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identical cDNAs prepared for RT-PCR were used as the templates for qPCR. Specific
primer sets were purchased from Takara Bio. gPCR was performed in 25 pL of
reaction mixture containing 1x SYBR Premix Ex Taq (Takara Bio), 1 x ROX Reference
Dye, 0.2 M of each primer and cDNA. PCR was conducted for 5 sat 95 “Cand 31 s at
60 °C for 40 cycles. Gene expression levels were normalized using gapdh as an
internal control. Results of ABR and qPCR are expressed as the mean + standard
error, and statistical significance was determined by one sample t-test.

4.5. Immunohistochemical analysis

Histological sample were made on the before 3-NP treatment and 1 day after
vehicle treatment, and 6 h, 1, 2 and 3 days after 3-NP treatment (n > 3). Rats were
deeply anesthetized with pentobarbital (50 mg/kg, i.p.) and perfused intracardially
with 0.01 M sodium phosphate buffer (pH 7.4) containing 8.6% sucrose, followed by
4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.4). After decapita-
tion, temporal bones were removed quickly and placed in the same 4%
paraformaldehyde fixative. Small openings were made at the round window, oval
window and apex of the cochlea. After immersion in the fixative overnight, the
temporal bones were decalcified by placement in 5% EDTA and 4% sucrose in 0.1 M
sodium phosphate buffer (pH 7.4) at 4 °C for 2 weeks, dehydrated, and embedded in
paraffin. Transverse cochlear sections at 5-pum thickness were cut and mounted on
glass slides. After rehydration, sections were treated with 0.3% hydrogen peroxide
in methanol to quench peroxidase activity. For epitope retrieval, slides were boiled
in citrate buffer (pH 6.0) in a microwave. After blocking nonspecific binding with 1%
normal goat serum (Vector Laboratories, Burlingame, CA), the slides were incubated
with monoclonal anti-CHOP (Santa Cruz Biotechnology, Santa Cruz, CA) ata 1:100
dilution at 4 °C overnight. The slides were washed and then incubated with
biotinylated anti-mouse IgG (Vector Laboratories) at a 1:200 dilution, and the signal
was colorized using VECTASTAIN Elite ABC kit (Vector Laboratories) and DAB
Substrate kit for Peroxidase (Vector Laboratories). Some of the slides were
counterstained with hematoxylin. Some of the unstained sections were processed
for TUNEL histochemical staining using ApopTag Peroxidase In Situ Apoptosis
Detection kit (Chemicon International, Temecula, CA) according to the manufac-
turer’s protocol. The TUNEL reaction mixture was added to each sample in a
humidified chamber, followed by incubation for 1 h at 37 °C for colorization with
DARB. For fluorescent immunostaining, the sections were incubated with anti-CHOP
at a dilution of 1:50. The sections were subsequently treated with proteinase K
(DakoCytomation, Carpinteria, CA) and incubated with Alexa Fluor 568 anti-mouse
IgG (Molecular Probes, Eugene, OR) at a 1:1000 dilution. Thereafter, the ApopTag
Fluorescein Direct In Situ Apoptosis Detection kit (Chemicon) was used according to
the manufacturer’s protocol. The sections were then covered with PermaFluor
Aqueous Mounting Medium (Thermo Shandon, Pittsburgh, PA) with DAPI (1 pg/
mL; Dojindo, Kumamoto, Japan).
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Abstract

Conclusion: G¥B2 mutations are responsible not only for deafness but also for the occurrence of vestibular dysfunction.
However, vestibular dysfunction tends to be unilateral and less severe in comparison with that of bilateral deafness. Objectives:
The correlation between the cochlear and vestibular end-organs suggests that some children with congenital deafness may have
vestibular impairments. On the other hand, G¥B2 gene mutations are the most common cause of nonsyndromic deafness. The
vestibular function of patients with congenital deafness (CD), which is related to G¥B2 gene mutation, remains to be
elucidated. The purpose of this study was to analyze the relationship between G¥B2 gene mutation and vestibular dysfunction
in adults with CD. Merhods: A total of 31 subjects, including 10 healthy volunteers and 21 patients with CD, were enrolled in
the study. A hearing test and genetic analysis were performed. The vestibular evoked myogenic potentials (VEMPs) were
measured and a caloric test was performed to assess the vestibular function. The percentage of vestibular dysfunction was then
statistically analyzed. Resulss: The hearing level of all CD patients demonstrated a severe to profound impairment. In seven CD
patients, their hearing impairment was related to G¥B2 mutation. Five of the seven patients with CD related to G¥B2 mutation
demonstrated abnormalities in one or both of the two tests. The percentage of vestibular dysfunction of the patients with CD
related to G¥B2 mutation was statistically higher than in patients with CD unrelated to G¥B2 mutation and in healthy controls.

