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Abstract Given the growing need for minimally invasive
approaches to cochlear implantation surgery, we chose to
examine the safety of a microendoscopic procedure for
cochlear implantation. We performed cochlear implanta-
tion surgery on four human temporal bones using a mic-
roendoscope and evaluated the safety of the procedure.
With a microendoscope, the facial recess was opened and
electrodes were inserted into the cochlea. The size of the
mastoidectomy ranged from 5 x 4 to 7 x 7 mm. For three
of the temporal bones, the surgery was conducted without
any damage to the surrounding structures. The chorda
tympanic nerve was inadvertently sacrificed in one tem-
poral bone, in which we skipped the identification of the
incus. The microendoscope allowed cochlear implantation
surgery to be performed with a mastoidectomy of minimal
size.

Keywords Cochlear implant - Minimally invasive
surgery - Microendoscope

Introduction

Cochlear implantation is now a widely accepted treatment

for profound sensorineural hearing loss. Conventional
cochlear implantation surgery is conducted with the facial
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recess approach, which involves the need for a wide mas-
toidectomy. The mastoid cell system regulates middle ear
pressure [1]. Because the high area-to-volume ratio of the
mastoid cell system is important for gas exchange through
the mucosa [2], a wide mastoidectomy may lead to nega-
tive middle ear pressure and ear drum retraction. In
cochlear implantation patients, this can result in unfavor-
able conditions, including cholesteatoma formation, middle
ear infection, and electrode protrusion. Although some
doctors are developing minimally invasive strategies for
cochlear implantation surgery utilizing image guidance
systems to avoid the need for a wide mastoidectomy [3, 4],
these procedures are not yet commonly used. One reason
for this is that surgeons are not able to see the surgical field
directly. Recently, the use of microendoscopy has been
reported to provide direct surgical views and requires only
a small ostium [5, 6]. However, the potential use of the
microendoscope in cochlear implantation surgery has not
been evaluated. In this study, we examined the effective-
ness and safety of microendoscopy for minimally invasive
cochlear implantation surgery using human temporal
bones.

Materials and methods

Four human temporal bones with no middle or inner ear
diseases were obtained from four individuals (aged from 68
to 76 years at the time of death; all four were male). A
commercially available microendoscope designed for the
nasolacrimal duct (0.9 mm in outer diameter, SO0 mm in
length, with the tip bent at an angle of approximately 15°;
FiberTech, Tokyo, Japan) was prepared (Fig. 1).

The following six steps were used to perform the cochlear
implantation: (1) pre-operative planning was based on a

@ Springer



478

Eur Arch Otorhinolaryngol (2013) 270:477-481

Fig. 1 A microendoscope for the nasolacrimal duct (FiberTech,
Tokyo, Japan). The outer diameter is 0.9 mm, and the length is
50 mm. The tip is bent approximately 15°. The view angle is 70°

cone-beam computed tomography (CT) scan (Accuitomo,
Morita, Japan). A straight line from the cortical bone to the
basal turn of the cochlea was drawn on the CT scan (Fig. 2a).
A three-dimensional reconstruction of the temporal bone was
created, and the approaching line was projected to the cortical
bone to determine where to begin drilling. (2) A small mas-
toidectomy hole (with a diameter of 4 mm) was made from
the cortical bone to the antrum using a conventional drilling
system (Fig. 2b). The following procedures were performed
using a microendoscope, which was introduced through the

hole (Fig. 2c). (3) The attic is opened and the short process of
the incus is identified (in this study, the incus was detected in
bones 2-4) (Fig. 2d). (4) The facial recess is opened
(Fig. 2e); (5) the round window niche is detected through the
facial recess, and cochleostomy is performed just ventral to
the round window niche (Fig. 2f). (6) Lastly, the electrode
(HiRes90K 1j electrode, AB, USA) is inserted into the
cochlea using aninserter (Fig. 2g). Steps 3—6 were performed
using a microendoscope and a microdrill (Skeeter Otologic
Drill System, Medtronic, USA). The size of the mastoidec-
tomy was enlarged as necessary during steps 3—6. All surgical
procedures were performed by one author (H.H.).

