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Transscleral Sustained Vasohibin-1 Delivery by a Novel
Device Suppressed Experimentally-Induced Choroidal
Neovascularization
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Abstract

We established a sustained vasohibin-1 (a 42-kDa protein), delivery device by a novel method using photopolymerization of
a mixture of polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and collagen microparticles. We
evaluated its effects in a model of rat laser-induced choroidal neovascularization (CNV) using a transscleral approach. We
used variable concentrations of vasohibin-1 in the devices, and used an enzyme-linked immunosorbent assay and Western
blotting to measure the released vasohibin-1 (0.31 nM/day when using the 10 uM vasohibin-1 delivery device [10VDD]). The
released vasohibin-1 showed suppression activity comparable to native effects when evaluated using endothelial tube
formation. We also used pelletized vasohibin-1 and fluorescein isothiocyanate-labeled 40 kDa dextran as controls. Strong
fluorescein staining was observed on the sclera when the device was used for drug delivery, whereas pellet use produced
strong staining in the conjunctiva and surrounding tissue, but not on the sclera. Vasohibin-1 was found in the sclera,
choroid, retinal pigment epithelium (RPE), and neural retina after device implantation. Stronger immunoreactivity at the RPE
and ganglion cell layers was observed than in other retinal regions. Significantly lower fluorescein angiography (FA) scores
and smaller CNV areas in the flat mounts of RPE-choroid-sclera were observed for the 10VDD, VDD (1 uM vasohibin-1
delivery device), and vasohibin-1 intravitreal direct injection (0.24 uM) groups when compared to the pellet, non-vasohibin-
1 delivery device, and intravitreal vehicle injection groups. Choroidal neovascularization can be treated with transscleral
sustained protein delivery using our novel device. We offer a safer sustained protein release for treatment of retinal disease
using the transscleral approach.
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AMD [10,11]. Although drug delivery device implantation into
the vitreous showed effective delivery of drug to the retina, these
treatments may cause severe side effects, such as infection, vitreous
hemorrhage, or retinal detachment [12—14]. Drug delivery using
viral vectors has been attempted for treatment of devastating
retinal diseases [15]; however, this method may induce immune

Introduction

Age-related macular degeneration (AMD) is a well-known sight-
threatening disease in developed countries [1]. Although many
treatment regimens have been used to treat AMD [2-6],
intravitreal injection of anti-vascular endothelial growth factor

(VEGF) produced lesion improvement and better visual acuity in
some patients [7,8]. However, intra-vitreal injection of anti-VEGF
also produced irritation, infection, and other adverse side effects
[9]. Further, that treatment required repeated injections, usually
occurring once a month [7,8]. Thus, other types of drugs or drug
delivery systems (DDSs) need to be developed to treat AMD.
Eye drops and systemic drug administration are unsuitable for
retinal diseases if the physician is looking for effective drug
penetration into the eye, especially for macular discases such as

PLOS ONE | www.plosone.org

cell or humoral responses [16,17].

Subconjunctival drug delivery is less invasive than intravitreal
drug injection and can deliver more drug than seen with eye drops
or systemic administration [10,11]. There are published data
mvestigating clinical use of subconjunctival drug administration
[18,19]. Thus, the subconjunctival route may be an attractive
method for drug delivery to the retina. The major difficulties with
subconjunctival DDS are uncontrollable release of the target drug
[20], as well as an unknown drug delivery route and mechanism to

March 2013 | Volume 8 | Issue 3 | 58580



reach the retina [20,21]. Sustained release, with no drug bolus
effect, would be required to reduce side effects [22,23].

We previously reported our results of the use of a novel drug
delivery device placed on the sclera that we thought would be an
effective tool in treating retinal diseases [24]. The device consisted
of a drug-releasing semi-permeable membrane and impermeable
membranes acting as the drug reservoir. Because of the non-
biodegradable and one-way release nature of the device, we could
achieve sustained release of the drug to the retina. We examined
the effects of this device using a laser-induced choroidal
neovascularization (CNV) model in rats.