Keywords: Vestibular evoked myogenic potentials, caloric test

Introduction the disease is caused by gene mutation. In partic-
ular, mutation in the G¥B2 gene, which encodes

Since a correlation between the peripheral auditory Cx26 in the gap junction, is known to be a most
and vestibular systems has been identified both common cause (up to 50% of such cases) [2,3].
anatomically and phylogenetically, a subgroup of Gap junction channels enable the neighboring cells
children with congenital deafness (CD) may be asso- to exchange small signaling molecules. Immuno-
ciated with vestibular and balance impairments [1-3]. histochemical studies have revealed that Cx26 exists
Interestingly, the vestibular disturbance in these chil- not only in the cochlea but also in the vestibular
dren gradually disappears as they grow up, probably organs [4]. K cycling involving gap junction pro-
because of a compensatory mechanism of the central tein Cx26 in the vestibular labyrinth, which is sim-
nervous system. However, there have been only a few ilar to that in the cochlea, is thought to play a
reports that conducted a detailed analysis of the fundamental role in the endolymph homeostasis
vestibular function in adults with CD. and sensory transduction [5]. These findings suggest
CD has been reported in approximately one child that mutations in the G¥B2 gene may thus cause

per 1000 births [1]. In more than half of these cases, vestibular dysfunction.
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In this study, the relationship between G¥B2 gene
mutation and vestibular dysfunction in adults with
CD was investigated to confirm whether or not there
are any abnormalities associated with the vestibular
function.

Material and methods
Subjects

The subjects in this prospective study included 21
patients with CD and 10 healthy volunteers. The
patients were excluded from the study if they were
being treated with ototoxic drugs or if they had a
cytomegalovirus infection, bacterial meningitis, exter-
nal and middle ear pathological findings, or other risk
factors for inner ear damage. No participants had
syndromic deafness due to pigmentary retinopathy,
nephropathy, goiter, or any other diseases. Patients
with vestibular dysfunction due to head trauma, brain
tumor, Meniere’s disease, or other conditions were
also excluded from the study. All subjects underwent
an otoscopic examination and were found to have a
normal tympanic membrane. Audiometric testing was
performed in a double-walled, sound-treated booth.
All patients gave their informed consent in writing and
the study was approved by the Ethics Committee of
Juntendo University School of Medicine.

Genetic analysis

DNA was extracted from peripheral blood leukocytes
of the subjects. The coding region of G¥B2 was
amplified by PCR using the primers G¥B2-2F 5’-
GTGTGCATTCGTCTTTTCCAG-3" and G¥B2-
2R 5-GCGACTGAGCCTTGACA-3". The PCR
products were sequenced using the PCR primers
and sequence primers G¥B2-A 5-CCACGC-
CAGCGCTCCTAGTG-3" and G¥B2-B 5-GAA-
GATGCTGCTGCTTGTGTAGG-3". These were
visualized using an ABI Prism 310 Analyzer (PE
Applied Biosystems, Tokyo, Japan).

Vestibular evoked myogenic potentials

The vestibular evoked myogenic potentials (VEMPs)
were measured as described in a previous report [6].
Both sound stimuli of clicks (0.1 ms, 95 dBnHL) and
short tone burst (500 Hz; rise/fall time, 1 ms, 95
dBnHL) were presented to each side of the ear
through the headphones using a Neuropack
evoked-potential recorder (Nihon Kohden Co. Ltd,
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Tokyo, Japan). The surface electromyographic activ-
ity was recorded with the patient in the supine posi-
tion from symmetrical sites over the upper half of each
sternocleidomastoid (SCM) muscle with a reference
electrode on the lateral end of the upper sternum.
During recording, the subjects were instructed to lift
their head up or to turn the contralateral side to
induce hypertonicity of the SCM. Thereafter, the
electromyographic signals from the stimulated side
of the SCM muscle were amplified.

