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Fig. 3. Effects of salicylate on Cyoniinpin Of prestin. Filled circles and thick lines show the results of transfected cells cultured without salicylate, while open circles and thin lines
indicate the results of transfected cells cultured with 10 mM salicylate. (A) WT prestin and WT prestin+Sal. (B) G127A and G127A+Sal. (C) T128A and T128A+Sal. (D) S129A
and S129A+Sal. (E) R130A and R130A+Sal. (F) H131A and H131A+Sal. (G) $S129T and S129T+Sal. (H) Empty and Empty+Sal. When salicylate was used, NLC of G127A, T128A,
S129A or R130A increased. On the other hand, in the case of H131A and S129T, NLC could not be detected in either type of cell, namely, cells cultured with and without 10 mM

salicylate.

salicylate, G127A, T128A, S129A and R130A exhibited NLC, NLC. The charge density of WT prestin+Sal was similar to that of
although their charge density was statistically smaller than that WT prestin, suggesting that salicylate did not affect WT prestin it-
of WT prestin. On the other hand, H131A and S129T did not show self nor the properties of the cells involved in the function of
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Fig. 4. Changes in the charge density and « of prestin by salicylate. (A) Charge density. The charge density of WT prestin was not affected by salicylate. On the other hand, the
charge densities of G127A+Sal, T128A+Sal, S129A+Sal and R130A+Sal were statistically larger than those of G127A, T128A, S129A and R130A, respectively. (B) o. Without
salicylate, the o values of G127A, T128A, S129A and R130A were statistically different from that of WT prestin. On the other hand, when 10 mM salicylate was used, there was
no statistical difference in the « between the prestin mutants and WT prestin. Asterisks show the statistical differences in the charge density and o between WT prestin and
the prestin mutants and between WT prestin+Sal and the prestin mutants+Sal (p < 0.05). Number signs indicate statistical differences in the charge density and « between
cells cultured with salicylate and those cultured without it in each prestin mutant (p < 0.05). Error bars represent standard deviations.

prestin. On the other hand, the charge densities of G127A+Sal,
T128A+Sal, S129A+Sal and R130A+Sal were statistically larger
than those of G127A, T128A, S129A and R130A, respectively
(p <0.05). Especially, the charge density of G127A+Sal and that
of R130A+Sal were similar to that of WT prestin+Sal. These results
indicate that the charge density of those four mutants was recov-
ered due to salicylate. On the other hand, H131A and S129T did
not show NLC even when transfected cells were cultured with
10 mM salicylate.

The o was considered to represent properties of the anion bind-
ing of prestin [15]. Such values of G127A, T128A, S129A and R130A
were statistically different from that of WT prestin when salicylate
was not used (Fig. 4). On the other hand, when transfected cells
were cultured with 10 mM salicylate, there was no statistical dif-
ference in o between the prestin mutants and WT prestin
(Fig. 4). These results may imply that culturing the cells with salic-
ylate somehow affects the properties of the anion binding of
prestin.

3.3. Correlation between the R, and the charge density

Without salicylate, the R, values of all prestin mutants were
lower than that of WT prestin. In this condition, the charge density
of the prestin mutants was also lower or not recorded. On the other
hand, salicylate increased both R;, and the charge density of G127A,
T128A, S129A and R130A. Especially in G127A and R130A, R, as
well as the charge density recovered to the WT prestin level. This
trend suggests that the changes in the charge density were corre-
lated with changes in the Rp. Although R;, increased to some degree
due to the addition of salicylate, H131A and S129T did not show

NLC, possibly indicating that the amount of those mutants in the
plasma membrane was still insufficient for detection of NLC. An-
other possibility is that H131A and S129T were promoted to be ex-
pressed in the plasma membrane but were non-functional.
Regarding S129A and S129T, the replacement of Ser-129 by
threonine affected both the R, and the charge density of prestin
more strongly than that by alanine. Alanine and threonine are,
respectively, smaller and larger than serine. Thus, the existence
of an amino acid larger than serine at position 129 of prestin
may be a steric constraint, affecting its characteristics significantly.

3.4. Changes in the concentration of salicylate

Salicylate at the concentration of 10 mM was found to recover
the plasma membrane expression and the charge density of
G127A and R130A to the WT prestin level as described above, Ef-
fects of decreasing the concentration of salicylate from 10 mM to
5mM and 1mM on the promotion of the plasma membrane
expression were then evaluated using the cells transfected with
R130A. Confocal images of the stained cells and calculated R, are
shown in Fig. 5A and B, respectively. The R, of R130A was un-
changed by 1 mM salicylate, while it was increased by 5 mM salic-
ylate but not to the WT prestin level, suggesting that the
promotion by salicylate of the plasma membrane expression of
prestin mutants was concentration-dependent.

