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In the current study, the PDT group showed no signifi-
cant improvement in VA after initiation of treatment; mean
VA was significantly decreased at 24 months. In the triple
therapy group, however, VA was improved at 3 months after
treatment and mean VA was improved by 0.11 (logMAR)
at 6 months and by 0.09 (logMAR) at 12 months. In this
triple therapy group, although improvement was not statis-
tically significant, at least some improvement in VA was
maintained throughout the 2-year follow-up period. At
24 months, VA improvement was achieved in only 12.5 %
of eyes in the PDT group and in 41.7 % in the triple therapy
group (P00.044), so, based on our findings, triple therapy
for PCV, compared to PDT alone, results in more rapid

visual recovery and improved visual outcome at 24 months.

In our case series, both PDT alone and the triple therapy
successfully reduced polypoidal lesions and exudative
change, with complete disappearance of the polypoidal
lesions confirmed at 24 months in 81.3 % of cases in the
PDT group and in 91.7 % of cases in the triple therapy group.
There were significant differences in the number of eyes with
arecurrence and in the number of PDT treatments between the
two groups. Furthermore, the retreatment-free period was
significantly longer in the triple therapy group (20.6+
6.8 months) than in the PDT group (11.7+8.6 months).

Following treatment for PCV, one of the most vision-
threatening complications of PDT is extensive hemorrhage.
A previous report of PCV treated with PDT indicated that
postoperative subretinal hemorrhage was seen in 28 of 91
eyes, and that bleeding resulted in a vitreous hemorrhage in
six eyes [32]. In the current study, no eye in the triple
therapy group developed a vitreous hemorrhage, although
two eyes in the PDT group developed a vitreous hemor-
rhage. Recent reports by Gomi et al. {18] and by Sato et al.
[19] suggested a lower incidence of subretinal hemorrhage
after PDT when it was combined with bevacizumab, and it
has been reported that the vasoconstrictive effect of bevaci-
zumab may contribute to the suppression of postoperative
- hemorrhages [33].

Major limitations of the current study are its retrospective
nature and its relatively small sample size. In addition, there
were some statistical differences between the two groups,
including baseline foveal thickness and the rate of serous
retinal detachment, which may affect the response to treat-
ment. Furthermore, this study was not a randomized, com-
parative trial. However, selection bias is small as both
groups consisted of consecutive eyes that were treated at
different time periods. Our findings suggest that intravitreal
injection of bevacizumab and TA combined with PDT
improves the 2-year visual outcome of PCV and may reduce
postoperative hemorrhagic complications and the recurrence
rate. However, because our findings are based on an obser-
vation period of only 24 months, it remains unclear whether
triple therapy has a long-term effect.

Another limitation is that the safety and efficacy of the
triple therapy were not compared with PDT combined with
anti-VEGF therapy. Recently, the EVEREST study has
shown the 6-month effects of PDT in combination with
ranibizumab for PCV [34], in which the eyes treated with
PDT combined with ranibizumab achieved the highest gains
at 6 months. However, it remains unclear whether this
combination therapy reduces the recurrence of polypoidal
lesions after successful initial treatment. Further prospec-
tive, randomized, long-term studies are necessary to deter-
mine the efficacy and safety of triple therapy for PCV.
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Abstract Myopia is a complex genetic disorder and a
common cause of visual impairment among working age
adults. Genome-wide association studies have identified
susceptibility loci on chromosomes 15q14 and 1525 in
Caucasian populations of European ancestry. Here, we
present a confirmation and meta-analysis study in which
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we assessed whether these two loci are also associated with
myopia in other populations. The study population com-
prised 31 cohorts from the Consortium of Refractive Error
and Myopia (CREAM) representing 4 different continents
with 55,177 individuals; 42,845 Caucasians and 12,332

Asians. We performed a meta-analysis of 14 single

nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on
15925 using linear regression analysis with spherical
equivalent as a quantitative outcome, adjusted for age and

P. G. Hysi - A. Nag - T. D. Spector - C. J. Hammond
Department of Twin Research and Genetic Epidemiology,
King’s College London, St. Thomas’ Hospital, London, UK

S.-M. Saw - Q. Fan - X. Zhou : L.-K. Goh - Y.-Y. Teo -
T.-Y. Wong

Saw Swee Hock School of Public Health,

National University of Singapore, Singapore, Singapore

S.-M. Saw - T. Aung - E. Vithana - W. Tay - T.-Y. Wong

Singapore National Eye Centre, Singapore Eye Research
Institute, Singapore, Singapore

@ Springer



1468

Hum Genet (2012) 131:1467-1480

sex. We calculated the odds ratio (OR) of myopia versus
hyperopia for carriers of the top-SNP alleles using a fixed
effects meta-analysis. At locus 15q14, all SNPs were sig-
nificantly replicated, with the lowest P value 3.87 x 1072
for SNP s634990 in Caucasians, and 9.65 x 10™* for
rs8032019 in Asians. The overall meta-analysis provided
P value 9.20 x 1072 for the top SNP rs634990. The risk
of myopia versus hyperopia was OR 1.88 (95 % CI 1.64,
2.16, P < 0.001) for homozygous carriers of the risk allele
at the top SNP 1634990, and OR 1.33 (95 % CI 1.19, 1.49,
P < 0.001) for heterozygous carriers. SNPs at locus 15925
did not replicate significantly (P value 5.81 x 10~ for top
SNP 1rs939661). We conclude that common variants at
chromosome 15q14 influence susceptibility for myopia in
Caucasian and Asian populations world-wide.

Introduction

Refractive errors are common optical defects of the visual
system. An important refractive error is myopia (near-
sightedness), which occurs when the eye elongates beyond
the focal plane. The prevalence of myopia is high, affecting
about one-third of the world’s population, and reaching
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over 70 % in certain Asian ethnic groups (He et al. 2004;
Kempen et al. 2004; Lin et al. 2004; Vitale et al. 2008; Wu
et al. 2001). High degrees of myopia are associated with
pathologic ocular changes, such as myopic macular
degeneration, retinal detachment, and glaucoma (Curtin
and Karlin 1971; McBrien and Gentle 2003; Saw 2006;
Saw et al. 2005; Tano 2002). Due to the limited treatment
options, myopia is a common cause of visual impairment
(Tano 2002; Young 2009).