Caloric test

The caloric test in the current study was performed as
described elsewhere [7]. Briefly, 2 ml of ice-water (at
4°C) was irrigated in the external auditory meatus to
induce a thermal gradient across the horizontal semi-
circular canal of one ear. The duration of horizontal
and vertical nystagmus was recorded. The results
were compared between the right and left ears.

Statistical analysis

The data are expressed as the mean + SD. Statistical
analyses were conducted using a non-repeated mea-
sures analysis of variance (ANOVA). Significant
effects were further analyzed by post hoc multiple
comparison tests using the Student-Newman-Keuls
test. A value of p <0.05 was considered to indicate
statistical significance.

Results
Hearing test

The pure-tone averages of 0.5, 1.0, and 2.0 kHz are
shown in Table I. The hearing impairments of CD
patients ranged from severe (71-95 dB) to profound
(>95 dB). The hearing levels of all controls were at
the normal level (<30 dB; data not shown).

Genetic analysis

G¥B2 mutations were found in nine CD patients
(Table I). All three mutations have been described
previously in association with deafness. Among these
mutations, 235delC mutation was found in eight
patients. One nonsense mutation (Y136X) and one
frameshift mutation (176-191del) were also identi-
fied. In six patients with a homozygous G¥B2 muta-
tion and one patient with a compound heterozygous
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Table I. Results of hearing level, genetic analysis, and vestibular function of subjects with congenital deafness (CD)
Hearing level
(dB)
Case no. Left Right Sex Age (years) Mutation in G¥B2 VEMPs Caloric test
Patients with G¥B2-related CD
1 86 98 M 26 Homo 235delC Right decreased Left CP
2 106 108 M 25 Homo 235delC Right decreased Normal
3 108 106 M 28 Homo 235delC Right decreased Normal
4 108 106 M 37 Homo 235delC Normal Right CP
5 100 106 M 32 Homo 235delC Normal Right poor/left CP
6 80 91 M 25 Homo 235delC Normal Normal
7 115 108 M 25 Y136X/235delC Normal Normal
Patients without G¥B2-related CD
8 98 98 F 24 Left decreased Bilateral CP
9 98 115 M 26 Normal Bilateral CP
10 97 97 M 20 Normal Normal
11 111 108 M 31 Normal Normal
12 100 104 F 34 Normal Normal
13 98 95 M 21 Normal Normal
14 91 91 M 24 Normal Normal
15 99 101 F 26 Normal Normal
16 99 95 F 23 Normal Normal
17 80 68 M 27 Normal Normal
18 96 95 M 27 Normal Normal
19 85 73 M 23 Normal Normal
Patients with heterozygous G¥B2 mutation
20 73 100 M 25 Hetero 235delC Normal Normal
21 97 98 M 25 Hetero 176-191del16 Normal Normal

CP, canal paresis; Poor, nystagmus was obviously weak.

mutation (case nos 1-7); their profound deafness was
thought to be caused by a G¥B2 mutation. No G¥B2
mutation was identified in any of the controls.

Vestibular function

No patients or controls had any subjective symptoms
of vertigo. Table I shows the results of the vestibular
function in all CD patients. Abnormal responses of
VEMPs and the caloric test in CD with a G¥B2-
related mutation were observed in three patients
each (case nos 1-5). Three patients with a homozy-
gous G¥B2 mutation showed asymmetrical responses
in VEMPs (case nos 1-3). Three patients with a
homozygous G¥B2 mutation showed asymmetrical
responses in the caloric test (case nos 1, 4, and 5).
One of them showed both VEMPs and the caloric test
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asymmetrical responses (case no. 1). One patient with
a homozygous G¥B2 mutation and one patient with
compound heterozygous G¥B2 mutation showed nor-
mal responses in both VEMPs and the caloric test
(case nos 6 and 7). It is notable that five of the six
patients with a homozygous 235delC mutation
showed no abnormalities in either test. Two hetero-
zygous patients (case nos 20 and 21) showed normal
responses in both tests.

Two CD patients with no G¥B2 mutation exhibited
abnormal findings for the vestibular tests (case nos. 8
and 9). One patient showed a unilateral reduction in
VEMPs and bilateral canal paresis (case no. 8). Bilat-
eral canal paresis was also observed in another patient
(case no. 9).