Anti-VEGF antibody is a well-known treatment agent in CNV
therapy, but suppression of VEGF function may induce many
harmful effects in physiological function [23]. We selected
vasohibin-1 for the loading drug in the device in this study
because of its well-known anti-angiogenic activity [26,27].
Vasohibin-1 is a 42-kDa polypeptide, a VEGF-inducible molecule
expressed by cultured human endothelial cells (ECs) [26].
Vasohibin-1 inhibits the formation of EC networks i zitro, corneal
neovascularization i wifro [26], retinal neovascularization in
a mouse model of oxygen-induced ischemic retinopathy [27],
and laser-induced mouse [25] and monkey CNV [28]. Each of the
in vivo studies treated the tissue by direct intravitreal injection of
vasohibin-1.

Here we shall show that continuous trans-scleral vasohibin-1
delivery by the device can suppress laser-induced CNV in rat eyes
(Fig. 1A) as well as that by intravitreal injection. This technique
and device may hold promise for safer and more effective
treatment of patients with AMD.

Methods

Vasohibin-1 and Device Preparation

Vasohibin-1 was purified as reported previously [25]. For the
preparation of the vasohibin-1 formulation, an 80-pL volume of
vasohibin-1 (either 1.25 or 12.5 pM) in vehicle (phosphate
buffered saline [PBS] control) was mixed with 20 pL of poly-
ethylene glycol dimethacrylate (PEGDM), then underwent UV
curing at an intensity of 11.5 m]/ cm® (Lightningcure LCS;
Hamamatsu Photonics, Hamamatsu City, Japan) for 3 minutes.

The devices consisted of a semi-permeable drug-releasing
membrane and an impermeable reservoir (Fig. 1A, 1B), as we
reported previously [24]. The loaded vasohibin-1 doses included
vehicle only (identified as NVDD), 1 pM vasohibin-1 (VDD), and
10 uM vasohibin-1 (10VDD), with a total volume of 1.5 uL in
each device. The size of the device was 2 mmx2 mm wide
x1 mm high (drug-releasing surface area; 1.5 mmx1.5 mm
=92.25 mm?® for the rat experiments (Fig. 1B, device) and
4 mmx4 mmx1.5 mm (drug-releasing surface
3.5 mmx3.5 mm = 12.25 mm? for the vasohibin-1 releasing in
vitro assay. The release amount from the transplanted device was
small and it was very difficult to detect released vasohibin-1 by the
standard ELISA technique, so we decided to use a larger device
for the ELISA procedure. As a control, we used pelletized
vasohibin-1 without the reservoir and permeable membrane
(Fig. 1B, pellet). The concentration of pelletized vasohibin-1 was
adjusted to be the same concentration as that of the 10VDD
(10 uM vasohibin-1). The total amount of vasohibin-1 released
from the 10VDD device during the 2-week iz vivo experiment was
aimed to be equivalent to that of the intravitreal vasohibin-1
injection. A FITC-labeled 40 kDa dextran-loaded device
(FD40DD) was also used for monitoring the position of the
implanted device.

area;
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In Vitro Experiments

1 In Vitro Release Assay, Enzyme-linked Immunosorbent
Assay, and Western Blotting. The devices loaded with
vasohibin-1 were placed in the wells of a 24-well culture plate
filled with 200 pL PBS at 37°C. Aliquots (200 pL) of the buffer in
cach well were collected at Days 1, 7, 14, and 28 during change-
out of old buffer for new buffer solution. The collected samples
were considered to include only protein for vasohibin-1. We then
determined the amount of vasohibin-1 in the buffer using an
enzyme-linked immunosorbent assay (ELISA) [29] and western
blotting [30]. The intensity of the color of the ELISA reaction
products was measured with a microplate reader (MAXline;
Molecular Devices Corporation, Sunnyvale, CA, USA). The
measurements were made in duplicate, and the mean value was
used for comparisons. The 50-pL collected samples and 100 fmol
of recombinant vasohibin-1 (positive control) were loaded,
separated by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) on a 10% separating gel, and transferred to
nitrocellulose membranes for western blotting. The membranes
were blocked for 1 hour at room temperature with 5% ECL
blocking agent (GE Healthcare Biosciences, Pittsburgh, PA, USA),
and then incubated overnight at 4°C in PBS containing 0.05%
Tween 20 (T-PBS), 2.5% skim milk, and 1 pg/mL horseradish
peroxidase-conjugated anti—vasohibin-1 monoclonal antibody.
The membrane filters were washed 3 times with T-TBS and the
blots were detected using an enhanced chemiluminescence
method (ECL Western Blotting Detection Kit; Amersham
Biosciences, Piscataway, NJ, USA). The results were visualized
using an imaging system (ImageQuant LAS-1000; GE Healthcare
Biosciences).