Refractive errors, and myopia in particular, are complex
genetic traits with a largely unknown etiology. Established
environmental factors are education, early reading, and
reduced outdoor exposure (Dirani et al. 2009; Ip et al. 2008;

‘McBrien et al. 2008; Morgan and Rose 2005; Rose et al. 2008;

Saw etal. 2001; Young 2009). Although heritability estimates
are high [50-90 % (Young et al, 2007)], the search for myopia
genes is still ongoing. Previous linkage and association studies
have led to the identification of at least 18 myopia (MYP) loci,
10 additional chromosomal regions, and several candidate
genes (Baird et al. 2010; Young 2009). Replication of these
associations has been inconsistent, and their application to the
genera] population is limited (Baird et al. 2010).

Recent genome-wide association studies (GWAS)
reported several susceptibility loci for refractive error and
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myopia (Hysi et al. 2010; Li et al. 2011a, b; Nakanishi
et al. 2009; Shi et al. 2011; Solouki et al. 2010). Solouki
et al. (2010) and Hysi et al. (2010) were the first to perform
a GWAS in a general Caucasian population, and identified
susceptibility loci on chromosomes 15q14 and 15q25,
respectively. In both studies, carriers of single nucleotide
polymorphism (SNP) rs634990 at 15q14 (OR 1.83, 95 %
CI 1.42-2.36) and of SNP rs8027411 at 15¢25 (OR 1.16,
95 % CI 1.02-1.28) had a higher risk of myopia. Confir-
mation of these findings was obtained in various replication
studies (Hayashi et al. 2011; Hysi et al. 2010; Solouki et al.
2010). However, these replication cohorts were relatively
limited in size, increasing the chance of a type 1 error.
To address potential inaccuracies and to investigate gener-
alizability, we investigated the associations between refractive
error, and the 15q14 and 15q25 susceptibility loci in a large
international replication and meta-analysis study (Consortium
of Refractive Error and Myopia, CREAM) including 31
cohorts with various ethnicities from 4 different continents.

Results

Meta-analysis of allelic effects on spherical
equivalent (SE)

Complete data on refractive error and genome-wide SNPs
were available in all 29 population-based studies com-

Y.-Y. Teo - X. Sim
Centre for Molecular Epidemiology, National University
of Singapore, Singapore, Singapore :

I. Rudan - H. Campbell - J. F. Wilson
Centre for Population Health Sciences, University of Edinburgh,
Edinburgh, UK

0. vPolasek
Faculty of Medicine, University of Split, Split, Croatia

B. W. Fleck
Princess Alexandra Eye Pavilion, Edinburgh, UK

R. Yamada - F. Matsuda
Center for Genomic Medicine, Kyoto University Graduate
School of Medicine, Kyoto, Japan

K. Ohno-Matsui
Department of Ophthalmology and Visual Science,
Tokyo Medical and Dental University, Tokyo, Japan

G. McMahon - B. St. Pourcain
School of Social and Community Medicine,
University of Bristol, Bristol, UK

Y. Lu
Department of Genetics and Population Health, Queensland
Institute of Medical Research, Brisbane, Australia

prising 49,364 subjects: 42,224 Caucasians and 7,140
Asians (Table 1; Fig. 1, Supplementary Table 1). This
includes the previously reported discovery set consisting of
15,608 (Solouki et al. 2010) and 17,608 subjects (Hysi
et al. 2010), respectively.

Table 2 shows the results of the meta-analysis of the 14
SNPs (Hysi et al. 2010; Solouki et al. 2010) at locus 15q14
and 5 SNPs at locus 15q25. The frequency of the effect
allele C for top SNP rs634990 at locus 15q14 ranged from
0.38 to 0.64, while frequency of the effect allele A for top
SNP 15939661 at 1525 showed a larger variation, ranging
from 0.28 to 0.63 (Supplementary Figure 1). The sample
size of each SNP per study is provided in Supplementary
Table 1. For locus 15q14, the magnitude and direction of
the effects were consistent in all cohorts except Croatia Vis
and SIMES. For locus 1525, there was less consistency;
for top SNP rs939661 8 cohorts—both Caucasian and
Asian (Australian Twins, Croatia Split, Croatia Vis,
EGCUT, FITSA, GHS II, ORCADES, and SIMES)—had
a regression beta coefficient in the opposite direction to
that of the other studies. :

For locus 15q14, the replication set, consisting of all
studies except the ones previously used in the discovery
analysis, showed a statistically significant association
between SE and all SNPs with a best P value 4.53 x 107
for top SNP rs634990. Confirmation was achieved in 23
out of 25 Caucasian studies (overall P 3.87 x 107'? for
SNP rs634990), and in 3 out of 4 Asian studies (overall
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P 221 x 1072 for SNP rs634990). Meta-analysis of the
discovery and replication cohorts together provided
P value 9.20 x 1072 for SNP rs634990.

For locus 1525, neither Caucasian nor Asian validation
studies replicated the original association. Meta-analysis of
the combined set of the 5 SNPs yielded a lowest
P 122 x 107 for SNP 15939661. As a subsequent analysis,
we investigated locus 15g25 in more detail, and tested another
26 SNPs in 26 out of 29 cohorts (no data available in
ALSPAC, AREDS 1, and EGCUT). This set of SNPs was not
replicated either, however, meta-analysis including the dis-
covery cohort was still significant (best P 2.07 x 10~ for
SNP rs1915726; Supplementary Table 3).

Meta-analysis of risk of myopia for top SNP

Genotype distributions for rs634990 at locus 15q14 were
available for 28 out of 31 studies (all but FITSA, Australian
Twins, and SORBS). There was no evidence of heteroge-
neity in the analyses of homozygote carriers [V* 21.35 (d.f.
26), P 0.724, I 0.0 %) or heterozygote carriers [V> 24.22
(d.f. 26), P 0.564, I? 0.0 %)]. Therefore, only results from
fixed effects meta-analysis were used. Figure 2 shows the
forest plots for the risk of myopia for homozygous and
heterozygous carriers of the top SNP rs634990. The OR of
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moderate to high myopia (SE <—3 D) versus moderate to
high hyperopia (SE >+-3 D) was 1.88 (95 % CI 1.64, 2.16,
P < 0.001) for homozygous carriers of the risk allele at the
top SNP rs634990, and 1.33 (95 % CI 1.19, 1.49,
P < 0.001) for heterozygous carriers.