All the controls with normal hearing showed nor-
mal responses in both the VEMPs and the caloric test
(data not shown).
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Figure 1. Comparison of the incidence of abnormality in the
vestibular tests among the three groups. (A) Percentage showing
abnormality in VEMPS and/or caloric test. (B) Percentage showing
abnormality in VEMPs. (C) Percentage showing abnormality in the
caloric test. a, Controls; b, G¥B2-related CD subjects; ¢, CD
subjects without G¥B2 mutations.
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Statistical analysis of vestibular function in the three
groups

Figure 1 shows a comparison of the controls, patients
with CD related to a G¥B2 mutation, and those with
CD without a G¥B2 mutation. The CD patients with
G¥B2 heterozygous mutation were excluded from this
statistical analysis, since their symptoms of hearing
impairment are not necessarily caused by the G¥B2
mutation alone. Vestibular dysfunction showing an
abnormality in VEMP and/or the caloric test signif-
icantly increased in patients with G¥B2-related CD in
comparison with those with CD without G¥B2 muta-
tion (p <0.05) and the controls (p <0.01), whereas no
difference was observed between CD without a G¥B2
mutation and the controls (Fig. 1A). No differences in
the incidence of abnormality in VEMPs were
observed among the three groups (Fig. 1B). The
incidence of abnormalities in the caloric test in
patients with GJB2-related CD differed significantly
from that in the controls, but the other two compar-
isons were not significant (Fig. 1C).

Discussion

In this study, vestibular tests were performed in CD
patients with or without a G¥B2 mutation by mea-
suring the VEMPs and using the caloric test. Only one
report has previously investigated the vestibular func-
tion of patients with G7B2-related CD [8]. The
authors noted that five of the seven patients showed
no VEMP responses bilaterally and that only one case
had a unilateral pathological response in the caloric
test, which led to the conclusion that CD with a G¥B2
mutation is associated with severe saccular dysfunc-
tion. However, in the present study, there were no
patients showing the absence of both VEMP and a
caloric response. Todt et al. [8] showed the existence
of G¥B2 mutations that do not cause CD (polymorph-
isms), thus suggesting a considerable bias. Further-
more, patients with low-grade hearing loss were
included in their study. In contrast, all of the G¥B2
mutations detected in the present study are known to
cause CD in the Asian population [9]. In addition, the
present study included only patients with severe to
profound hearing loss, which would therefore clarify
the correlation between CD and G¥B2 mutations.
Among the seven patients with G¥B2-related CD,
five (71.4%) showed abnormal responses in either
or both tests. The incidence was apparently and
significantly higher than that in patients with CD
without a G¥B2 mutation (2/13: 15.4%). Moreover,
the incidence in the controls significantly differed
from that in patients with CD related to a G¥B2



mutation but not in those with CD without G¥B2
mutation. Therefore, these findings support the
hypothesis that G¥B2 mutations play a critical role
in the disturbance of the vestibular function.

G¥B2 mutations cause profound deafness and the
associated mechanism has been discussed in several
studies [10,11]. A recent study showed that G¥B2 is
indispensable in the normal development of the
organ of Corti and normal hearing on the basis of
the study in Gyb2 dominant-negative mutant mice
[12]. Despite the widespread expression of Cx26 in
both the cochlear and vestibular organs [4], the
vestibular function impairment of the patients with
a G¥B2 mutation is not as severe as the hearing
dysfunction observed in the present study. Two
hypotheses have been proposed to explain this incon-
sistency between hearing and balance function. One
hypothesis is based on the fact that two temporal
bone studies performed in patients with G¥B2-
related hearing impairment in the previous study
revealed that one patient had mild vestibular hydrops
and saccular degeneration, while another patient had
a dysplastic neuroepithelium of the saccule [13,14].
This suggests that a G¥B2 mutation can cause mor-
phological dysplasia in not an entire organ, but in
part of the vestibular organs. This is contrast to the
cochlea of these patients, which showed nearly total
dysplasia of the organ of Corti. These histopatholog-
ical studies support the results of the vestibular
dysfunction of patients with G¥B2-related CD in
the present study. The other hypothesis is based
on the presence of several connexins such as
Cx26, Cx30 (encoded by G¥B6), Cx31 (encoded
by G¥B3), and Cx32 (encoded by G¥BI) in the inner
ear. A previous study showed all of these connexins
to be distributed in the vestibular organs [15]. Cx30
gene knockout mice had hair cell loss in the saccule,
which was restored by the over-expression of the
Cx26 gene [16]. Therefore, the specific loss of
Cx30 causes vestibular dysfunction, which can be
compensated by other types of connexins. The pres-
ent clinical study in which a complete defect of Cx26
resulted in a definitive but partial dysfunction of
vestibular end organs can be explained by the com-~
pensation of other connexins normally expressed in
the vestibule. Further studies are required to clarify
the relationship between connexins and the vestibu-
lar function.