2 Endothelial Tube Formation. Endothelial tube formation
was assessed with normal human umbilical vein endothelial cells
(HUVECs) (Takara Bio; Otsu, Japan) co-cultured on neconatal
normal human dermal fibroblasts (NHDF, Takara Bio) layer using
anti-human CD31 immunostaining, as reported previously [28].
Two nM vascular endotheclial growth factor (VEGF, Wako;
Tokyo, Japan) was then added to the endothelial cell growth
medium (EGM, Takara Bio) containing no vasohibin-1 (control),
and 0.2, 2, or 10 nM vasohibin-1, respectively. VEGF (2 nM) and
samples of vasohibin-1 released from the vasohibin-1-loaded
device over 3 hours at 37°C were used to ecxamine released
vasohibin-1 activity. We collected the released vasohibin-1 from
the pellet and used it at a concentration of 0.56 nM (as measured
by ELISA). On Day 3, the cells were fixed and stained using an
anti-human CD31 immunostaining kit (Kurabo; Tokyo, Japan)
according to the manufacturer’s instructions. The number of
stained HUVECs was determined using a computerized system
(Kurabo Angiogenesis Image Analyzer program; Kurabo).

In Vivo CNV Experiments

1 Animals. The procedures used in the animal experiments
followed the guidelines of the Association for Research in Vision
and Ophthalmology Statement for the Use of Animals in
Ophthalmic and Vision Research, and they were approved by
the Animal Care Committee of Tohoku University Graduate
School of Medicine (Permit Number: 2011-136). Twenty
Sprague-Dawley (SD) rats (Experiments 1 and 2) and 36 Brown
Norway (BN) rats (Experiment 3) weighing between 250 and 300 g
were used (Table 1). All animals were followed up to 2 weeks after
device transplantation and/or laser burn. We examined the effects
of devices either at 1 week or 2 weeks for FA evaluation and
2 weeks for flat-mount evaluation. Macro examination was
performed at 1 and 2 weeks after the device transplantation. For
all procedures, the rats were anesthetized with an intramuscular
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Figure 1. Device and vasohibin-1 release. (A) Schematic image of transscleral sustained vasohibin-1 delivery. We evaluated its effects via
transscleral approach for rat laser-induced choroidal neovascularization (CNV). The device consists of a drug pelletized with PEGDM, a reservoir made
of TEGDM, and a controlled-release membrane made of PEGDM that contains collagen microparticles. (B) Photograph showing a drug pellet and the
delivery device containing a drug pellet. (C) Image of a device placed on the sclera of a rat eye at 3 days after implantation. The amount of vasohibin-
1 in the PBS was measured at 1, 7, 14, and 28 days after starting incubation. The representative results of western blotting and the result of ELISA are
shown in (D) and (E), respectively. We collected the samples at only the given time points and replaced only the equal volume of PBS. The released
vasohibin-1 amounts accumulated for 6, 7, and 14 days. [The pellet samples collected at Day 1 (shown as 1d) were diluted five times due to their
concentration before they were evaluated by western blotting]. NVDD: non-vasohibin-1 (vehicle) delivery device, VDD: 1 uM vasohibin-1 delivery
device, 10VDD: 10 uM vasohibin-1 delivery device, Pellets: vasohibin-1 pelletized at the same concentration of 10VDD (without reservoir and cover).

doi:10.1371/journal.pone.0058580.g001

injection of ketamine hydrochloride (35 mg/kg) and xylazine
hydrochloride (5 mg/kg), and the animals’ pupils were dilated
with topical 2.5% phenylephrine and 1% tropicamide. Oxybu-
procaine hydrochloride (0.4%) was also used for local anesthesia.
In all in vivo experiments, the animal’s left eye was used as a control.