Discussion

Chromosome 15q was first implicated in refractive error
and myopia by genome-wide analysis of two large studies
located in Northern Europe (Hysi et al. 2010; Solouki et al.
2010). Here, in an international meta-analysis consisting of
31 independent studies from the CREAM consortium, we
provide further support that the association with locus
15q14 is robust and present in both Caucasians and Asians.
We combined the resuits with those of the initial study into
a powerful meta-analysis of highly associated SNPs with a
total study population of 55,177 participants. The com-
bined results showed that all tested SNPs for locus 15q14
were associated with refractive errors, and that homozy-
gous carriers of the top SNP rs634990 had approximately
twice the risk of myopia. SNPs at the other locus, 15q25,
could not be convincingly replicated.
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This study has strengths and limitations. Major strengths
of the study include the sample size and the inclusion of
different ethnicities. The CREAM consortium represents
the largest study on refractive error known to date. Previ-
ous replication studies have not been large scaled and
focused on populations of the same ancestry (Gao et al.
2012; Lu et al. 2011; Wang et al. 2011). Another advantage
of our study is the incorporation of clinical relevant end-
points such as high myopia and high hyperopia. Among the
limitations are differences in designs and methods of the
studies. (1) Population-based as well as case control studies
were incorporated. However, the latter were only two
(Kyoto Study and SORBS) and both had results within the
same range as the population-based studies. (2) Different
types of equipment and measurement methods were used to
detect refractive error. These differences are generally
subtle, and are not likely to cause false findings. (3) Var-
ious methods of genotyping and imputation were used, and
genotyping was not complete in all studies. All SNPs at
15q14 had similar effect; thus, we do not think this has
influenced these associations. SNPs at 1525 showed larger
variation, and. the incomplete genotyping may have
underpowered this analysis.

Earlier replication of the 15q14 locus was reported by
Hayashi et al. (2011) in a Japanese sample of high myopic
probands and controls. In a comparison of 1,125 high
myopes (axial length >26.1 mm) versus 1,295 controls, the
risk of high myopia was increased for the carriers of the
initial top SNP rs634990 [OR 1.84 in homozygotes (95 %
CI 1.44-2.36)]. Taken together with the current findings,
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this suggests that 15q14 plays a role in both common and
high myopia.

The 15q14 associated region contains two interesting
genes that are both well expressed in the retina, G/D2 and
ACTCI. GJD2 encodes the Connexin36 protein, which
plays a crucial role in the transmission and processing of
visual signals in the retina by enabling intercellular trans-
port of small molecules and ions in photoreceptors, ama-
crine and bipolar cells (Deans et al. 2002; Guldenagel et al.
2001; Kihara et al. 2009; Striedinger et al. 2005). We
speculated that the protein encoded by the other candidate
gene, ACTCI, could play a role in scleral remodeling,
given the fact that similar actin proteins have been shown
to be increased in developing myopic tree shrew eyes
(Jobling et al. 2009). Previous GJD2 (Solouki et al. 2010)
and ACTCI (unpublished data) direct sequencing experi-
ments did not reveal a functional variant, but the 15q14
locus appeared to harbor regulatory elements which may
influence transcription of these genes (Solouki et al. 2010).

The 15925 region contains the interesting candidate
gene RASGRF 1, which is highly expressed in the retina and
has previously been implicated in photoreception and
visual sensory processes (Fernandez-Medarde et al. 2009;
Jones and Moses 2004). The association with this locus and
gene is not robust, since none of the initial SNPs replicated
significantly, and determination of more SNPs did not
increase significance. A type 1 error may explain the initial
finding. Another potential cause for the non-replication is a
large variation in allele frequencies. The range of allele
frequencies at 15q25 (0.28-0.63) was only slightly larger
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Table 1 Descriptives of all study cohorts

Study n Mean age (SD) Age range Men (%) Mean SE (SD)
1958 British Birth Cohort 1,658 42 (0.0) 40-50 54.2 —0.96 (2.00)
AGES Reykjavik 2,986 76.3 (5.4) 60-80- 353 1.22 (2.05)
ALSPAC 3,804 15.4 (0.3) 14.25-17.08 472 —0.38 (1.28)
AREDS 1 816 79.5 (5.1) 60-80+ 43.5 0.68 (1.94)
AREDS 2 1,506 68.0 (4.7) 55-81 41.1 0.54 (2.25)
Australian Twins 1,819 222 (12.7) 5-90 44.0 —0.22 (1.28)
Blue Mountains Eye Study 1,574 64 (7.9) 50-80+ 434 0.59 (1.96)
Croatia Split 366 49.8 (14.4) 18-85 46.0 —-1.83 (1.83)
Croatia Vis Island 544 55.8 (14.0) 18-83 40.0 —0.16 (1.93)
Croatia Korcula Island 836 56.0 (13.8) 18-98 35.0 —-0.25 (1.92)
ERF 2,032 48.5 (14.3) 18+ 43.1 0.07 (2.13)
EGCUT 338 34.8 (15.2) 18-85 36.9 —2.60 (2.00)
Finnish Twin Study on Aging 127 68.2 (3.8) 63-76 0.0 1.68 (1.54)
Framingham Eye Study 1,500 55.5 (9.0) 20-80 42.5 —0.17 (2.40)
Gutenberg Health Study I 2,745 55.7 (11) 35-74 51.5 —0.38 (2.44)
Gutenberg Health Study II 1,142 55.0 (10.9) 35-74 49.8 —0.41 (2.59)
KORA 1,867 55.6 (11.7) 35-84 49.6 -0.29 (2.27)
MESA 1,462 62 (9.4) 46-86 49.5 —-0.28 (2.62)
ORCADES 505 54.8 (13.7) 22-88.5 43.0 0.01 2.14)
'Rotte_rdam Study 1 5,328 68.5 (8.6) 55+ 41.3 0.86 (2.45)
Rotterdam Study 2 2,009 64.2 (1.4) 55+ 459 0.48 (2.51)
Rotterdam Study 3 1,970 56.0 (5.5) 45+ 43.9 —-0.35 (2.62)
OGP Talana 623 445 (21.1) 5-89 51.8 —0.15 (1.78)
SCORM 929 10.8 (0.3) 10-15 48.0 —2.02 (2.26)
SiMES 2,226 57.7 (10.8) 40-80 49.3 —0.08 (1.98)
SINDI 2,055 55.7 8.7) 40-80+ 51.2 0.01 (2.13)
Sp2 1,930 47.5 (10.9) 20-80 454 —~1.67 (2.89)
TwinsUK 4,270 55.0 (12.0) 20-32 7.4 —~0.39 (2.73)
Young Finns 397 37.6 (5.2) 25-50 45.0 —1.20 (2.29)
Kyoto Study 5,192 na na na na