Although there was a statistically significant
difference in the objective examination of the vestib-
ular function among patients with G¥B2-related CD,
those with CD without a G¥B2 mutation, and
healthy controls, none of these subjects had any
vestibular symptoms regardless of the presence or
absence of a G¥B2 mutation. The peripheral

Vestibular function of patients with G¥B2 mutation
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vestibular dysfunction predicted in individuals with
the G¥B2 mutation may be compensated by the
central vestibular system in young patients with deaf-
ness, as shown in the present study. However, aging
is known to affect both the peripheral and central
vestibular system [17]. In patients with a G¥B2
mutation, the vestibular symptoms may progress
with aging. Another problematic point regarding
patients with CD related to G¥B2 mutations is
cochlear implantation, which has been reported to
cause vestibular dysfunction, such as a reduction of
the caloric responses [18] and a decrease in the
VEMP responses [19]. It is thought that the mechan-
ical damage caused by the insertion of the electrode
may induce vestibular dysfunction [20]. In the pres-
ent study, four patients with G7B2-related deafness
showed unilateral vestibular dysfunction, while only
one of them had bilateral dysfunction. Therefore, it
should be emphasized that the assessment of
the vestibular function in patients with G¥B2-related
CD is important to determine which side of the
ear should be selected to insert the cochlear implant.

Conclusions

A G¥B2 mutation is responsible not only for deafness
but also for vestibular dysfunction. However, such
vestibular dysfunction is likely to be unilateral and less
severe in patients with a G¥B2 mutation than in those
with bilateral deafness.
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Experimental Approaches to Inner Ear Cell Therapy Using Laboratory Animals

Kazusaku Kamiya and Katsuhisa Ikeda

(Juntendo University School of Medicine)

Recently, a number of clinical studies on cell therapy have been reported and used in clinical practice
for several intractable diseases. Inner ear cell therapy for sensorineural hearing loss also has been studied
using some laboratory animals, although to date reports on successful hearing recovery have been few.

Previously, we developed a novel rat model of acute sensorineural hearing loss due to fibrocyte dys-
function induced by a mitochondrial toxin and performed cell therapy with bone marrow mesenchymal
stem cells (MSCs). In this study, we injected MSCs into the lateral semicircular canal; a number of these
stem cells were then detected in the injured area in the lateral wall. Rats with transplanted MSCs in the
lateral wall demonstrated a significantly higher hearing recovery ratio than the untreated controls. These
results suggested that mesenchymal stem cell transplantation into the inner ear may be a promising ther-
apy for patients with sensorineural hearing loss due to degeneration of cochlear fibrocytes.

In this article, we review studies on inner ear cell therapy using some laboratory animals including
rodents such as mice and rats, and primates such as cynomologus monkeys (Macaca fascicularis).

Key words : inner ear, cell therapy, sensoryneural hearing loss, stem cell
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COCHLEAR OUTER HAIR CELLS IN A DOMINANT-NEGATIVE
CONNEXIN26 MUTANT MOUSE PRESERVE NON-LINEAR
CAPACITANCE IN SPITE OF IMPAIRED DISTORTION PRODUCT

OTOACOUSTIC EMISSION

A. MINEKAWA,? T. ABE,® A. INOSHITA? T. lIZUKA,?
S. KAKEHATA,? Y. NARUI,? T. KOIKE,® K. KAMIYA?
H.-O. OKAMURA,° H. SHINKAWAP AND K. IKEDA?*

2Department of Otorhinolaryngology, Juntendo University School of
Medicine, Tokyo, Japan