3.5. Discovery of new effect of salicylate on prestin

Salicylate is generally known to be an antagonist of prestin
[8,9]. In the present study, another feature of salicylate was
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Fig. 5. Concentration dependence of the effects of salicylate on the localization of
prestin. (A) Confocal microscopy images of stained cells. (B) Difference in the Rp due
to the difference in the concentration of salicylate. The samples of R130A-
expressing cells cultured without salicylate, with 1 mM salicylate, with 5 mM
salicylate and with 10mM salicylate are termed R130A, R130A+Sal (1 mM),
R130A+Sal (5 mM) and R130A+Sal (10 mM), respectively, in this figure. In addition,
the samples of WT prestin-expressing cells cultured without salicylate and with
10 mM salicylate are termed WT prestin and WT prestin+Sal (10 mM), respectively.
The R, of R130A was unchanged by 1 mM salicylate, but was increased by 5 mM
salicylate. When transfected cells were cultured with 10 mM salicylate, the Rp
recovered to the WT prestin level. Asterisks represent significance vs. WT
prestin+Sal (10 mM) (p < 0.05). Error bars indicate standard deviations.

discovered, namely, it can promote the plasma membrane
expression of prestin mutants accumulated in the cytoplasm,
resulting in the recovery of the charge density. Various research
findings have reported that if membrane proteins were accumu-
lated in the cytoplasm due to their misfolding, a pharmacological
chaperone bound to these proteins and then promoted their cor-
rect folding, resulting in their plasma membrane expression [3-
7]. These reports may lead to a speculation that the prestin mu-
tants analyzed in the present study were misfolded in the cyto-
plasm and that salicylate bound to these mutants and then
induced their correct folding, promoting their transport to the

plasma membrane. The next step of our study is to clarify if such
speculation is correct, namely, to investigate the mechanism
underlying the salicylate-induced recovery of the plasma mem-
brane expression of prestin mutants.
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Cochlear hair cells convert sound vibration into electrical potential,
and loss of these cells diminishes auditory function. In response to
mechanical stimuli, piezoelectric materials generate electricity,
suggesting that they could be used in place of hair cells to create
an artificial cochlear epithelium. Here, we report that a piezoelec-
tric membrane generated electrical potentials in response to sound
stimuli that were able to induce auditory brainstem responses in
deafened guinea pigs, indicating its capacity to mimic basilar
membrane function. In addition, sound stimuli were transmitted
through the external auditory canal to a piezoelectric membrane
implanted in the cochlea, inducing it to vibrate. The application of
sound to the middle ear ossicle induced voltage output from the
implanted piezoelectric membrane. These findings establish the
fundamental principles for the development of hearing devices
using piezoelectric materials, although there are many problems
to be overcome before practical application.

cochlear implant | hearing loss | mechanoelectrical transduction |
traveling wave | regeneration

he cochlea is responsible for auditory signal transduction in the
auditory system. It responds to sound-induced vibrations and
converts these mechanical signals into electrical impulses, which
stimulate the auditory primary neurons. The human cochlea
operates over a three-decade frequency band from 20 Hz to 20
kHz, covers a 120-dB dynamic range, and can distinguish tones that
differ by <0.5% in frequency (1). It is relatively small, occupying
a volume of <1 cm®, and it requires ~14 pW power to function (2).
The mammalian ear is composed of three parts: the outer,
middle, and inner ears (Fig. 14) (3). The outer ear collects sound
and funnels it through the external auditory canal to the tympanic
membrane. The cochlea consists of three compartments: scala
vestibuli and scala tympani, which are filled with perilymph fluid,
and scala media, which is filled with endolymph fluid (Fig. 1C).
The scala vestibuli and scala tympani form a continuous duct that
opens onto the middle ear through the oval and round windows.
The stapes, an ossicle in the middle ear, is directly coupled to the
oval window. Sound vibration is transmitted from the ossicles to
the cochlear fluids through the oval window as a pressure wave that
travels from the base to the apex of the scala vestibuli through
the scala tympani and finally to the round window (Fig. 1B). The
scala media are membranous ducts that are separated from the
scala vestibuli by Reissner’s membrane and separated from the scala
tympani by the basilar membrane. The pressure wave propagated
by the vibration of the stapes footplate causes oscillatory motion of
the basilar membrane, where the organ of Corti is located. The
organ of Corti contains the sensory cells of the auditory system;
they are known as hair cells, because tufts of stereocilia protrude
from their apical surfaces (Fig. 1D). The oscillatory motion of the
basilar membrane results in the shear motion of the stereociliary
bundle of hair cells, resulting in depolarization of hair cells.
The cochlea amplifies and filters sound vibration by means of
structural elements, especially the basilar membrane, and through
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an energy-dependent active process of fine-tuning that is largely
dependent on the function of the outer hair cells. The location of
the largest vibration in the basilar membrane depends on the
frequency of the traveling wave (Fig. 1E) (4, 5). The width,
thickness, and stiffness of the basilar membrane vary along the
length of the cochlear spiral. Because of this variation in me-
chanical impedance, high-frequency sounds amplify the motion of
the basilar membrane near the base of the cochlea, whereas low-
frequency sounds amplify its motion near the apex (Fig. 1F). Hair
cells within a frequency-specific region are selectively stimulated
by basilar membrane vibration according to the traveling wave
theory. The mechanical filtering of sound frequency by structural
elements of the cochlea allows it to function as a highly sophis-
ticated sensor. Additional details of cochlear macro- and micro-
mechanics can be found in the review by Patuzzi (6).