Cases 1,143 58.4 (14.3) 20-91 333 —~10.50 (6.44)

Controls 1 3,120 58.5 (13.6) 20-90 61.7 na

Controls 2 929 38.8 (11.8) 0-74 41.3 na
SORBS 621 na na na na

Cases 100 45.4 (6.6) 18-40 36.4 na

Controls 521 28.3 (15.16) 18-80 45.0 na

than at 15q14 (0.38-0.64) in our consortium, making this
an unlikely explanation (Supplementary Figure 1). Finally,
population stratification within cohorts did not appear to
play a major role, since only two cohorts had significant
principal components, which were addressed in the
analyses.

Other GWAS loci were only found for high myopia in
Asian case control studies, and they were located on
chromosomes 11q24.1 (Nakanishi et al. 2009), 5p15 (Li
et al. 2011a), 4g25 (Li et al. 2011b), and 13q12.12 (Shi
et al. 2011). The locus on chromosome 5p15 harbors the

@ Springer

excellent candidate gene CTNND2 which is involved in
retinal morphogenesis, adhesion, retinal cell architecture
integrity (Duparc et al. 2006; Paffenholz et al. 1999), and
was replicated in subjects of the same ethnicity (Lu et al.
2011). Replication studies for the 4q25 (Gao et al. 2012)
and 11q24.1 (Wang et al. 2011) loci were only successful
in case of the 4q25 locus; these loci did not have prominent
candidate genes.

What should be the next steps? For 15q14, compre-
hensive resequencing of the entire associated region and
the flanking genes can reveal the responsible gene
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Fig. 1 Mean age and distribution of spherical equivalent in all study cohorts

defects which determine the association. Novel tech-
niques such as next-generation sequencing are promising
in this regard. Functional studies in knockout animals
will shed light on potential protein effects. Finally,
evaluation of gene-environment interactions may explain
phenotypic variation and help identify high risk groups.
For myopia genetics in general, performance of a gen-
ome-wide meta-analysis is a logical next step. The cur-
rent CREAM collaboration is an excellent platform for
this project.

In summary, we have convincingly demonstrated that
common variants at chromosome 15q14 influence suscepti-
bility for myopia in both Caucasian and Asian populations
around the world. Identification of functional variants and
responsible genes that explain this association will provide
more insight in the complex etiology of myopia.

Materials and methods
Subjects and phenotyping

A total of 31 study cohorts from the Consortium of Refrac-
tive Error and Myopia (CREAM) participated in this meta-
analysis. 29 population-based as well as 2 case—control
studies were included. General methods, descriptives and
phenotyping and genotyping methods of the study cohorts
can be found in Table 1, the Supplementary Material and
Supplementary Table 1, respectively. In short, 22 cohorts
consisted of Caucasian, and 5 of Asian study subjects. All
studies were performed with the approval of their local
Medical Ethics Committee, and written informed consent
was obtained from all participants in accordance with the
Declaration of Helsinki.
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Table 2 Meta-analysis of allelic effects on spherical equivalent at locus 15q14 and 15925

SNP Position Effect allele  Non effect allele  Freg.  Discovery (n = 15,608)* Replication (n = 33,755)° Caucasian (n = 26,615)°
beta se P beta se P beta se o
Locus 15q14
15634990 32793365 C T 049 -023 003 135x107% -~009 001 453x107" -008 001 387x1072
15560766 32788234 A G 048 ~020 003 482x1072 -009 001 353x107* —008 001 391x107"?
1s524952 32793178 A T 048 —023 003 1L19x107'* —008 001 905x1072 —008 001 107x107"
15688220 32786167 A G 048 —020 003 443x1072 -008 001 1.01x107* —008 001 1.38x107"!
15580839 32786121 A G 048 —020 003 439x107% —008 001 105x107 —008 001 134x107!
rs11073060 32777143 A C 048 —021 003 112x1072 -008 001 246x107 —-008 001 247x107"
rs4924134 32781857 G A 045 —021 003 120x107' —008 001 301x107® —008 001 29x107"
rs7176510 32786771 T C 045 —020 003 170x107" —009 001 831x107'* —008 001 781x107"
15619788 32782398 A c 044 —020 003 394x107'2 —008 001 221x107% —-008 001 220x107%
rs7163001 32777866 A G 044 —021 003 126x1072 —008 001 628x107"% —008 001 416x107"!
rs11073059 32776966 A T 044 -021 003 1.98x1072 —008 001 878x107"* 008 001 4.85x107"
rs11073058 32776918 T G 044 —020 003 223x1072 —008 001 852x107* —008 001 484x107"
15685352 32795627 G A 046 —021 003 455x107% —0.08 001 432x107" -008 001 209x107'
158032019 32778782 G A 040 ~0.19 003 100x107'° 008 001 581x107% —008 001 7.00x107"°
SNP Position Effect allele ~ Non effect allele  Freq.  Discovery (n = 17,806)% Replication (n = 31,557)° Caucasian (n = 24,417)°
beta se P beta se P beta se P
Locus 15925
1s939661 77218118 A G 051  —015 003 385x107° -002 001 581x107* -002 001 7.73x1072
15939658 77238924 G A 051  -015 003 185x107° —002 001 160x107" —002 001 216x10™"
1517175798 77251015 C T 051 —015 003 199x107° —002 001 1.81x107! —001 001 238x107!
1s8033963 77242405 C C 051 -0.15 003 1.86x107° —001 001 218x107' -002 001 220x107!
1s8027411 77248084 T G 051  —015 003 207x107° —001 001 249x107' -002 001 216x107!
SNP Position Effect allele Non effect allele Freq. Asian (n = 7,140) Meta-analysis {(n = 49,363)°
beta se P beta se P
Locus 15q14
1s634990 32793365 C T 0.49 -0.12 0.04 221 x 1073 —0.11 0.01 9.20 x 1073
15560766 32788234 A G 0.48 ~0.12 0.04 147 x 1073 —0.10 0.01 1.03 x 1074
rs524952 32793178 A T 0.48 —0.18 0.07 9.52 x 1073 —-0.10 0.01 2.00 x 1072
15688220 32786167 A G 0.48 —0.12 0.04 9.80 x 107* -0.10 0.01 3.44 x 107!
15580839 32786121 A G 0.48 -0.12 0.04 1.10 x 1073 —0.10 0.01 351 x 107
rs11073060 32777143 A C 0.48 -0.12 0.04 145 % 1073 —0.10 0.01 513 x 1072
154924134 32781857 G A 045 —0.12 0.04 1.60 x 1073 —-0.10 0.01 557 x 1072
157176510 32786771 T C 0.45 —0.12 0.04 174 x 1073 -0.10 0.01 6.09 x 1072
15619788 32782398 A C 0.44 -0.12 0.04 154 x 1072 -0.10 0.01 6.97 x 107
57163001 32777866 A G 0.44 —-0.11 0.04 281 x 1073 —0.10 0.01 141 x 1072
1511073059 32776966 A T 0.44 —0.11 0.04 3.64 x 1073 —0.10 0.01 2.63 x 1070
rs11073058 32776918 T G 0.44 —0.11 0.04 3.50 x 1073 —0.10 0.01 268 x 10720
15685352 32795627 G A 0.46 —0.11 0.04 414 x 1073 —0.10 0.01 8.10 x 1070
1s8032019 32778782 G A 0.40 —0.13 0.04 9.65 x 107* —-0.10 0.01 1.78 x 10718
Locus 15925
5939661 77218118 A G 0.51 —-0.03 0.04 4.86 x 107! —0.04 0.01 1.22x 107*
15939658 77238924 G A 0.51 —0.04 0.05 3.94 x 107! —0.04 0.01 432x 107*
517175798 77251015 C T 0.51 -0.05 0.06 3.70 x 107! —0.04 0.01 6.12x 10™*
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Table 2 continued
SNP Position Effect allele Non effect allele Freq. Asian (n = 7,140)° Meta-analysis (n = 49,363)°