®Department of Otorhinolaryngology, Hirosaki University School of
Medicine, Hirosaki, Japan

°Department of Mechanical Engineering and Intelligent Systems, The
University of Electro-Communications, Tokyo, Japan

Abstract—Mutations in the connexin26 gene (GJB2) are the
most common genetic cause of congenital bilateral non-syn-
dromic sensorineural hearing loss. Transgenic mice were es-
tablished carrying human Cx26 with the R75W mutation that
was identified in a deaf family with autosomal dominant nega-
tive inheritance [Kudo T et al. (2003) Hum Mol Genet 12:995-
1004]. A dominant-negative Gjb2 R75W transgenic mouse
model shows incomplete development of the cochlear support-
ing cells, resulting in profound deafness from birth [Inoshita A
et al. (2008) Neuroscience 156:1039-1047]. The Cx26 defect in
the Gjb2 R75W transgenic mouse is restricted to the supporting
cells; it is unclear why the auditory response is severely dis-
turbed in spite of the presence of outer hair cells (OHCs). The
present study was designed to evaluate developmental
changes in the in vivo and in vitro function of the OHC, and the
fine structure of the OHC and adjacent supporting cells in the
R75W transgenic mouse. No detectable distortion product oto-
acoustic emissions were observed at any frequencies in R75W
transgenic mice throughout development. A characteristic phe-
notype observed in these mice was the absence of the tunnel of
Corti, Nuel’s space, and spaces surrounding the OHC; the OHC
were compressed and squeezed by the surrounding supporting
cells. On the other hand, the OHC developed normally. Struc-
tural features of the lateral wall, such as the membrane-bound
subsurface cisterna beneath the plasma membrane, were in-
tact. Prestin, the voltage-dependent motor protein, was ob-
served by immunohistochemistry in the OHC basolateral mem-
branes of both transgenic and non-transgenic mice. No signif-
icant differences in electromotility of isolated OHCs during
development was observed between transgenic and control
mice. The present study indicates that normal development of
the supporting cells is indispensable for proper cellular func-
tion of the OHC. © 2009 IBRO. Published by Elsevier Ltd. All
rights reserved.

Key words: hereditary deafness, connexin26, Gjb2, outer hair
cell, prestin, electromotility.
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Abbreviations: C,,,, membrane capacitance; C,, nonlinear capacitance;
Cx26, connexin26; DAPI, 4’,6-diamidino-2-phenylindole; DPOAE, dis-
tortion product otoacoustic emission; GJB2, connexin26 gene; OHC,
outer hair cell; P, postnatal day; PB, phosphate buffer; PBS, phos-
phate-buffered saline; PFA, paraformaldehyde.

The organ of Corti in mammals is a complex three-dimen-
sional structure containing both sensory and supporting cells
sitting on the basilar membrane. The supporting cells, includ-
ing the pillar cells and Deiter’s cells, form a rigid scaffold
adjacent to and surrounding the outer hair cell (OHC) and
confer essential mechanical properties for efficient transmis-
sion of stimulus-induced motion of the hair cells between the
reticular lamina and the basilar membrane. Although devel-
opment of pillar cells and the formation of a normal tunnel of
Corti are required for normal hearing (Colvin et al., 1996), the
physiological function of the supporting cells in postnatal
development remains unclear.

Gap junction proteins in the cochlear supporting cells are
believed to allow rapid removal of K™ away from the base of
hair cells, resulting in recycling back to the endolymph (Kiku-
chi et al., 1995). In addition to these effects on K*, gap
junction proteins act to mediate Ca®* and anions such as
inositol 1,4,5-trisphosphate, ATP, and cAMP as cell-signal-
ing, nutrient, and energy molecules (Beltramello et al., 2005;
Zhao et al., 2005; Piazza et al., 2007; Gossman and Zhao,
2008). In the developing postnatal cochlea, Tritsch et al.
(2007) further found that within a transient structure known as
Kolliker's organ, ATP can bind to P2X receptors on the inner
hair cells, thus causing depolarization and Ca®* influx, while
also mimicking the effect of sound.