After the surgery, a CT scan was obtained, and the
closest distance from the drilled path to the facial nerve and
to the chorda tympani was calculated. The electrode was
then removed, and the size of the mastoidectomy was
measured along the surface of the temporal bone. Subse-
quently, the bones were drilled to check for damage to the
surrounding structures. After the total mastoidectomy, the
size of the posterior tympanotomy was measured using an
image processing program (ImageJ: National Institutes of
Health, Bethesda, MD, USA).

Results

In all specimens, the prominence of the lateral semicircular
canal was easily identified. In bones 2-4, the short process

Fig. 2 Illustrations of the surgical procedure. A straight line from the
cortical bone to the basal turn of the cochlea via the antrum and the
facial recess was drawn on the CT scan to determine where to start
drilling (a). A small mastoidectomy was made using a conventional
drilling system (b). The microendoscope and microdrill were
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introduced into the antrum (c). The attic was opened, and the short
process of the incus was identified (d). The facial recess was opened
(e). The microendoscope and microdrill were inserted through the
facial recess, and a cochleostomy was performed (f). The electrode
was inserted into the cochlea using an inserter (g)
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Fig. 3 Surgical views from the microendoscopic cochlear implanta-
tion surgery performed on bone 4. a The prominence of the lateral
semicircular canal (arrowhead) and b the short process of the incus
(arrow) were observed. ¢ The facial recess was opened (arrow). d The

of the incus was detected after a transmastoid atticotomy,
and a posterior tympanotomy was performed safely. In
bone 1, we did not undertake the process of identifying the
incus. In this bone, the fallopian canal was opened, which
was noted immediately, and severe damage to the facial
nerve was avoided. However, the chorda tympani was
inadvertently sacrificed. In bones 2—4, we opened the attic
and detected the short process of the incus. In these bones,
the fallopian canal and the chorda tympani were preserved.
After opening the facial recess, the round window niche
was easily detected, and a cochleostomy was performed.
The intra-operative findings for bone 4 are shown in Fig. 3.
In all bones, the electrodes were fully inserted into the
cochlea (Fig. 4). The size of the required mastoidectomy,
the size of the posterior tympanotomy, as well as the
shortest distances to the facial nerve and the chorda tym-
pani are summarized in Table 1. The surgical time required
was about 90 min.

Discussion

In this study, we demonstrate that cochlear implantation
using a microendoscope is possible and requires only a

incuido-stapedial joint (arrow), and the chorda tympani (arrowhead)
are visible. e The round window niche (arrow) was detected
(arrowhead: the incuido-stapedial joint). f The cochlea was opened
(arrow)

Fig. 4 The CT image taken after the electrode was fully inserted into
the cochlea of bone 4

small mastoidectomy. The view provided by the microen-
doscope was sufficient to identify important landmarks
while performing cochlear implantation. The handpiece
of the microendoscope is quite small, and the tip is bent
by 15°, which minimizes the interaction between the
microendoscope and other surgical instruments. These
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Table 1 The size of the
required mastoidectomy and
posterior tympanotomy, and the

Size of the
mastoidectomy (mm)

Distance to the
chorda tympani (mm)

Distance to the
facial nerve (mm)

Size of the posterior
tympanotomy (mm)

shortest distances to the facial

- 1 Lt 7x7

nerve and the chorda tympani 5 Rt 7x5
3 Lt 8x4

4 Rt 5x4

24 x 3.7 0.0 0.0
21 x 25 04 0.3
21 x29 04 0.5
21 x 21 0.8 0.7

characteristics of the microendoscope allow minimally
invasive cochlear implantation surgery to be performed
under direct visualization.