beta se P beta se P
rs8033963 77242405 C C 0.51 ~0.01 0.04 842 x 107! —0.04 0.01 9.37 x 107*
rs8027411 77248084 T G 0.51 0.00 0.04 9.12 x 107! —-0.03 0.01 1.14x 1073

Freq average frequency

® For the 15q14 locus: RS1, RS2, RS3, ERF, TwinsUK; for the 1525 locus: TwinsUK, RS1, RS2, RS3, ERF, 1958 British Birth Cohort, Australian Twins (adult samplesV only)

® For the 15q14 Jocus: 1958 British Birth Cohort, AGES, ALSPAC, AREDS 1, AREDS 2, Australian Twins, BMES, Croatia Split, Croatia Vis, Croatia Korcula, EGCUT,
FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, SCORM, SiMES, SINDI, SP2, Young Finns; for the 1525 locus: AGES, ALSPAC, AREDS 1,
AREDS 2, BMES, Croatia Split, Croatia Vis, Croatia Korcula, EGCUT, FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, Young Finns,

SCORM, SiMES, SINDI, SP2

¢ Por the 15q14 locus: 1958 British Birth Cohort, AGES, ALSPAC, AREDS 1, AREDS 2, Australian Twins, BMES, Croatia Split, Croatia Vis, Croatia Korcula, EGCUT,
FITSA, Framingham, GHS 1, GHS II, KORA, MESA, ORCADES, OGP Talana, Young Finns; for 15925 locus: AGES, ALSPAC, AREDS 1, AREDS 2, BMES, Croatia Split,
Croatia Vis, Croatia Korcula, EGCUT, FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, Young Finns

9 Asian replication: SP2, SIMES, SINDI, SCORM
¢ All studies

All studies used a similar protocol for phenotyping. Exclu-
sion criteria were age <10 years, and bilateral cataract surgery,
laser refractive procedures or other intra-ocular procedures
which might alter refraction. Eligible participants underwent a
complete ophthalmologic examination including a non-dilated
measurement of refractive error (Table 1) of both eyes.
Spherical equivalent was calculated according to the standard
formula (SE = sphere +  cylinder), and the mean of two
eyes was used for analysis. When data from only one eye were
available, the SE of this eye was used. SE was categorized into
low (SE from —1.5 to —3 D), moderate (SE from —3 to —6 D)
and high (SE of —6 D or lower) myopia; and also into low (SE
from +1.5 to +3 D), moderate (SE from +3 to +6 D) and high
(SE of +6 D or higher) hyperopia. Emmetropia was defined as
SE equal to or between —1.5 and +1.5 D.

Genotyping and imputation

DNA was extracted according to standard procedures, and
genotyping and imputation of SNPs across the entire gen-
ome was performed using various methods (Table 1).
Samples with a low call rate, with excess autosomal het-
erozygosity, with sex-mismatch, or outliers identified by
the identity-by-state clustering analysis were excluded.

Statistical analysis
Meta-analysis of allelic effects on spherical equivalent
We selected 19 SNPs within loci 15q14 (14 SNPs) and

15q25 (5 SNPs) with a P value of <107° from two previous
GWAS (Hysi et al. 2010; Solouki et al. 2010). Linear

regression models with a 1 degree of freedom trend test
were used to examine associations with SE as a quantita-
tive trait outcome, adjusting for age and gender and sig-
nificant principal components if applicable. From all
population-based cohorts, we obtained effect allele, non
effect allele, regression coefficient beta, standard error,
P value, minor allele and minor allele frequency for each of
these SNPs. METAL for Linux was used to perform a
meta-analysis on betas and standard errors for all SNPs.
First, discovery cohorts (Hysi et al. 2010; Solouki et al.
2010) and replication studies were analyzed separately,
followed by a combined meta-analysis. As a second anal-
ysis, 26 additional SNPs within the same linkage disequi-
librium (LD) block were selected and tested for association
using the procedures mentioned above. For these analyses,
Bonferroni corrected P values (0.05/number of tested
SNPs) of 3.57 x 1072 for 15q14; and 1.0 x 107 (5 SNPs,
Table 2) or 1.92 x 1073 (26 SNPs, Table 3 Supplementary
Material) for 15925 were -considered statistically
significant.