Both inner and outer hair cells are arranged in four rows along
the entire length of the cochlear coil (Fig. 1D). The single row of
inner hair cells plays a central role in transmission of sound stimuli
to the auditory primary neurons, whereas the three rows of outer
hair cells amplify and filter sound vibration. The outer hair cells are
capable of somatic electromotility driven by the molecular motor
protein prestin, which is located in the outer hair cell membrane
(7). The electromotility of outer hair cells contributes to the fine-
tuning to sound frequency (8-11). The stereocilia also play a role in
signal amplification in amphibians. Active hair bundle motions
correlated with transduction channel gating resonate with the
stimulus and enhance basilar membrane movement. A more de-
tailed description of the mechanisms of cochlear amplification can
be found in the review by LeMasurier and Gillespie (12).

Sensorineural hearing loss (SNHL) is a common disability
caused by loss of hair cells (13, 14). Most cases of SNHL are
irreversible, because mammalian hair cells have a limited ca-
pacity for regeneration (15, 16). The loss of outer hair cells
diminishes the fine-tuning of the cochlea to sound frequency.
The loss of inner hair cells results in profound hearing impair-
ment because of lack of transmission of auditory signals from the
cochlea to the central auditory system. At present, therapeutic
options for profound SNHL are limited to cochlear implants,
which have partially restored the hearing of more than 120,000
patients worldwide (17). A cochlear implant has both external
and internal parts. The former includes microphones, speech
processors, and transmitters, and the latter includes receivers,
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Fig. 1. Anatomy of the mammalian cochlea. (A) Schematic drawing of the

human auditory system. AN, auditory nerve; Co, cochlea; EAC, external auditory
canal; In, incus; Ma, malleus; OW, oval window; RW, round window; St, stapes;
TM, tympanic membrane. (B) Schematic drawing of a cochlear coil. Sound
vibrations transmitted to the cochlea fluid in the scala vestibule (SV) through
the OW travel up from the basal turn to the apical turn (red lines) and then back
to the basal turn (blue lines) in the scala tympani (ST). (C) Schematic drawing of
a cochlear duct. The ST and SV are filled with the perilymph. The scala media
(SM), which is separated from the ST by Reissner's membrane (RM) and sepa-
rated from the ST by the basilar membrane (BM), is filled with the endolymph.
The organ of Corti (OC) is located on the BM. Spiral ganglion neurons (SGNs) are
located in the modiolus of the cochlea. (D) Schematic drawing and scanning
EM of the organ of Corti. One row of inner hair cells (IHCs) and three rows of
outer hair cells (OHCs) are arranged along the entire length of the cochlear coil.
(E) Schematic drawing of traveling wave theory. Low-frequency sounds vibrate
the BM in the apical portion of a cochlea, whereas high-frequency sounds
provoke vibration in the basal portion of a cochlea. (F) Schematic drawing
showing the vibration of the BM and a piezoelectric membrane (PE) implanted
in the ST of a cochlea in response to sound stimuli.

stimulators, and electrode arrays, which are surgically inserted un-
der the skin or into the cochlea. Arrays of up to 24 electrodes are
generally implanted into the scala tympani, and they directly stim-
ulate the auditory primary neurons. The conversion of sound stimuli
to electrical signals is performed by the external speech processor
and transmitter and the internal receiver and stimulator. A battery
is required to generate electrical output. Schematics and additional
descriptions of the history, present status, and future directions of
cochlear implants can be found in the work by Zeng et al. (17).
The traveling wave theory proposed by von Békésy (4, 5) was
validated using cochleae from cadavers, indicating that, even
after complete loss of hair cell function, the mechanical tonotopy
for sound frequency remains within the cochlea. This phenom-
enon also persists in deafened cochleae. However, to our

Inaoka et al.

knowledge, electrical hearing devices have not yet used me-
chanical cochlear tonotopy for sound frequency. In theory, an
implantable device that converts sound vibration to electric po-
tential could be fabricated using microelectromechanical systems
and implanted close to the basilar membrane of the cochlea. The
vibration of the basilar membrane in response to sound stimuli
should be transmitted to the implanted device, generating an
electrical output (Fig. 1F). According to the traveling wave
theory, tuning for sound frequency should be determined largely
by where the device is implanted.