Cochlear implantation surgery with minimal bone dril-
ling has been explored for years. Kiratzidis et al. [7]
reported the usefulness of the trans-canal wall approach.
With this approach, the authors created a tunnel through
the cortical bone to the facial recess using a specially
developed perforator. However, this technique is per-
formed without direct visualization. Recently, some
authors have applied image guidance systems to minimally
invasive cochlear implantation surgery. Majdani et al. [4]
succeeded in performing a cochleostomy in human
cadavers through a narrow single-channel mastoidotomy
with a navigation system. Labadie et al. [8] applied ste-
reotactic techniques to cochlear implantation surgery and
showed that this method precisely identified the line from
the cortical bone to the cochlea through the facial recess.
While these image guidance systems “visualize” the sur-
gical path, they do not guarantee the accuracy required for
ear surgery [9, 10]. In contrast, microendoscope-based
cochlear implantation surgery provides a direct surgical
view. We were able to detect surgical landmarks directly
and complete the surgery using the same processes as those
used in the conventional facial recess approach.

However, to apply this surgery to actual patients, there
are some problems that need to be addressed. For one, the
resolution of the microendoscope is not as high as that of
the microscope. Furthermore, the view obtained with the
microendoscope is two dimensional, and it is distorted at
the marginal area. Another problem is the surgical time. In
this study, the surgical time was considerably longer than
the time required for conventional surgery, which resulted
from the low power of the microdrill and fogging of the
microendoscope lens. These two points are problematic,
especially in children. In small children, the area between
the facial nerve and chorda tympani is small, and highly
accurate procedures are needed. In addition, a surgical
procedure with a short duration and minimal bleeding is
required. Other potential limitations include a poorly
pneumatized mastoid. In such patients, large amounts of
bone must be removed, which results in a protracted sur-
gical time. It is likely that the development of new devices
specialized for microendoscopic cochlear implantation will
resolve these problems. Another option to overcome these
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problems is the combination of microendoscopy and use of
an image guidance system. The image guidance systems
provide information about temporal bone anatomy during
the surgery, which enhances the accuracy of microendo-
scopic cochlear implantation. This also enables us to use a
powerful conventional drilling system during the early
stages of the operation. The effectiveness of the combi-
nation of these two technologies should be explored.

Conclusion

This study demonstrates that the use of a microendoscope
allows cochlear implantation surgery to be performed with
a minimally sized mastoidectomy. The view provided by
the microendoscope is sufficient to detect important land-
marks, which allows for the safe execution of the facial
recess approach. Microendoscopy may be applied to min-
imally invasive cochlear implantation in combination with
other currently available technologies.
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Objective: The objective of this study was to evaluate the relationship between developmental delays and
speech perception in pre-lingually deafened cochlear implant recipients.

Methods: This study was a retrospective review of patient charts conducted at a tertiary referral center.
Thirty-five pre-lingually deafened children underwent multichannel cochlear implantation and
habilitation at the Kyoto University Hospital Department of Otolaryngology-Head and Neck Surgery.
A pre-operative cognitive-adaptive developmental quotient was evaluated using the Kyoto scale of
psychological development. Post-operative speech performance was evaluated with speech perception
tests two years after cochlear implantation. We computed partial correlation coefficients (controlled for
age at the time of implantation and the average pre-operative aided hearing level) between the
cognitive-adaptive developmental quotient and speech performance.

Results: A developmental delay in the cognitive-adaptive area was weakly correlated with speech
perception (partial correlation coefficients for consonant-vowel syllables and phrases were 0.38 and
0.36, respectively).