2 Implantation of VDDs, Pellets, and Intravitreal
Vasohibin-1 Injection. Devices were implanted subconjunc-
tively in the right eyes of the rats (Table 1). A 4-mm long
conjunctival incision was made along the limbus in the upper
temporal position. The devices were inserted into the subconjunc-
tival space using forceps, with the drug-releasing surface facing the
sclera. The device was placed between the optic disc and the
equator, in the posterior quadrant, using no suture to anchor it
into place. The conjunctival incision was closed with 90 silk and
antibiotic ointment was applied to the eyes. Vasohibin-1 protein
(0.24 uM) was injected using a 10-pL glass syringe (Hamilton;
Reno, NV) 4 days after the experimental CNV procedure. The
left eyes were used as untreated controls.

The rats were anesthetized, pupils were dilated, and a fundus
examination was performed immediately after the surgery.

PLOS ONE | www.plosone.org

Experiment 1: Monitoring the Implanted Devices and
Pellets

To monitor the device and drug release, fluorescein isothiocya-
nate (FITC) dextran (FD40; Sigma-Aldrich) pelletized with
PEGDM was prepared and used as a control drug. The FD40
was dissolved in PBS at a concentration of 250 mg/mL and
loaded in the device in the same way as vasohibin-1. Eight SD rats
were included in this experiment; 4 rats received the FD40
delivery device (FD40DD) and 4 rats received only pelletized
FD40.

Experiment 2: Immunohistochemistry after Device
Implantation

Immunostaining for vasohibin-lwas performed 2 weeks after
device implantation. Twelve SD rats were used as follows (Table 1):
4 rats received vehicle (non-vasohibin-1) in the delivery device on
the sclera (NVDD), 4 rats received 1.5 pL of 10 pM vasohibin-1 in
the delivery device (10VDD), and 4 rats received 1.5 pL of 10 pM
vasohibin-1 pellets implanted on the sclera. Immunohistochemis-
try was performed as reported previously [25].

Animals were euthanized using overdoses of ketamine hydro-
chloride and xylazine hydrochloride. The eyes were enucleated
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Table 1. In Vivo Study Demographics.

Number of Position of
animals Strain  Treatment Methods implant
Experiment 1

4 SD Untreated FD40DD Sclera

4 SD Untreated FD40 Pellet  Sclera
Experiment 2

4 SD Untreated NVDD Sclera

4 SD Untreated 10VDD Sclera

4 SD Untreated Pellet Sclera
Experiment 3

6 BD CNV NVDD Sclera

6 BD CNV VDD Sclera

6 BD CNV 10VDD Sclera

6 BD CNV Pellet Sclera

6 BD CNV Vehicle Vitreous
6 BD CNV Vasohibin-1  Vitreous
SD: Sprague-Dawley rats, BN: Brown Norway rats, CNV: choroidal
neovascularization, NVDD: non-vasohibin-1 delivery device, 10VDD: 10 uM
vasohibin-1 delivery device.

doi:10.1371/journal.pone.0058580.t001

and fixed for 12 hours in 4% paraformaldehyde (PFA) at 4°C.. The
anterior segment and lens were removed from each eye. The
posterior segment was cryoprotected at 4°C through successive 12-
hour incubations in 10%, 20%, and 30% sucrose dissolved in
saline. The tssues were immersed in OCT compound (Tissue-
Tec; Sakura Finetec USA, Inc., Torrance, CA, USA) and frozen
in acetone in a dry-ice bath. The frozen posterior segment was
sectioned at the center of the implanted area at a thickness of 5 pm
for each section, using a cryostat. We examined eight continuous
sections per eye. The sections were incubated in rabbit polyclonal
antibody against human vasohibin-1, followed by FITC-conjugat-
ed anti-rabbit IgG (1:200; Dako, Glostrup, Denmark) for
30 minutes. The sections were washed three times with PBS
between each step. Negative controls (4 rats) incubated with just
FITC-conjugated anti-rabbit IgG were also prepared. Slides were
counterstained with 4, 6-diamino-1-phenylindole (DAPI; Vector
Laboratories, Burlingame, CA, USA) and photographed using
a fluorescence microscope (Leica FW4000, Ver. 1.2.1; Leica
Microsystems Japan, Tokyo, Japan).

