/z 6250.

854 Movement Disorders, Vol. 27, No. 7, 2012

- 331 -



r PROTEOMIC

A E
g 84 Controi (red) § 84 Contral (red)
£ PD (green) - £ 1ePD (green)
261 MSA (blue) 254 eMSA (blue)
= =
£ 4 £s
3 z: § 2:
[ W 04 -
6200 6220  £240 6260 6280 Da 6200 6220 6280 5260 628D Da
B 10 E F 10
7 ' I
0.84 ..x"w 0.8 P
e P et
05 J os{ &
a d
*1 | PDuvsControl *1°7  ePDvs Control
0z s AUC=0669 mff  AUC=0SS
i 3
[+ B g
i) 0.2 04 08 ix:3 1.0 02 04 05 o8 1.0
C ., — G, —
™ g 1 ™ '
0.8 Pl 08y
oy ~
1 E
o084 | 06
|
47 g MSA vs Control 4] eMSA vs Control
oz) AUC=0.826 03] AUC=0.886
,o I
02 04 08 08 1.0 02 04 66 08 1.0
D . — H ., -
a i
08 e 0.4 J
06 . es-§
i r;f 1
*“1/  PDvsMsSA 4] ePD vs eMSA
| AUC=0.763 AUC=0.956
024§ 02
1
o4 o
0z 04 06 08 10 G2 04 66 08 10

FIG. 2. Mean spectral features at m/z 6250 derived from CSF peptide
profiling (A, E). Bars indicate average values with standard deviation.
B-D, F-H: ROC curves with an AUC value of peak m/z 6250 in the
discrimination of the indicated 2 groups (ePD/eMSA, early-stage
patients with PD/MSA).

Classification Accuracy by SVM Was Tested
for the First and Second Cohorts

The PCA analysis showed that patients with PD or
MSA in the first cohort could be efficiently differenti-
ated by their proteomic profiles and also by the peak
intensities of the most discriminative peak, at m/z
6250. The differentiation ability of proteomic profiling
by ClinProTools was put to practical use for the dif-

PATTERN ANALYSIS IN PD AND MSA

ferential diagnosis of PD and MSA. We constructed
the classification model to discriminate the groups of
PD and MSA patients by using SVM in the training
set (Table 3). In this analysis, ClinProTools selected
several features identified as useful to classify PD or
MSA automatically. Table 3 shows the results of the
positive predictive values for MSA and PD (80.0%
and 90.0%, respectively), sensitivities (88.9% and
81.8%, respectively), and specificities (81.8% and
88.9%, respectively), when we used the first cohort to
build a SVM classifier and test on the second cohort.
This process was further validated vice versa, namely,
the classification model was generated by the second
cohort and was validated on the first cohort. The
result was well replicated, but a little lessened for the
positive predictive value for MSA, partly because the
first cohort contained larger numbers of samples with
a variety of clinical situations. However, in both cases,
the positive predictive value for PD was more than
80%, indicating that this classification model can effi-
ciently discriminate patients with PD from those with
MSA for the other data set.

Discussion

In this study, we have clarified that CSF proteomic
profiles could differentiate patients with MSA or PD
from each other, even if those with either disease were
in the early stage of the illness. ClinProt is a well-
established proteomics method that enables proteomic
profiling by using the bioinformatics software ClinPro-
Tools, which provides algorithms of multivariate sta-
tistical analyses."®>'®!* First by using PCA, we
succeeded in differentiating PD, MSA, and the control
by the dimension reduction approach. In the next
step, we tried to make a classification based on a
supervised machine-learning method, SVM. From the
first cohort, we have shown that we can classify PD
versus MSA with several features selected by SVM.
The accuracy was validated by the second cohort, and
this step was replicated vice versa. Furthermore, the
classification efficiency of SVM and the discrimination
power of a data set were proven by ROC analysis.
When the number of features is large and the number

TABLE 3. Results of SVM model accuracy tested for the first and second cohorts

Model data set Validation data set Clinical diagnosis Correct rate Predictive value (%) Sensitivity (%) Specificity (%)

1st? 2nd MSA 8/9 80.0 88.9 81.8
PD 9/11 90.0 81.8 88.9
2nd® 1st MSA 18/22 72.0 81.8 73.1
PD 19/26 82.6 73.1 81.8

2Feature selected for first cohort, 24 peaks, automatically selected by the SVM of the ClinProTools software;

Pfeature selected for second cohort, 12 peaks, automatically selected by the SVM of the ClinProTools software; correct rate, number of truly classified cases
for each data set. Sensitivity was calculated as the ratio of true positives against the total number of true-positive and false-negative cases. Specificity was
calculated as the ratio of true negatives against the total numbers of true negatives and false positives. Predictive value means the proportion of patients with
a positive test who have a disease and was calculated as the ratio of true positives against the total number of true positives and false positives.
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of training patterns is comparably small, classification
accuracy and the risk of a data-overfitting issue are
potential drawbacks. However, this is the first report
that has demonstrated the feasibility of the multivari-
ate proteome profiling of CSF obtained from patients
with parkinsonian disorders.