Conclusion: A pre-operative developmental delay was only weakly associated with poor post-operative
speech perception in pre-lingually deafened cochlear implant recipients.
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1. Introduction

The criteria for cochlear implantation in pre-lingually deafened
children have recently been expanded, and many children with
additional disabilities have undergone this procedure [1]. Although
many of these children show progress after surgery [2], the benefit
they receive from cochlear implantation ranges widely. For
example, progress after cochlear implantation has been shown
to be low in children diagnosed with pervasive developmental
disorder [2,3]. Congenitally deaf-blind children also show limited
development in auditory perception [2]. A developmental delay is
found in approximately 30% of children who undergo cochlear
implantation [4,5]. Previous studies have reported that deaf
children with developmental delays, particularly delays in
cognitive functioning, show poor development of speech percep-
tion skills after implantation [5-7]. However, many reports have
reached this conclusion by comparing the speech outcomes of
children with developmental delays to children with normal
development, and little information has been presented the
relationship between the extent of a pre-operative cognitive delay
and outcomes [4]. Because speech perception is variable in

* Corresponding author. Tel.: +81 75 751 3346; fax: +81 75 751 7225.
E-mail address: hhiraumi@ent.kuhp.kyoto-u.ac.jp (H. Hiraumi).

0385-8146/$ - see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.anl.2012.05.009

children with cochlear implantation [6], it is not sufficient to
compare speech outcomes between delayed and non-delayed
children. Instead, it is necessary to examine the relationship
between development and speech outcomes in each child. To
determine this relationship, we created a scatter plot of
developmental quotients in cognitive~adaptive areas and post-
operative speech perception scores and calculated the correlation
coefficients between these factors in pre-lingually deafened
children receiving cochlear implantation.

2. Materials and methods

Between January 1996 and December 2008, 42 pre-lingually
deafened children (whose age at device implantation was younger
than 60 months) underwent cochlear implantation surgery and
speech habilitation therapy at the Kyoto University Hospital
Department of Otolaryngology-Head and Neck Surgery. We
excluded four children with an obstructed cochlea, one child with
a narrow internal auditory canal and one child who spoke a foreign
language. Another child failed to take both the consonant-vowel
syllables and phrase perception tests for non-medical reasons and
was also excluded from the analysis. In total, 35 children were
included in the analysis. All children were implanted with Nucleus
multichannel devices (Cochlear Ltd., Australia). The children
received the most current devices and coding strategies available
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Table 1
Subject characteristics.

Characteristics

Male/female

Mean (range) age at cochlear implantation (in months)
Mean (range) average aided hearing threshold (dBHL)
Etiology of deafness

21/14
37 (18-58)
75.0 (55.0-110.0)

Congenital
Unknown 27
Inner ear malformation 5
Acquired
Bacterial meningitis 1
Viral infection 2
Device
CI22M 6
CI24M 18
CI24R 11
Coding strategy
ACE 27
SPEAK 8

Male/female ratio, etiology of deafness, implant device, and coding strategy are
reported as the number of children included in these groups.

in Japan at the time of the surgery. Six children were implanted
with CI22M, 18 children were implanted with CI24M, and 11
children were implanted with CI24R. The coding strategies used at
the post-operative evaluation were SPEAK, for 8 children, and ACE,
for 27 children. In all cases, all of the active electrodes were
successfully inserted into the cochlea. The patients’ information is
shown in Table 1.

The developmental quotients were evaluated according to the
Kyoto scale of psychological development, which is one of the
most widely used developmental tests in Japan. In the version
administered in this study, the valid age range was from 3 months
to 14 years. The Kyoto scale of psychological development is
highly correlated with the Stanford-Binet intelligence scale and is
reported to be useful in assessing the development of small
children with various disabilities [8]. We routinely administer this
test to children who undergo cochlear implantation surgery. This
test is an individualized, face-to-face test that assesses a child’s
development in the following three areas: postural-motor (fine
and gross motor functions), cognitive-adaptive (non-verbal
reasoning or visuospatial perceptions assessed using materials)
and language-social (interpersonal relationships, socializations
and verbal abilities). Typically, it takes approximately 30 min to
complete the tests. A score from each of the three areas is
converted to a developmental age. The developmental age for
each area is divided by the child’s chronological age and
multiplied by 100 to yield a developmental quotient. Of the
developmental quotients for the three areas, the developmental
quotient for the cognitive-adaptive area (DQCA) was used in the
current study. The standard deviation of the developmental
quotients in the Kyoto scale of psychological development is 10.
Therefore, children with a DQCA score below 80 were considered
delayed, and children with a DQCA score above 80 were
considered non-delayed.