Experiment 3: Choroidal Neovascularization Study

A total of 36 BN rats were used (Table 1). The devices and
pellets were implanted on the same day as the CNV procedure.
The rats were divided into six groups (6 rats in each group): rats
with NVDD, rats with 1.5 pL of 1 pM vasohibin-1 in the delivery
device (VDD), rats with 1.5 pL of 10 pM vasohibin-1 in the
delivery device (10VDD), rats with 1.5 pL of 10 pM vasohibin-1
pellets implanted on the sclera, rats with intravitreal injection of
5 pL of vehicle, and rats with an intravitreal injection of 0.24 pM
vasohibin-1 protein occurring 4 days after the experimental CNV
procedure. The amount of intravitreal vasohibin-1 used and the
day of the injection were determined based on our previous data
[25]. The intravitreal injections were performed using a 10-puL
glass syringe (Hamilton), and the needle was passed through the
sclera just behind the limbus into the vitreous cavity.

3 CNV procedure. A green argon laser was used to rupture
the choroidal membrane using a slit-lamp delivery system (Ultima

PLOS ONE | www.plosone.org
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2000SE; Lumenis, Yokneam, Isracl) with a contact lens [31]. The
laser settings were: 50 m diameter for 0.1 sec duration, at an
intensity of 650 to 750 mW. Six laser burns were made around the
optic disc (Fig. 1A). Each burn was confirmed to have induced sub-
retinal bubbles, indicating a rupture of Bruch’s membrane.

In addition to the routine ophthalmological examinations,
fluorescein angiography (FA) with an imaging system (GENESIS-
Df; Kowa, Tokyo, Japan) was performed at 1 and 2 weeks after
the CNV laser burn, and choroidal flat mounts of the CNV site
were performed at 2 weeks after the procedure. Two retinal
specialists (HO and TA) and one non-specialist (NN) evaluated the
angiograms for FA grading evaluation in a blinded manner using
a grading system [32], where Grade | = no hyperfluorescence;
Grade 2= hyperfluorescence without leakage; Grade 3=
hyperfluorescence in the carly or middle phase and leakage in
the late phase; and Grade 4= bright hyperfluorescence in the
transit and leakage in the late phase beyond the treated areas. The
camera was a handheld retinal camera for photographing humans,
and the fact that rat eye optics differ from that of humans made
the process somewhat difficult. Intense fluorescein leakage also
made the results of photographs as faint. The laser burn sometimes
made subretinal hemorrhages that were shown as fluorescein
blockage. These results may have influenced the evaluation. We
tried to focus on the laser burn as much as possible to not influence
the evaluation. Further we also tried to synchronize evaluations as
much as possible to avoid significant bias due to fluorescein
leakage. Total grades were analyzed for statistical significance.

4 Fluorescein-Labeled Dextran Perfusion and Choroidal
Flat-Mount Preparation. The size of the CNV lesion was
measured on choroidal flat mounts to examine the effect of the
vasohibin-1 delivery device (n =6 eyes/group and cach eye had 6
laser spots). Fourteen days after the CNV procedure, the rats were
perfused with 5 mL. PBS containing 50 mg/mL fluorescein-
labeled dextran (FITC-dextran, MW: 2x10°% Sigma-Aldrich).
Results of mouse CNV experiments [25] indicated that laser-
induced CNV lesions were most active at 14 days after laser
application and gradually self-resolved more than 28 days after the
laser burn. This data was supported by our previous study of laser-
burned monkey eyes [28].