To test this hypothesis, we developed a prototype artificial co-
chlear epithelium using a piezoelectric membrane, which functions
as a sensor with the capability for acoustic/electric conversion
without a battery (18). The piezoelectric device, although not life-
sized, showed a tonotopic map for frequencies of 6.6-19.8 kHz in
air and 1.4-4.9 kHz in silicone oil, and it generated maximum
electrical output from an electrode placed at the site of maximum
vibration. In the present study, we showed that the electrical output
from a prototype device in response to sound stimuli induced au-
ditory brain-stem responses (ABRs) in deafened guinea pigs. We
fabricated a life-sized device using microelectromechanical systems
and tested its responses to sound application when implanted in the
guinea pig cochlea. Our findings are a major step to developing an
implantable artificial cochlear epithelium that can restore hearing.

Results and Discussion

Effects of Kanamycin and Ethacrynic Acid on Auditory Primary
Neurons and Hair Cells. To examine the potential of a piezoelec-
tric device to induce biological ABRs in deafened guinea pigs, we
established a model in which all hair cells were lost but auditory
primary neurons remained to avoid the confounding effects of hair
cell-mediated responses. Adult Hartley guinea pigs (n = 6) were
administered an im. injection of kanamycin (KM; 800 mg/kg)
followed by an i.v. injection of ethacrynic acid (EA; 80 mg/kg), and
the compound action potential was measured to monitor hearing
function. A total loss of hearing was observed 7 d after the ad-
ministration of drugs in all animals at all tested frequencies. We
then examined the thresholds of electrically evoked ABRs
(eABRs), which are generated by direct electrical stimulation of
the auditory primary neurons to determine the survival of these
cells in the animal model. Measurements of eABR showed no
significant elevation of eABR thresholds in animals treated with
KM and EA compared with normal animals (2.50 + 0.50 V in
normal animals, 2.83 + 0.37 V in test animals). Histological
analysis revealed no significant loss of spiral ganglion, whereas
there was a total of loss of hair cells in test animals (Fig. S1).

Generation of ABRs by a Piezoelectric Device in Living Guinea Pigs.
A prototype piezoelectric device (Fig. 24) containing a PVDF
membrane (40-pm thickness) was fabricated using micro-
electromechanical systems as described previously (18). The pi-
ezoelectric membrane was used as a transducer, and its electrical
outputs were amplified by 1,000-fold. For stimulation of auditory
primary neurons, platinum—iridium ball electrodes were implan-
ted into the scala tympani of the cochlear basal turn (Fig. 2B).
Typical ABRs in response to increased acoustic stimuli were
recorded in our model animals (Fig. 2C).

‘When acoustic stimuli of 104.4 dB sound pressure level (SPL)
were applied to the piezoelectric membrane, the first positive
wave of ABRs was clearly identified at a latency of 1.07 + 0.05
ms (Fig. 2C), which was identical to the latency of the first
positive wave in eABRs (0.98 + 0.06 ms) in guinea pigs in the
present study (Fig. S2). In general, the first wave of eABRs
corresponds to wave II of normal ABRs (19). Compared with the
latency of wave II of normal ABRs in normal guinea pigs (n = 4,
2.99 & 0.11 ms) (Fig. S2), the latency of the first positive wave of
piezoelectric device-induced ABRs was ~2 ms short. However,
the latency of the first positive wave of piezoelectric device-
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Fig. 2. ABR recording using a prototype device. (4) Schematic drawing of a prototype device with a piezoelectric membrane (yellow). A piezoelectric
membrane has a thickness of 40 pm and a length of 30 mm. An array of 24 electrodes, made of aluminum thin film, is fabricated on the upper side of
a piezoelectric membrane, which is aligned in the midline of the trapezoidal slit of the stainiess plate. An electrode used in the experiment of stimulating
auditory primary neurons is located 12.5 mm from the shorter side of the trapezoidal membrane (shown in red). (B) Schematic drawing of a setting for ABR
recording using a piezoelectric device. Electrical signals generated by a piezoelectric membrane in response to acoustic stimuli are amplified and transferred
to the cochlea. Bioelectrical signals were recorded as ABRs from needle electrodes inserted dorsal to ears. (C) ABRs by electrical signals derived from
a prototype device by acoustic stimuli. Arrowheads indicate the timing of acoustic stimuli.

induced ABRs was almost similar to the latency between waves I
and IT of normal ABRs (0.83 + 0.04 ms). These findings showed
that the piezoelectric membrane generated biological ABRs by

brane implanted into the cochlea is crucial to realize hearing
recovery by a piezoelectric device based on the traveling wave
theory. To test the transmission of sound waves from the external

auditory canal to a piezoelectric membrane, we developed an
implantable device that was specialized for the basal turn of the
guinea pig cochlea (Fig. 3 4 and B). The device contained
a PVDF fluoride trifluoroethylene [P(VDF-TTFE)] membrane
with a frequency response of 16-32 kHz, which corresponded to

converting acoustic stimuli to electrical signals.