Speech perception tests were conducted 2 years after implan-
tation. Consonant-vowel (CV) syllables and short sentences were
used in the tests. In the CV syllable perception test, thirteen CV
syllables, composed of thirteen Japanese consonants and the vowel
[a/, were presented twice (a total of 26 CV syllables). In the phrase
perception test, 40 phrases were arranged to form 10 short
sentences. The CV syllable perception test was a closed set, and the
phrase perception test was an open set. These parts of speech were
spoken by a male professional announcer and digitized at a
sampling rate of 44,100 Hz. Speech was presented through
speakers at 70 dB SPL (using a PowerMac PM-7300/166 computer,
Apple, USA) in a random order, and the percentage of correct
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answers was recorded. Some children were not able to complete
the speech perception test because of poor understanding or poor
expressive abilities. For these patients, the percentage of correct
answers was set to a chance level (in the CV syllable perception
test) or to zero (in the phrase perception test). Five children did not
take the phrase perception test for non-medical reasons. These
children were excluded from the phrase perception test analysis.

The association between the pre-operative DQCA and speech
perception scores was analyzed in two ways. First, the speech
perception scores of delayed and non-delayed children were
compared using t-tests. Second, a correlation analysis was
conducted between the pre-operative DQCA and speech percep-
tion scores. We calculated the Pearson’s correlation coefficient and
the partial correlation coefficient. The Pearson’s correlation
analysis represents an estimated linear regression line. The partial
correlation analysis is a multivariate analysis that clarifies a
relationship between two factors, taking into account the influence
of other factors. In the current study, a partial correlation
coefficient was calculated, controlling for age at the time of
implantation and the average pre-operative aided hearing level. All
statistical analyses were performed using SPSS (Statistical Package
for the Social Sciences) 11.0 (SPSS Inc., lllinois, USA).

3. Results

The DQCA scores ranged from 45 to 118, with a mean value of
87. Eleven children (31%) were considered developmentally
delayed, and 24 children (69%) fell into the normal development
range. The age at time of implantation and the pre-operative aided
hearing level were not significantly different between the delayed
and the non-delayed groups (p =0.11 and p = 0.93, respectively; t-
test). The cause of deafness, the implant device, and the coding
strategy did not differ between the two groups (p = 0.56, p = 0.56,
and p = 0.67, respectively; chi-square test). The speech perception
scores of the delayed and non-delayed groups are presented in
Table 2. The CV syllable and phrase perception scores in the non-
delayed group were significantly higher than those in the delayed
group (p < 0.05 for the CV syllable test and p < 0.05 for the phrase
perception test; t-test).

Scatter plots of the DQCA and speech perception scores are
shown in Figs. 1 and 2. The relationship between the DQCA scores
and the speech perception scores was moderate (correlation
coefficient = 0.48, p < 0.01 for the CV syllable perception test;
correlation coefficient = 0.49, p < 0.01 for the phrase perception
test; Pearson’s correlation coefficient). After removing the effect of
age at the time of implantation and the average pre-operative
aided hearing level, we found that the relationship between the
DQCA scores and the speech perception scores was weak (partial
correlation coefficient = 0.38, p < 0.05, one-tailed, for the CV
syllable perception test; partial correlation coefficient=0.36,
p < 0.05, one-tailed, for the phrase perception test).

Table 2
Speech perception scores of delayed and non-delayed children.
Mean SEM Significance
CV syllable perception score
Delayed group 44% 11% 0.02
Non-delayed group 70% 5%
Phrase perception score
Delayed group . 52% 14% 0.03
Non-delayed group 84% 7%

Mean speech perception scores of delayed and non-delayed children are reported as
percentages. The delayed group scored significantly lower than the non-delayed
group in CV syllable and phrase perception tests (t-test).
SEM: standard errors of the means.