In the organ of Corti, most gap junctions are assembled
from connexin (Cx) protein subunits, predominantly connexin
26 (Cx26, Gjb2 gene) and co-localized Cx30 (Forge et al.,
2003; Zhao and Yu, 2006). Mouse models have confirmed
that Cx26 encoded by Gjb2 is essential for cochlear function
(Cohen-Salmon et al., 2002; Kudo et al., 2003). A dominant-
negative Gjb2 R75W transgenic mouse model shows incom-
plete development of the cochlear supporting cells, resulting
in profound deafness from birth (Inoshita et al., 2008). Char-
acteristic ultrastructural changes observed in the developing
supporting cells of the Gjb2 R75W transgenic mouse model
include (i) the absence of the tunnel of Corti, Nuel’'s space, or
spaces surrounding the OHCs; and (ii) reduced numbers of
microtubules in the pillar cells. On the other hand, the devel-
opment of the OHCs, at least from postnatal day 5 (P5) to
P12 was not affected. The Cx26 defect in the Gjb2 transgenic
mouse is restricted to the supporting cells; it is thus difficult to
explain why the auditory response is extensively disturbed
despite the presence of the OHCs.

The present study was designed to evaluate develop-
mental changes in the in vivo and in vitro function of the OHC
together with the ultrastructure of the OHC and its adjacent
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supporting cells in the R75W transgenic mouse, to provide a
better understanding of the functional properties of the sup-
porting cells, and to gain new insights into the molecular and
physiological mechanisms of Gjb2-based deafness.

EXPERIMENTAL PROCEDURES
Animals and anesthesia

All mice used for this study were obtained from a breeding colony of
R75W transgenic mice (Kudo et al., 2003) and maintained at the
Institute for Animal Reproduction (lbaraki, Japan). R75W transgenic
mice were maintained on a mixed C57BL/6 background and inter-
crossed to generate R75W transgenic animals. The animals were
genotyped using DNA obtained from tail clips and amplified with the
Tissue PCR Kit (Sigma, Saint Louis, MO, USA). The animals were
deeply anesthetized with an intraperitoneal injection of ketamine (100
mg/kg, Ohara Pharamaceutical Co., Ltd., Tokyo, Japan) and xyla-
zine (10 mg/kg) in all experiments. All experiment protocols were
approved by the Institutional Animal Care and Use Committee at
Juntendo University School of Medicine, and were conducted in
accordance with the US National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals.

Distortion product otoacoustic emission

All electrophysiology was performed within an acoustically and
electrically insulated and grounded test room. Distortion product
otoacoustic emission (DPOAE) responses at 2f1-f2 were mea-
sured through the meatus using a measuring system (model
ER-10B, Etymotic Research Inc., Elk Grove Village, IL, USA) with
a probe developed for immature mice according to a previous
paper (Narui et al., 2009). DPOAE stimuli were administered at
two primary frequencies, f1 and f2, such that f1<f2. DPOAE
input/output functions at f2=12, 30, and 45 kHz with f2/f1=1.2
were constructed. At each frequency pair, primary levels L1 (level
of f1 tone) and L2 (level of f2 tone) were increased incrementally
by 5 dB steps from 30 to 80 dB (f2=12 kHz and 30 kHz), and 30
to 70 dB (f2=45 kHz) with L1=L2. The DPOAE threshold level
was defined as the dB level at which the 2f1—f2 distortion product
was more than 10 dB above the noise level.

Non-linear capacitance

OHCs were obtained from acutely dissected organs of Corti from
both transgenic and non-transgenic mice according to a previous
report (Abe et al., 2007). Briefly, cochleae were dissected, and the
organs of Corti were separated from the modiolus and stria vas-
cularis. The organs were then digested with trypsin (1 mg/ml) in
external solution (100 mM NaCl, 20 mM tetraethylammonium, 20
mM CsCl, 2 mM CoCl,, 1.52 mM MgCl,, 10 mM 4-(2-hydroxy-
ethyl)-1-piperazineethanesulfonic acid and 5 mM dextrose (pH
7.2), 300 mosmol/L, in order to block ionic conductance) for 10—12
min at room temperature and transferred into 35 mm plastic
dishes (Falcon, Lincoln Park, NJ, USA) with 2 ml external solution.
OHCs were isolated by gentle trituration. The dish was mounted
on an inverted microscope (IX71; Olympus, Tokyo, Japan).