Transmission of Sound Vibration from the External Auditory Canal to
the Implanted Piezoelectric Device. The transmission of sound
waves from the external auditory canal to a piezoelectric mem-
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Fig. 3. Sound transmission from the external auditory canal to a piezoelectric device implanted in the cochlea. (A) Design of an implantable piezoelectric
device. (B) A merged image of an implantable piezoelectric device and the basal turn of the guinea pig cochlea. To determine the radius of curvature of the
outer border and the inner border of the fan-shaped silicon frame and location of the slit in the silicon frame, we measured radius of curvature of the cochlear
basal turn, length between an inner edge of the spiral ligament (SL) and a medial end of the osseous lamina (OSL) where the device will be implanted, and
length of the basilar membrane (BM; length between inner edge of spiral ligament and lateral end of osseous lamina). An outline of the silicon frame is shown
by a red dotted line. The silicon frame is positioned on the osseous spiral lamina, and the slit of the device is located adjacent to the BM. Mod, cochlear modiolus.
(Scale bar: 200 pm.) (C) A microscopic view of an implanted device in the basal turn of the guinea pig cochlea. The yellow dotted line indicates an opening in the
basal turn of the cochlea. OB, otic bulla. {D-F) Schematic drawings of measuring vibration amplitudes using a laser Doppler vibrometer. A glass bead is placed on
the BM (D), piezoelectric membrane (£), or silicon frame (F). Red lines indicate a laser beam from a laser Doppler vibrometer. SM, scala media; ST, scala tympani.
(G) Vibration amplitudes of a BM (green), piezoelectric membrane (blue), and silicon frame (red) corresponding to frequencies of applied sounds.
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the response of the basal turn of guinea pig cochleae (20). We
implanted the device into the scala tympani of the basal portion
of an intact cochlea (Fig. 3C). Before implantation, we measured
the vibration of the basilar membrane in response to sound
stimuli from the external auditory canal at various frequencies
between 1 and 30 kHz. A glass bead (50-pm diameter) was
placed on the basilar membrane (Fig. 3D), and its movement was
measured using a laser Doppler vibrometer (21). When contin-
uous pure tones were applied through the external auditory ca-
nal, the amplitudes for vibration of the basilar membrane
showed peaks at 3 and 9 kHz (Fig. 3G, green line). In response to
3 kHz sound stimuli at 101.7 dB SPL, the largest amplitude was
642 nm, which was consistent with previous observations (21).
Measurements of the vibratory movements of the piezoelectric
membrane (Fig. 3E) also revealed two peaks of vibration
amplitudes similar to the peaks of the basilar membrane (Fig.
3G, blue line). The maximum amplitude of the piezoelectric
membrane was 293 nm in response to 9 kHz sound stimuli at
109.2 dB SPL.

In contrast to the piezoelectric membrane, measurements of
the movements of the silicon frame (Fig. 3F) revealed no ap-
parent peaks in the amplitudes of oscillations, which were all
within 100 nm (Fig. 3G, red line). The differences in response
between the piezoelectric membrane and silicon frame may be
caused by the difference in the stiffness. In addition, the piezo-
electric membrane was located closer to the basilar membrane
than the silicon frame, and the basilar membrane may be a
preferable location to receive sound vibration. These findings
showed that sound stimuli transmitted through the external au-
ditory canal caused vibration of a piezoelectric membrane
implanted within the scala tympani of cochleae. Notably, the
piezoelectric membrane exhibited similar tuning for sound fre-
quency as the basilar membrane, indicating that it could re-
produce the mechanical tonotopy of the latter. The tuning for
sound frequency of the basilar and piezoelectric membranes
differed from the tuning of the basilar membrane in normal
guinea pig cochleae, which might have been caused by the
opening of the cochlear wall for implantation of the device and
taking measurements using a laser Doppler vibrometer.

Generation of Voltage Output by the Implanted Device in Response to
Sound Stimuli. To show the technical feasibility of the piezo-
electric hearing device, we examined whether sound stimuli
generated electrical output from the piezoelectric membrane
after implantation into the cochlea. For this purpose, we estab-
lished an ex vivo model of a guinea pig temporal bone, in which
sound stimuli were directly applied to the stapes, which transmits
sound vibration to the oval window of the cochlea (Fig. 1 4 and
B). A miniaturized device modified to contain a silicon rod
carrying electrodes for monitoring the voltage output from the
piezoelectric membrane (Fig. 4 A and B) was implanted into the
basal portion of cochleae. A miniaturized device was able to
generate electrical output ranging from 0.14 to 5.88 mV in re-
sponse to sound stimuli at 100 dB SPL at frequencies of 1-40
kHz in air (Fig. S3).