Meta-analysis of risk of myopia for top SNP

From all population-based and case control studies, we
obtained genotype distributions of the replicated top SNPs.
We calculated heterogeneity (v*, I* calculated and corre-
sponding P values) between studies, crude OR with cor-
responding 95 % CI and P value of moderate and high
myopia versus moderate and high hyperopia with a random
as well as fixed effects meta-analysis using Stata 11. When
these analyses provided similar outcomes, data from fixed
effect analysis were used. For studies without subjects with
high or moderate hyperopia, emmetropia was used as a
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reference group. A standard P value of <0.05 was con-
sidered statistically significant.
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Purrose. To investigate a potential association between VEGF
gene polymorphisms and the occurrence and/or the size of
choroidal neovascularization (CNV) in highly myopic eyes.

Mernops. In the case-control study for CNV occurrence, 327
highly myopic Japanese patients were enrolled. One hundred
and eighty-four patients had CNV in at least oné eye, and 143
did not have CNV in either eye. Of the 184 patients with CNV,
83 patients were used to evaluate an association with CNV size,
and an additional 76 patients with CNV were used to confirm
the association. We genotyped four tag single nucleotide
polymorphisms (SNPs) and four functional SNPs previously
reported to be correlated with VEGF gene expression to
evaluate the associations of these eight SNPs with CNV
occurrence and size. To confirm the association between
CNV size and VEGF gene polymorphism, the associated SNP
was genotyped in 76 additional patients with myopic CNV.

Resvrrs. There was no significant association between the
occurrence of myopic CNV and the SNPs in the VEGF gene (P >
0.16). Of the eight SNPs evaluated, however, rs2010963 showed
significant association with CNV area (P = 0.0047). This
association was successfully replicated in the additional 76 eyes
with myopic CNV, and pooled analysis revealed significant
association of rs2010963 with CNV size (P = 0.00078).

Concrusions. VEGF gene polymorphisms were not associated
with CNV occurrence in highly myopic eyes but were sig-
nificantly associated with the size of CNV, suggesting roles in the
growth rather than the emergence of CNV. (Jnvest Opbthalmol
Vis Sci. 2012;53:2349-2353) DOI:10.1167/iovs.11-9405
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yopia is one of the most common ocular disorders

worldwide. The prevalence of myopia is much higher in
Asian populations, with a reported incidence of roughly 40% in
the Japanese and Chinese population and 25% in Caucasians.!~3
Pathological myopia, also called high myopia, is defined as a
spherical equivalent refractive error of at least —6 diopters or
an axial length >26.5 mm. Myopic axial length elongation can
lead to chorioretinal atrophy and choroidal neovascularization
(CNV), which is the most vision-threatening complication in
highly myopic eyes. Since the long-term visual outcomes of
myopic CNV are extremely poor,5 it is critical to determine in
which highly myopic patients CNV will occur. CNV usually
occurs in young adults with high myopia in the fourth and fifth
decades of life. However, many eyes with high myopia do not
have CNV even after 60 years of age. Furthermore, the size of
the CNV seriously affects the visual prognosis because it
determines the size of the scotoma, and some smaller CNVs
can regress without treatment.® Since it is difficult to prevent
the development of myopia, it is important to investigate the
mechanisms underlying CNV occurrence and growth in
myopic eyes; this may lead to the prevention of CNV
development and the subsequent visual disturbance.

Genetic backgrounds may affect the development of high
myopia; recently, we have determined a susceptible locus for
pathological myopia using a genome-wide association study
(GWAS).” Furthermore, recent GWASs reveal that myopia
susceptibility loci exist in chromosome 15.8-1° The occurrence
of CNV in highly myopic eyes might also depend on genetic
variations. Thus far, however, few studies have investigated the
genetic background of patients with CNV in highly myopic
eyes.

Since anti-VEGF treatment has been developed for neovas-
cular AMD, it has become a popular treatment for ocular
neovascularization. Anti-VEGF drugs have been shown to be
effective in treating CNV secondary to high myopia.1-13 In
contrast to neovascular AMD, myopic CNV is easily inactivated
with anti-VEGF treatment. In this study, we evaluated the
associations between VEGF gene polymorphisms and CNV
development in highly myopic eyes in Japanese patients.

METHODS

This study was performed in accordance with the tenets of the
Declaration of Helsinki. The Institutional Review Board/Ethics Com-
mittee of each institution approved the study protocols. All patients
were fully informed of the study purpose and procedures, and written
consent was obtained from each patient. For the case-control study of
CNV occurrence, 327 highly myopic, unrelated Japanese patients with
axial lengths of >26.0 mm in both eyes and who were >60 years of age
were recruited from Kyoto University Hospital and Tokyo Medical and
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Tasie 1. Characteristics of the Study Population

With CNV  Without CNV P Value
Number 184 143
Mean age =+ SD (years) 69.97 +6.35 69.23 +6.74 0.52*
Axial length £ SD (mm)
Right 28.97+1.72 29.11+1.72 0.49*
Left 2875+ 1.72 2884+1.86 0.68*
Sex (male/female) 32/152 58/85 3.27 x 10-6}

* Unpaired ttest.
1 %2 test.

Dental University Hospital. The number of patients with macular CNV
in at least one eye was 184, and the number of patients without
macular CNV in either eye was 143 (Table 1). All patients underwent
detailed ophthalmologic examinations, including dilated indirect and
contact lens slitlamp biomicroscopy, automatic objective refraction,
measurement of the axial length by A-scan ultrasound (UD-G000;
Tomey, Nagoya, Japan) or partial coherence interferometry (JOLMaster;
Carl Zeiss Meditec, Dublin, CA), color fundus photography, optical
coherence tomography, and fluorescein angiography. Individuals with a
history of ocular surgery, with the exception of cataract surgery, were
excluded from the study. Patients with secondary choroidal neovascu-
lar diseases, such as angioid streaks, presumed ocular histoplasmosis
syndrome, and ocular trauma, were also excluded.