The patch pipette solution contained 140 mM CsCl, 2 mM
MgCl,, 10 mM ethyleneglycoltetraacetic acid, 10 mM 4-(2-hydroxy-
ethyl)-1-piperazineethanesulfonic acid (pH 7.2), 300 mosmol/L (ad-
justed with dextrose).

The cells were whole-cell voltage-clamped with an Axon (Bur-
lingame, CA, USA) 200 B amplifier using patch pipettes having
initial resistances of 3-5 M(). Series resistances, which ranged
5-20 MQ, remained uncompensated for membrane capacitance
(C,,) measurements, though corrections for series resistance volt-
age errors were made offline.

Data acquisition and analysis were performed using the Win-
dows-based patch-clamp program jClamp (SciSoft, New Haven,
CT, USA).

The C,, functions were obtained 1 min after establishment of the
whole-cell configuration. C,,, was assessed using a continuous high-
resolution (2.56 ms sampling) two-sine voltage stimulus protocol (10
mV peak at both 390.6 and 781.2 Hz) superimposed onto a voltage
ramp (200 ms duration) from —150 to +150 mV (Santos-Sacchi et
al., 1998; Santos-Sacchi, 2004). The capacitance data were fit to the
first derivative of a two-state Boltzmann function (Santos-Sacchi,
1991).

ze

b
Ci= Qmaxﬁ- A+b) +Ciin

—ze(Vm—Vorem
b=exp(*~7( e B )>

where Q. is the maximum nonlinear charge moved, V., is volt-
age at peak capacitance or half-maximum charge transfer, V,, is
membrane potential, z is valence, C;, is linear membrane capaci-
tance, e is electron charge, k is Boltzmann's constant, and T is
absolute temperature. For analyses, we quantified C,, peak, an
estimate of maximum voltage-dependent, nonlinear capacitance, as
the absolute peak capacitance minus linear capacitance.

Histology

The mice were perfused with 4.0% paraformaldehyde (PFA) and
2.0% glutalaldehyde (pH 7.4) in 0.1 M phosphate buffer (PB). The
inner ears were dissected and immersed in fixative overnight at
room temperature. Decalcification was completed by immersion in
0.12 M ethylenediaminetetraacetic acid with gentle stirring at room
temperature for a day. The cochleas were flushed again with
buffer prior to perfusion with a warm solution of 10% gelatin. They
were chilled on ice, thus allowing the gelatin to solidify, and then
cut in half under a dissecting microscope. The half cochleas were
rinsed (four times for 1 min each) with warm PB (40 °C) to remove
residual gelatin. The specimens were post-fixed 1.5 h in 2.0%
0s0O, in 0.1 M PB, then dehydrated through graded ethanols and
embedded in Epon. Semithin sections (1 um) were stained with
Toluidine Blue for light microscopy. Ultrathin sections were
stained with uranyl acetate and lead citrate and examined by
electron microscopy (HITACHI H7100, Japan).

Immunohistochemistry

The cochleae were removed after cardiac perfusion with 4% PFA
(pH 7.4), placed in the same fixative at room temperature for 1 h,
decalcified with 0.12 M ethylenediaminetetraacetic acid (pH 7.0)
at 4 °C overnight. The specimens were dehydrated through
graded concentrations of alcohol, embedded in paraffin blocks
and sectioned into 5 um thick slices. The sections were washed in
several changes of 0.01 M phosphate-buffered saline (PBS; pH
7.2), blocked with 2% bovine serum albumin in 0.01 M PBS for 30
min, and then were incubated for 1 h at room temperature with
goat polyclonal antibodies to Prestin (1:100; Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) (Kitsunai et al., 2007) diluted in
0.01 M PBS+1% bovine serum albumin. The following day, the
tissues were rinsed with 0.01 M PBS, incubated for 1 h at room
temperature with a Alexa-Fluor-594 conjugated donkey anti-goat
(1:1000; Molecular Probes, Eugene, OR, USA), rinsed with 0.01 M
PBS, and then mounted in Vectashield containing DAPI (Vector
Laboratories, Burlingame, CA, USA). Labeling was viewed using
a confocal laser scanning microscope (LSM510 META, Carl
Zeiss, Esslingen, Germany), and each image was analyzed and
saved using the ZeissLSM image Browzer (Carl Zeiss).
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