When 30-cycle tone-burst stimuli at 100 dB SPL at a frequency
of 5, 10, or 20 kHz were directly applied to the stapes using an
actuator, peak to peak voltage output of 23.7, 5.7, or 29.3 pV was
recorded, respectively (Fig. 4C). After completion of the sound
application, the amplitudes of voltage output gradually de-
creased and returned to the original level within 3 ms, which
mimicked the biological response of the basilar membrane. In
a control setting, in which an actuator generated sound stimuli
but was not attached to the stapes, negligible voltage output was
recorded (Fig. 4C). These findings showed that sound stimuli
from the stapes generated voltage output from the piezoelectric
device implanted in the cochlea. Notably, the voltage outputs
from the piezoelectric device differed depending on the applied
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Fig. 4. Electrical output from the piezoelectric membrane implanted in the
guinea pig cochlea in response to sound application to the stapes. (A)
Photograph and schematic drawing showing the setting of an ex vivo sys-
tem. A guinea pig temporal bone was set on a stage, and an implantable
device was inserted into the scala tympani (ST) of the basal turn and placed
close to the basilar membrane (BM). A needle was attached on the head of
the stapes (St) to transmit sound vibrations through the oval window (OW).
RW, round window. (B) Design of the implantable piezoelectric device. Au,
gold film electrode; PE, piezoelectric membrane; Pt, platinum film electrode;
Si, silicon frame. (C) Electrical output from a piezoelectric membrane in re-
sponse to sound stimuli. Bars indicate the period for sound application.
Waveforms in red show electrical output when sound stimuli are applied to
the stapes, and waveforms in blue show those in a control setting.

sound frequency. The maximum voltage outputs in response to
5 and 20 kHz sound stimuli were similar (23.7 and 29.3 pV, re-
spectively), whereas the outputs in response to 10 kHz sound
stimuli were smaller (5.7 pV).

Researchers have previously attempted to develop an artificial
cochlea that functions as a highly sophisticated sensor. Studies by
von Békésy (4, 5) showing traveling waves in the basilar mem-
brane using cochleae from cadavers led to the development of
several physical models of the cochlea. The first group of these
models comprised scaled-up versions of the cochlea (22-24).
Recently, researchers have developed fluid-filled microscale
models that respond to sound in a manner similar to the mam-
malian cochlea. The work by Zhou et al. (25) showed a tonotopic
map over the 0.3- to 15-kHz band in a life-sized model. The work
by Chen et al. (26) developed a beam array fixed on a trapezoidal
channel and investigated the vibrating characteristics in water.
The work by Wittbrodt et al. (27) developed a device containing
a polyimide membrane with an aluminum frame, which shared
some similarities with the biological cochlea in terms of traveling
waves. The work by White and Grosh (28) used silicon micro-
machining technology to create their cochlea model. This work
was important, because the batch micromachining process used
to fabricate this system paved the way for the future integration
of sensing elements into the structure to produce low-power,
micromechanical, and cochlear-type sensor filters. However,
these devices have no potential for generating electrical output
in response to sound stimuli. Providing high-quality hearing
through the cochlear implant involves the development of a de-
vice with high channel capability, low-power requirements, and
small size (29). The work by Bachman et al. (29) fabricated
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a micromechanical multiband transducer that consisted of an
array of micromachined polymer resonators, and it examined its
sensitivity to sound frequency; however, the work focused on the
low-power requirements of the transducer and proposed a design
that could be implanted into the middle ear cavity (29), which
fundamentally differed from our concept.

The present report describes a device at the technology-bi-
ology interface that can mimic the function of the basilar
membrane and inner hair cells using a combination of traditional
traveling wave theory and microelectromechanical systems. This
device could be described as the technological regeneration of
hair cells. The device, which consists of a piezoelectric mem-
brane and silicon frame, can be implanted into the guinea pig
cochlea. It is able to resonate in response to sound stimuli similar
to the natural basilar membrane and generate electric output,
whereas previously reported devices required an electrical sup-
ply, and realizing low-energy requirements remains a goal for the
future development of cochlear implants (29). We, therefore,
consider the ability of our device to generate electrical output in
response to sound stimuli to be a great advantage. In practice,
the electrical output from our device is not sufficient to stimulate
auditory primary neurons. The electrical output should be 10°-
fold higher than the output of the present device for effective
stimulation of auditory primary neurons when electrodes are
placed in the scala tympani similar to conventional cochlear
implants. We should optimize the location and fixation of a pie-
zoelectric device in a cochlea for obtaining the maximum oscil-
lation of a piezoelectric membrane, because electrical output
from a piezoelectric membrane after implantation in a cochlea
decreased to ~10% of electrical output recorded in the in vitro
setting (Fig. S3). To increase the power of a piezoelectric device,
we will examine the potential of other piezoelectric materials
for generation of electrical output and the effects of reduction
in thickness of a piezoelectric membrane and multilayer con-
structions of piezoelectric membranes. In addition, it is also
important to reduce electrical output required for sufficient
stimulation of auditory primary neurons. For this purpose, we
are developing microelectrodes that are able to access close to
auditory primary neurons. Finally, our device has only passive
sensitivity to sound frequencies. To enhance this sensitivity, ad-
ditional mechanisms mimicking the function of outer hair cells
need to be developed.