Of the 184 patients with myopic CNV, 83 patients underwent
angiography with HRA2 (Heidelberg Engincering, Heidelberg, Ger-
many) in Kyoto University Hospital. To evaluate the association
between VEGF gene polymorphisms and CNV size, the area of CNV
(mm?) in these 83 patients was measured with the HRA-2 software. An
additional 76 patients with myopic CNV were enrolled from Kyoto
University Hospital to confirm the aforementioned associations. The
average age of these patients was 63.8 £ 12.6 years, and the average
axial length was 30.1 = 1.1 mm.

For selecting tag single nucleotide polymorphisms (SNPs), we used
the public dbSNP database build 126 (NCBI build 36.1) and HapMap
database phase 2, release 22,35 to extract the relevant sequencing
information for the VEGFA gene and the genotyping information for
the SNPs. A set of four tagging VEGF SNPs were selected for
investigation: two SNPs on the promoter region, named 15699946
and rs699947, and two intronic SNPs, rs3025033 and rs3025035. This
set of four tagging SNPs provided 100% coverage for all 14 common
HapMap SNPs within a 26.3 kb region (16.3 kb gene length; 10 kb
upstream) spanning the VEGF gene on chromosome 6 (#? threshold of
0.95). Furthermore, we evaluated four functional SNPs (rs1570360,
rs2010963, rs833061, and 153025039). Since these SNPs have been
shown to affect VEGF expression,’#-17 many studies have evaluated the
association of these SNPs with various diseases such as AMD, diabetic
retinopathy, Behget’s disease, Alzheimer’s disease, and diabetes.8-26

Taesie 2. Genotype Counts, Associations; and Odds Ratios for VEGF SNPs
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Genomic DNA was prepared from peripheral blood by a DNA
extraction kit (QuickGene-610L; Fujifilm, Minato, Tokyo, Japan). VEGF-
tagged SNPs (15699946, rs699947, rs3025033, and rs3025035) and
functional SNPs (rs1570360, rs2010963, rs833061, and rs3025039)
were genotyped by a Tagman SNP assay with the ABI PRISM 7700
system (Applied Biosystems, Foster, CA). Deviations in genotype
distributions from the Hardy-Weinberg equilibrium (HWE) were
assessed with the HWE exact test. A y? test for trend or its exact
counterpart was used to compare the genotype distributions of the
two groups. To adjust for age and sex, we performed logistic regression
analysis. Mean age and axial length were compared using unpaired
ttest or ANOVA, and sex ratio was compared with the %2 test. The
associations between genotype and CNV size were evaluated using the
Jonckheere-Terpstra trend test. P values of less than 0.05 were
considered statistically significant.

REsuULTS

The demographics of the study population are shown in Table
1; there was no significant difference between patients with
CNV and patients without CNV with respect to either age or
axial length. The mean age of each group was 70.0 £ 6.4 years
and 69.2 + 6.7 years, respectively (P = 0.52). However, CNV is
more predominant in women compared with men (P = 3.27 X
10~%) with an odds ratio (OR) of 3.24 (95% confidence interval
[CI] = 2.27-4.64).

The genotype counts, associations, and ORs for the eight
SNPs are shown in Table 2. The genotype distributions were
not significantly different between patients with CNV and
patients without CNV (nominal 2 > 0.16). Evaluation of the
associations in a recessive model and a dominant model also
showed no associations (P > 0.10). Even when adjusted for age
and sex, the genotype distributions were not significantly
different (P > 0.10).

In addition, we performed subset analysis for patients aged
70 years or older. In our cohort, 86 patients with CNV and 63

 patients without CNV were >70 years of age. Associations

between the eight SNPs with the occurrence of CNV were not
statistically significant (P > 0.17).

Of the 184 patients with myopic CNV, the area of CNV was
measured in 83 patients who underwent angiography with
HRA2 in Kyoto University Hospital. The genotype distribution
of rs2010963 was significantly correlated with CNV area (P =
0.0047), while the other seven SNPs did not show significant
associations with CNV area (Fig. 1). The size of CNV was
largest (1.71 + 1.29 mm?) in patients with a CC genotype of
rs2010963, intermediate (0.98 + 0.84 mm?) with a CG
genotype, and smallest (0.78 =+ 0.78 mm?) with a GG
genotype. There was no significant difference in axial length,
age of patients, or male/female ratio among the three

CNV (+)

SNP Genotype Genotype Count

MAF HWE P Genotype Count

15699946  AA/AG/GG 64/82/33 G, 0.41  0.399
15699947  AA/AC/CC 22/77/85 A, 033 0477
rs3025033 AA/AG/GG 125/53/4 G, 0.17 0.286
153025035 CC/CT/IT 90/71/17 T, 029 0.391
rs1570360 AA/AG/GG 11/42/130 A, 017  0.005
rs2010963 CC/GC/GG 34/84/62 C, 042 0.547
15833061 CC/CT/TT 22/75/82 C, 033 0451
rs3025039 CC/CT/TT 116/56/5 T, 0.19  0.402

Age- and
CNV (-) Sex-Adjusted
MAF HWEP NominalP P OR (95% CD
40/73/23 G, 044 0.250 0.543 0.10 0.80 (0.62-1.04)
17/60/63 A, 034 0626 0.856 0.68 0.93 (0.66-1.31)
90/44/8 G,0.21 0.151 0.160 0.60 0.94 (0.73-1.20)
79/49/12 T, 0.26  0.200 0.355 0.34 1.13 (0.88-1.449)
8/32/102 A, 017 0.020 0.858 0.79 0.94 (0.60-1.47)
23/73/42 C,043 0.348 0.820 0.42 0.88 (0.65-1.20)
17/60/66 C, 0.33 0.554 0.922 0.69 0.93 (0.66-1.3D)
87/45/8 T, 0.22 0.298 0.328 0.81 0.97 (0.76-1.24)

MAE minor allele frequency.
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Ficure 1. The area (mm?) of choroidal neovascularization among the
three genotypes of rs2010963 in 83 patients. The area was significantly
associated with the genotype (P = 0.0047).

genotypes of 152010963 (P = 0.54, 0.98, and 0.69, respective-
ly). To confirm the aforementioned association between
rs2010963 and CNV size, we genotyped rs2010963 in an
additional 76 patients with myopic CNV (20 male and 56
female). The genotype distribution of rs2010963 was signifi-
cantly correlated with the CNV area (P = 0.032), while there
was no significant difference in the axial length, age of
patients, or male/female ratio among the three genotypes of
52010963 (P = 0.91, 0.15, and 0.20, respectively). When these
two cohorts were pooled for further evaluation of this
association, the genotype distribution of rs2010963 was
significantly correlated with the CNV area (Fig. 2, P =
0.00078).