We enucleated the eyes in the current study at 14 days after the
CNV laser procedure, after cuthanizing the animals per the
previously described method. The eyes were removed and fixed
for 30 minutes in 4% phosphate-buffered PFA. The cornea and
lens were removed and the entire retina was carefully dissected
from the eyecup. Radial cuts (4 to 6) were made from the edge to
the equator, and the eyecup of the RPE-choroid-sclera (R-C-S)
complex was flat mounted in Permalfuor (Beckman Coulter;
Fullerton, CA, USA) with the scleral side facing down. Flat mounts
were examined by fluorescence microscopy (Leica FW4000, Leica
Microsystems Japan), and the total area of each CNV zone
associated with each burn was measured. The CNV lesions were
identified by the presence of fluorescent blood vessels on the
choroidal/retinal interface circumscribed by a region lacking
fluorescence. This process duplicated past reported procedures
[33,34]. Two retinal specialists (HO and TA) and one non-
specialist (NN) evaluated the size of the dextran-fluorescein
perfused CNVs in a blinded manner, as described above.

Statistical Analyses

Analysis of variance (ANOVA) with Tukey’s test was used to
examine differences in the leakage and severity of the CNVs in the
fluorescein angiograms and the area of the choroidal flat mount.
Endothelial tube formation was also evaluated by this method. P-
values less than 0.05 were considered significant.
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Results

In Vitro Vasohibin-1 Release from the Device

Each result is shown as mean Z SD of three different
experiments in Figure 1E. A prominent initial increase was
observed in vasohibin-1 pellets (Pellet) and it appeared to almost
plateau at 7 days after the start of incubation. A minor increase
was observed in the vasohibin-1 delivery devices (VDD) with an
almost level release observed over the 28 days of incubation. If we
examine the amount released from the device (4x4x1.5 mm)
between Days 7 and 28, the amount released was estimated to be
0.31 nM/day in the 10VDD group, 0.070 nM/day in the VDD
group, 0.088 nM/day in the pellets, and 0 in the NVDD group
(Fig. 1E) in a closed incubation system, when we used 500 mg/mL
COLs for the permeable PEG/COLs membranes. These calcula-
tions were performed from the fitting line between 0 and 28 days.
In rat experiments, the release amount would be less, because we
used a smaller device for rats than used in the w2 vitro release assay.
The larger device used in the i vitro release assay in Fig. 1E had
5.44 times (12.25 mm? vs 2.25 mm?) larger drug-releasing surface
area and 3.42 times faster releasing rate than that of the
transplanted device used in rats, from the results of Fig. S1. The
total amount of vasohibin-1 released from the 10VDD devices
during the CNV suppression experiment in rats was estimated
grossly to be approximately 4.28 nM over 2 weeks. The total
amount of vasohibin-1 during the 2 weeks was estimated as about
14.6 nM from the results of Figure 1E, and was divided by 3.42,
which is the difference in releasing rate between i witro release
assay and i vivo experiments, although the effective amount of
vasohibin-1 in CNV suppression would be smaller than 4.28 nM,
due to drug elimination from the eye. These results were
confirmed by western blotting analysis; Figure 1D shows the
representative results at Days 1, 7, 14, and 28. A greater amount of
vasohibin-1 was observed in the 10VDD and pellet groups than
was seen in the NVDD and VDD groups. The results of the pellet
group at Day 1 (1d in Fig. 1D) was obtained after diluting the
samples five times, because the concentration was too high to be
shown by western blotting. However, the size of the pellets was
much smaller after 7 days of incubation.

Endothelial Tube Formation

Endothelial tube formation of HUVEC: cultured on the NHDF
layer was assessed using anti-human CD31 immunostaining
(Fig. 2). We used a range of native vasohibin-1 concentrations
(from 0 to 10 nM, using 2 nM VEGF) for the preliminary
experiments. After the initial examination, the cells were fixed and
stained using anti-human CD31. Figures 2A-2G show represen-
tative photographs of the experimental results. Figure 2E shows
the results of released vasohibin-1 (0.56 nM) from the devices with
2 nM VEGF. Figure 2H shows the average of each experiment;
significantly fewer CD31-positive points were observed in released
vasohibin-1-treated wells when compared to those of the vehicle
released from the NVDD (p =0.000001) or VEGF-treated control
(p=0.000002). Vasohibin-1 released from the device showed
activity comparable to the native vasohibin-1.