Accurate clinical diagnosis of PD and other parkinso-
nian disorders during life, especially in the early stages
of the illness, is surprisingly difficult.’™ This unfortu-
nate situation indicates that the development of reliable
peptide/protein biomarkers in living subjects would
represent a major advance. For example, CSFa-synu-
clein is so far considered the leading candidate as a sin-
gle biomarker and has been tested the most extensively.
However, published data on the CSF concentration of
a-synuclein in patients with PD and controls have been
contradictory.”® A recent study clearly showed that
CSF o-synuclein decreases in both PD and MSA
patients and therefore cannot be used to differentiate
these 2 diseases.!” Similarly, the potential of other CSF
proteins previously reported as differentiating bio-
markers for parkinsonian disorders has not yet been
validated.>®® A single biomarker may not be sufficient
to differentiate PD and MSA by the targeted approach,
possibly because of heterogeneity in each disease pa-
thology and pathological overlaps between these 2 dis-
orders.!® Meanwhile, the combined assessment of
multiple biomarkers has been shown to enhance the
diagnostic power in neurodegenerative disorders.'”*°
Moreover, a diagnostic panel of multiple CSF proteins,
including DJ-1, a-synuclein, AP peptides, and tau pro-
teins was demonstrated to aid in Parkinson’s disease di-
agnosis.”! With these emerging multiple biomarker
studies for parkinsonian disorders, we adopted an
unbiased approach provided by full MALDI mass spec-
tral profiles based on nontryptic CSF peptides/proteins.

Our results demonstrated a clear separation of PD,
MSA, and controls from each other, with good values
for cross-validation. In our results, PCA, an unsuper-
vised leaning method to reduce data dimension, dem-
onstrated that PD, MSA, and the control were clearly
discriminated from each other by their proteomic pro-
file distributions, and this discrimination was achieved
not by a single or a few peaks, but by a combined set
of many peaks, namely, the pattern unique to each
disease condition. There was no significant association
between the clinical variables such as age and sex. In
our case, the 3 groups—PD, MSA, and the control—
were age-matched as shown in Table 1. The PD group
had a larger standard deviation of the ages than those
for the MSA group, and we evaluated the PD group
for age greater than 65 and age younger than 65 and
then compared those 2 groups. However, age had no
association with proteomic data, with a cross-valida-
tion rate of less than 50%. Sex had no association
with proteomic data in each pair of these 3 groups,
with a cross-validation rate of less than 50%. For the

ISHIGAMI

differential diagnosis of patients with PD and those
with MSA, we made an SVM classification model
based on a supervised machine-learning method with
several features selected by using multiple peaks in the
spectra obtained from the blinded test set. When we
tested the second cohort of samples on this diagnostic
panel, the discriminability of the differential diagnosis
groups was clear, with reasonably high sensitivity and
specificity, both of which were more than 80% with
several features selected. Feature selection can be
modulated, and for the current analysis, we adopted
about 10-20 peaks for each model generation.

ClinProTools identified the peak at m/z 6250 that
provided a satisfactory AUC value in the ROC analysis
(0.956) only in discrimination of the early-stage patients
with PD or MSA, but there were not enough values of
this type in the discrimination of other pairs among PD,
MSA, and control. From the results of this study, we
emphasize that the proteomic pattern, not a single peak,
could be a useful diagnostic panel for the differentiation
of PD and MSA, even in the early stages. We do not
know from which protein the peak at m/z 6250 was
derived. Previously, Constantinescu et al reported a
study of proteomic profiling of CSF in parkinsonian dis-
orders by using SELDI-TOF MS and identified a frag-
ment of chromogranin B, detected as the peak at m/z
6250 as a peptide to help differentiate patients with PD
and MSA.'! The peak intensity of the chromogranin
B—derived fragment decreased in MSA patients com-
pared with PD patients in their study. The chromogran-
ins are widely distributed in neuroendocrine and
nervous system tissues.”> They suggested that the
decrease in chromogranin B-derived fragments in MSA
could be related to more aggressive synaptic or neuronal
loss in patients with MSA than what is observed in
PD."! For the moment, we will not explore this possibil-
ity any further because single-peak identification was
not a top priority compared with testing reproducibility
with a larger patient population and fine-tuning the
comprehensive diagnostic panel based on these data.

In conclusion, although our results were derived
from limited sample numbers, our study is the first to
identify a promising application of proteomic pattern
analysis to the clinical diagnosis of PD and MSA by
profiling their respective CSF proteomes. Further stud-
ies are needed to confirm our current findings in larger
cohorts of parkinsonian patients, especially to help
diagnose disease progression and improve therapeutic
efficacy. &
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