Materials and Methods

Experimental Animals. A total of 26 female adult Hartley guinea pigs (4-10
wk, 300-600 g in weight; Japan SLC) with a normal Preyer pinna reflex
served as the experimental animals. Animal care was conducted under the
supervision of the Institute of Laboratory Animals, Graduate School of
Medicine, Kyoto University, Japan. All experimental procedures followed the
National Institutes of Health Guidelines for the Care and Use of Laboratory
Animals. In all procedures necessitating general anesthesia, the animals
were administered an im. injection of midazolam (10 mgr/kg; Astellas
Pharma) and xylazine (0.01 mg/kg; Bayer). Supplemental doses were ad-
ministered every 2 h or more often if the animal withdrew its leg in response
to applied pressure.

eABR Recording. Measurements of eABRs were performed as previously de-
scribed (30). Biphasic voltage pulses were generated under computer control
using a real-time processor (Tucker-Davis Technologies). Electrical stimuli
were applied between two intracochlear platinum-iridium electrodes. Bio-
electrical signals were digitally amplified, averaged for 500 repetitions, and
recorded using subdermal stainless steel needle electrodes.

Prototype Piezoelectric Device. The prototype piezoelectric device was fab-
ricated as previously described (18). A thin aluminum film was formed on
both sides of the 40-um-thick PVDF membrane by sputtering. An electrode
array with 24 rectangular elements was fabricated from the aluminum film
using a standard photolithography and etching process on the upper side
of the PVDF membrane. The aluminum film on the lower side served as a
ground electrode.
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Prototype Device ABRs. The ABRs produced using the prototype device were
measured 7 d after the administration of KM and EA. The generation of trigger
signals and the recordings of the evoked potentials were performed using
Powerlab/4sp. The trigger signals were conveyed to a function generator
(WF1945B; NF Corporation), which was programmed to generate a sinusoidal
output signal for each trigger. The amplitudes and frequencies of the sinu-
soidal outputs were digitally controlled at a base frequency and duration of
5 kHz and 0.2 ms, respectively. The output signals were connected to a custom-
made actuator, which delivered acoustic waves to the device. The amplitudes
applied to the actuator were calibrated to produce vibrations of the piezo-
electric membrane of the device equivalent to those vibrations produced by
the application of sound at pressure levels ranging from 87 to 115 dB SPL. The
electrical signals generated by the prototype device in response to the acoustic
waves of the actuator were transmitted to a custom-made amplifier, which
produced a 1,000-fold increase, and their waveforms and amplitudes were
monitored by an oscilloscope (Wavelet 314A; LeCroy). A biphasic signal was
extracted from the electrical signals using a custom-made complementary
metal oxide semiconductor switch to prevent the signal induced by re-
verberation of the piezoelectric membrane. Signals from the complementary
metal oxide semiconductor switch were also conducted to platinum—iridium
electrodes implanted in the scala tympani of the cochlear basal turn of guinea
pigs (n = 4) placed in a soundproof room. The bioelectrical signals were av-
eraged for 500 repetitions, and they were recorded using subdermal stainless
steel needle electrodes. The responses were verified at least two times.

Implantable Miniaturized Device. An implantable device for examining the
transmission of sound from the external auditory canal to the piezoelectric
membrane was fabricated using a P(VDF-TrFE) membrane (KF-W#2200; Kureha)
and a silicon frame according to the methods described previously (31). The
surface of the 300-pm-thick silicon substrate (100) was penetrated by hexame-
thyldisilazane (Tokyo Ohka Kogyo) to enhance adhesion of the P(VDF-TrFE)
membrane. An N,N-dimethylformamide (Nacalai Tesque) solution containing
P(VDF-TrFE) at a concentration of 8% weight was spun on the silicon substrate.
It was then heated to crystallize the P(VDF-TrFE) at a thickness of 3 um. The op-
posite side of the silicon substrate was treated with photolithography and an
etching process to form a fan-shaped silicon frame with aslit to accommodate the
flexible piezoelectric membrane. The fan-shaped silicon frame and the location
of the slit were designed based on the shape of the cochlear basal turn of adult
guinea pigs. The slit in the silicon frame was positioned such that the sheet was
adjacent to the portions of the basilar membrane where it vibrated the most (32).