Macro Examination

FD40 was detected in the device (Figs. S2A and S2B show color
and fluorescein photographs, respectively) or in pellets (Figs. S2G
and S2H) at the implant site through the conjunctiva in the live
rats. When we enucleated the eyes at a week after device
implantation, mild fibrosis was observed around the devices
(Fig. S2C) and around the pellets (Fig. S2I). Fluorescein photog-
raphy demonstrated the presence of FD40 in the device, with litde
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fluorescein in the conjunctiva and surrounding tissues (Fig. S2D,
arrow). FD40 was also detected in the sclera after removal of the
device (Figs. S2E and S2F, arrow). Conversely, FD40 pellets
showed strong fluorescein on the conjunctiva and surrounding
tissues, as was seen for the pellet itself (Fig. S2], arrow).
Furthermore, little fluorescein was observed on the sclera after
removal of the device (Figs. S2K and S2L, arrow). Similar
conditions were observed when we examined the tissues at
2 weeks after device and pellet implantation; fluorescence was
observed over a wider arca for those specimens where the device
was implanted compared to results at Week 1 (data not shown).

Immunohistology of Vasohibin-1

In immunostained eyes, vasohibin-1-positivity was found in only
the 10VDD group (Fig. 3B), but not in the NVDD group (Fig. 3A)
or the negative control without the first antibody (Fig. 3D), mainly
at the region where vasohibin-1 releasing devices were placed.
Pellets showed strong local immunoreactivity, but no immunore-
activity in the retina (Fig. 3C). Vasohibin-1 positivity was observed
in the neural retina and optic nerve (white arrows in Fig. 3B).
Strong immunoreactivity was observed in the choroid, RPE, and
at the inner layer (such as the ganglion cell layer [GCL]) by
magnified photographs after device implantation (Fig. 3E).

Leakage from CNV

Fluorescein angiography results of each group at 1 week after
the laser CNV procedure are shown in Figure 4A. The results
show that an intravitreal injection of vasohibin-1 on Day 4 after
the CNV procedure led to a significant reduction of FA scores
when  compared to those of NVDD (p=0.00014), pellet
(p=0.020), and vehicle injection (p=0.040) (Fig. 4B). The
10VDD implantation led to a significant reduction of FA scores
when compared to the result of the NVDD group (p=0.00006).
The VDD implantation led to a significant reduction of FA scores
when compared to those of NVDD (p=0.000017), pellet
(p=0.012), and vehicle injection (p =0.026). Although FA scores
of the 10VDD group seemed to be smaller than those of the pellet
(p=0.065) and vehicle injection (p=0.12), the results were not
significant. Figure 5A shows the FA results at Week 2 in each
group. Significantly lower FA scores were observed for the
vasohibin-1 intravitreal injection group when compared to those
of NVDD (p=0.000022), and wvehicle intravitreal injection
(p=0.0065). Further, significantly lower FA scores were observed
in the 10VDD group when compared to those of NVDD
(p=0.000003) and vehicle injection (p = 0.0080) (Fig. 5B). Signif-
icantly lower FA scores were also observed in the VDD group
when compared to those of NVDD (p=0.000058) and vehicle
njection (p=0.011).

Flat-mount Examination of the CNV Site

Choroidal flat mounts were prepared 2 weeks after device
implantation; representative results of each group are shown in
Figure 6A. The area of the CNV was 27,288%+7,975 um2 for the
NVDD group; 23,532+13,120 um® for the VDD group;
17,382+715 pum? for the 10VDD group; 30,502%780 pum? for
the vasohibin-pellet group; 26,900%9,067 pm? for the intravitreal
vehicle injection group, and 12,731=4,113 um? for the intravi-
treal vasohibin-1 injection group (Fig. 6B). The CNV area was
smaller in eyes that were treated with 10VDD or intravitreal
vasohibin-1 injection compared to the other treatments. A
significantly smaller CNV area was observed in the 10VDD
group when compared to those of the NVDD (p=0.0004), pellet
transplantation (p=0.0011), and intravitreal vehicle injection
groups (p =0.000015). A significantly smaller CNV area was also
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