DiscussioN

In the present study, we found no association between VEGF
gene polymorphisms and the occurrence of CNV in highly
myopic eyes in Japanese patients, although rs2010963 was
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Ficure 2. The area (mm?) of choroidal neovascularization among the
three genotypes of rs2010963 in 159 patients. The area was
significantly associated with the genotype (P = 0.00078).
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significantly associated with the size of CNV. To evaluate
factors associated with CNV occurrence in highly myopic eyes,
the age of the cohort is of critical importance. Therefore, when
a younger cohort is used, some patients assigned to the group
without CNV may eventually develop CNV, which can obscure
potential differences between the two groups. Fernandez-
Robredo et al. have evaluated the association of CFH Y402H
and ARMS2 AG9S polymorphisms with myopic CNV using 196
myopic patients who were aged >30 years.?” We have
previously evaluated the same association using 353 myopic
patients who were >50 years of age,?® and the present study
consisted of 327 myopic patients who were aged >60 years.
However, the association of VEGF gene polymorphism with
CNV occurrence was not statistically significant. Furthermore,
we evaluated the association using a cohort of patients older
than 70 years, but statistical significance was still not found.

Genetic associations with myopia have been investigated
for several decades. Linkage studies have identified 18 possible
loci for myopia (MYP1-18). Numerous candidate genes have
been evaluated, and we have recently completed a GWAS
study.” Furthermore, recent GWAS studies have revealed
myopia susceptibility loci on chromosome 15, and we have
successfully reproduced the association of these susceptibility
loci with high myopia.5-1® However, susceptibility genes for
myopia have not been revealed; this makes it difficult to
determine how to prevent myopia. Compared with the
prevention of myopia, prevention and/or control of CNV
occurrence and growth in highly myopic eyes might be a more
practical approach. Since CNV is one of the most vision-
threatening complications in highly myopic eyes, it is of great
value to investigate the mechanism underlying CNV develop-
ment in these eyes.

Although anti-VEGF treatments have been developed for the
management of neovascular AMD, they are also substantially
effective in treating myopic CNV.!!-!3 Considering the
effectiveness of these anti-VEGF treatments, we had hypothe-
sized that VEGF is associated with the occurrence of CNV in
highly myopic eyes. The present study, however, suggests that
VEGF gene variations do not affect the occurrence of CNV in
these eyes. In contrast with CNV occurrence, VEGF gene
polymorphism rs2010963 was significantly associated with
CNV size. Thus, it appears that VEGF contributes to CNV
growth rather than CNV occurrence in highly myopic eyes.
Experimental studies have shown that inhibition of VEGF leads
to smaller CNV in laser-induced CNV models.?®-3! However,
inhibition of VEGF does not always completely suppress CNV
occurrence after laser photocoagulation to disrupt Bruch’s
membrane. This evidence suggests that VEGF only affects CNV
size/growth, and other factors are responsible for triggering
CNV occurrence, partly by interacting with Bruch’s membrane.

The size of CNV is critical for visual prognosis in highly
myopic eyes. Smaller CNVs can lead to smaller scotomas and
spare the visual functions of the surrounding retina. Further-
more, very small CNVs can disappear completely after
treatment.® Our findings suggest that development of larger
CNVs in highly myopic eyes can be prevented by targeting
VEGE while prevention of CNV occurrence might be
accomplished by targeting other factors.

Watson et al. reported that the amount of lipopolysaccha-
ride-induced VEGF production from peripheral blood mono-
nuclear cells PBMNCs) is highest in individuals with a GG
genotype of rs2010963, intermediate with a CG genotype, and
lowest with a CC genotype.!? In contrast to the findings of this
study, we discovered that the size of CNV was largest in
patients with a CC genotype, intermediate with a CG genotype,
and smallest with a GG genotype. Considering that VEGF is a
pro-angiogenic factor, these two findings seem contradictory.
However, an evaluation of PBMNC function in in-vitro studies
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does not always reflect their function in in-vivo situations.
Furthermore, PBMNCs include several cell types such as
lymphocytes, monocytes, and macrophages, and we have
performed in vivo experiments that show that PBMNCs induce
endothelium apoptosis3? and that lymphocytes are negative
regulators of pathological neovascularization, while monocytes
are positive regulators in an ischemic retinopathy model.33
Further studies are required to evaluate the roles of VEGF
produced individually by monocytes or lymphocytes during
myopic CNV development. In addition to VEGF produced from
PBMNCs, VEGF produced from the RPE could also affect the
growth of CNV in highly myopic eyes. Although we cannot
evaluate the VEGF-producing ability of the RPE in an in-vivo
situation, elucidation of the roles of the RPE in myopic CNV
development might lead to better control of CNV size. It is also
important to consider that VEGF can have several isoforms
with different properties; we have demonstrated that VEGF165
is associated with pathological neovascularization, while
VEGF121 is associated with physiological neovascularization.33
Furthermore, recent studies have shown that some isoforms of
VEGF are anti-angiogenic.>¢ Additional studies on the role of
different VEGF isoforms in myopic CNV development may lead
to prevention of larger CNV secondary to high myopia.

Limitations of the present study include the age of the
cohort and the small sample size. Although we used a cohort
older than 60 years of age and performed a subanalysis using
samples with patients older than 70 years, some participants
included in the group without CNV might develop CNV in the

future. Purthermore, our study is retrospective in nature, and
the associations discovered herein need to be evaluated in
prospective studies.

In conclusion, we have shown that VEGF gene polymor-
phisms have no association with the occurrence of CNV in
highly myopic eyes in Japanese individuals; however, VEGF
rs2010963 affects the size of CNV. Treatments that target VEGF
may prevent large CNV formation in highly myopic eyes and
help achieve better visual prognosis. To prevent CNV
occurrence, further studies are needed to clarify the mecha-
nism and/or background causes of CNV occurrence in highly
myopic eyes.
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