Surgical Procedure for Implantation of the Miniaturized Device into the
Cochlea. A laser Doppler vibrometer (LV-1100; Ono Sokki) was used to mea-
sure the vibrations of the basilar membrane and the piezoelectric membrane
of the device implanted in the cochlea. Under general anesthesia, a retro-
auricular incision was made to expose the bulla of an experimental animal with
a normal cochlea (n = 1). An opening was made in the otic bulla while pre-
serving the tympanic annulus, tympanic membrane, and ossicles. This opening
was used to direct the laser beam to the cochlea to measure the vibrations.
After a skin incision in the submandibular region, cochleostomy was made in
the scala tympani of the basal turn for insertion of the implantable device.
After a tracheotomy, suxamethonium chloride hydrate (10 mg; Kyorin Phar-
maceutical) was injected i.m., and a ventilation tube was inserted into the
trachea to suppress movements from spontaneous ventilation.

Measurement of Vibrations Using a Laser Doppler Vibrometer. Sine wave sig-
nals produced by a function generator were delivered to an electrostatic
speaker driver (ED1; Tucker-Davis Technologies) to generate pure tones from
an electrostatic speaker as acoustic stimuli. Continuous pure tones were
applied through the external auditory canal of the animals from 1 to 30 kHz
at 1-kHz intervals at levels between 62.5 and 109.2 dB SPL. We measured the
vibrations in response to sound stimuli using a laser Doppler vibrometer (21,
33). Initially, a glass bead (50-um diameter) was set on the basilar membrane.
A laser Doppler vibrometer beam was directed to the glass bead (Fig. 3). The
vibrations of the basilar membrane were measured five times for each fre-
quency and averaged using a custom-made program. Subsequently, the
miniaturized device was manually inserted into the scala tympani with its
piezoelectric membrane adjacent to the basilar membrane. The laser beam
was directed to a glass bead either placed on the surface of the piezoelectric
membrane (Fig. 3) or fixed on the silicon frame (Fig. 3) of the implantable
device for reflection to detect vibrations.

Miniaturized Device for Voltage Output Recording. The design of an im-

plantable miniaturized device for vibration measurement was modified to
record the voltage output from the piezoelectric membrane after implan-
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tation into a cochlea. An implantable miniaturized device was connected to
a silicon rod carrying electrodes for monitoring the voltage output from the
piezoelectric membrane. Two thin (40-nm thickness) gold electrodes, which
faced the basilar membrane of the cochlea, were formed by thermal de-
position on the piezoelectric membrane. One thin (100-nm thickness) plati-
num electrode was formed by rf magnetron sputtering on the opposite side
of the piezoelectric membrane for recording the output voltage.

Recording Voltage Output from the Piezoelectric Membrane in Response to
Sound Stimuli. Two right temporal bones of guinea pigs were used. The bony
wall of the otic bulla was removed to expose the basal portion of the cochleae
and the incudostapedial joint. After separating the head of the stapes from
the incus, the tympanic membrane, malleus, and incus were removed.
Cochleostomy of the basal portion of cochleae was performed to access the
scala tympani. The temporal bones were then fixed on a stage. The head of
the stapes and an actuator (AE0203D04F; NEC/TOKIN) were connected with
a needle. The position of the tip of the needle was monitored by a CCD
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camera during the recording. Tone-burst signals were delivered to an ac-
tuator using a function generator (NF Corporation). A modified miniaturized
device was inserted into the scala tympani of the basal portion of the co-
chleae through the cochleostomy site, and it was attached to the piezoelectric
membrane and the basilar membrane using a micromanipulator. The scala
tympani was filled with 285 mM mannitol solution during the recording. The
voltage outputs from the piezoelectric membrane were transmitted to
a custom-made amplifier that produced a 1,000-fold increase, and their wave-
forms and amplitudes were monitored with an oscilloscope (WaveRunner
44MXi-A; LeCroy).
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Reconsideration of Indications for Cochlear Implant Surgery

Juichi Tto
(Graduate School of Medicine, Kyoto University)

Cochlear implant surgery is used for patients with “profound hearing loss who cannot use hearing
aids.” The indications were initially limited to “adults only” but were subequently expanded to include
children. In 1998, The Oto-Rhino-Laryngological Society of Japan, Inc. a published cochlear implantation
adaptation guideline; the guideline was revised in 2006. Recently, the numbers of surgical patients who
do not meet the Japanese Society of Otolaryngology’s criteria, such as pediatric patients below the age
limit, patients requiring bilateral cochlear implants, cases of unilateral hearing loss and cases of multiple
disabilities and central hearing loss cases have been increasing. In this paper, the indications for cochlear

implants have been revised.

Keywords : indications, cochlear implant, bilateral cochlear implant, residual hearing, insurance
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