" p<0.05.
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Fig. 1. Scatter plot relating pre-operative DQCA scores to post-operative CV syllable
perception scores. The dotted line indicates the estimated linear regression.
Children with higher pre-operative DQCA scores had better post-operative CV
syllable perception scores (Pearson’s correlation coefficient = 0.48, p < 0.01; partial
correlation coefficient = 0.38, p < 0.05). However, the outcomes varied between
children with similar pre-operative developmental quotients.

4. Discussion

In this study, 31% of implanted children were considered
developmentally delayed. The incidence of developmental delays
in children who have undergone cochlear implantation was
previously reported to be 23-34% [4-7], and our results fell
within this range. Children with a developmental delay are
reported to show poor speech outcomes. Pyman et al. compared
the speech perception of children with a developmental delay to
that of children with normal development and found that children
with developmental delays tended to progress more slowly than
other children [7]. In a study by Holt and Kirk, children with a
developmental delay also showed slower progress in sentence
recognition tests [6]. In that study, the authors stressed that the
intersubject variability was quite large. In the present study,
children with a developmental delay in the cognitive-adaptive
area showed significantly poorer speech perception than children
without a developmental delay, and the intersubject variability
was large, particularly in children with developmental delays.

This large intersubject variability was also observed in the
correlation analysis. The correlation between the pre-operative
DQCA and the post-operative speech perception scores was weak
after removing the effect of other factors. This finding indicates
that individual variability is large in children with similar
developmental statuses. This result seems reasonable because
the outcome of the cochlear implantation can be influenced by
several factors, including the habilitation program, technological
improvements, and family characteristics. Edwards et al. reported
a high coefficient of determination between a developmental delay
in cognitive areas and speech perception outcomes [4], which
differs from the findings in the present study and a previous study
[6]. This difference in findings may be explained by the
characteristics of the children included in the studies. In our
study, 11 of 35 children were developmentally delayed, and many
were only mildly delayed. In the Edwards et al. study, 11 of 32
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Fig. 2. Scatter plot relating pre-operative DQCA scores to post-operative phrase
perception scores. The dotted line indicates the estimated linear regression. Many
children with a normal DQCA score (above 80) scored above 80% on the post-
operative phrase perception test, although the relationship between pre-operative
DQCA and post-operative phrase perception scores was not strong (Pearson's
correlation coefficient =0.49, p < 0.01; partial correlation coefficient=0.36,
p < 0.05).

children were delayed, and 3 children were significantly delayed.
This specific patient population may have led to the high
coefficient of determination. In the study by Edwards et al,,
children with a mild delay made appreciable progress [4], and this
result is consistent with the present study.

In the present study, a developmental delay showed a weak but
significant correlation with speech perception scores. Holt and Kirk
suggested that a low speech perception score in delayed children
does not necessarily indicate poor listening ability; poor knowl-
edge of grammar or a limited vocabulary may also lead to low
speech perception scores [6]. In the present study, we used CV
syllables and phrases to evaluate speech perception. Although the
two tests require different degrees of linguistic ability, the
correlation coefficients were similar. This finding suggests that
the low speech recognition scores in delayed children are a result
of poor listening ability. However, this result does not indicate that
these children are not good candidates for cochlear implantation.
Some children with developmental delays had speech perception
scores that were comparable to children without developmental
delays. Children with poor results may be delayed only at the stage
in which they were classified at the time of examination. It is
possible that these children will catch up to non-delayed children
after several years.

This study showed that a pre-operative developmental delay
negatively affected post-operative speech perception, but the
impact was not large. Children with a similar pre-operative
development status showed variable outcomes. Thus, it does not
seem possible to define a developmental quotient cutoff level for
the indication of cochlear implantation.

5. Conclusions
Pre-operative developmental delays were only weakly associ-

ated with poor post-operative speech perception two years after
cochlear implantation. Outcomes varied between children with
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similar pre-operative developmental quotients. These results
indicate that it is not appropriate to exclude children from
candidacy for cochlear implantation based only on a developmen-
tal delay.
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