H.(f)=H(¢-7).

This relationship is appropriate when there is a delay between P(¢)
and V() in Eq. (8) [29].

3. Results

3.1 Spontaneous firing The model presented in this
study shows many features observed in whole-cell patch-clamp
recording for DA cells in rat midbrain slices. A typical waveform
of membrane voltage in spontaneous firing of DA cells of the
substantia nigra pars compacta (SNc) is illustrated in Fig. 1A.
Membrane voltage of spontaneous firing in the model is shown in
Fig. 1B (fgpy=0 nA/em?). It is known that the voltage
hyperpolarization immediately after spikes is deeper in DA cells
than pyramidal cells in the neocortex; this is represented by the
model. In addition, the characteristic slow oscillations were
observed in subthreshold membrane voltage after blocking of
sodium currents by treatment of DA cells in brain slices with
tetrodotoxin (TTX). This observation was also mimicked by
reducing the conductance of the voltage-dependent sodium
channel in the model (e.g., gno=0 S/cm?). The action-potential
waveforms from the experiment and the model showed similar
spike amplitude and width. Furthermore, the first and second
derivatives of the two waveforms also showed similar time
courses, which indicated that the model successfully mimicked the
shape of action potentials.

3.2 Bifurcation diagram To examine oscillatory
phenomena of the model in more detail, a one-parameter ([yp)
bifurcation diagram was computed (Fig. 2). The oscillation
emerges through a supercritical Hopf bifurcation when the
externally injected current went beyond a point at /;. The
threshold of the firing cannot be theoretically defined in the
supercritical Hopf bifurcation case. However, in this analysis,
oscillations where the membrane voltage went beyond +40 mV

Experiment

[ SIS )]
(o= e R e B ]

Membrane voltage (mV)

| | I [ | I | I
0 10 20 30 40 50 60 70
Time (s)

Model

| I | [ | [ | |
0 10 20 30 40 50 60 7.0
Time (s)

Membrane voltage (mV)

Fig. 1. Comparison of membrane voltage traces. Membrane voltage
recorded from a spontaneously active dopaminergic neuron in a rat
midbrain slice is shown in A. Membrane voltage of the model can
mimic spontaneous firing of rat dopaminergic neurons in whole-cell
patch-clamp recording in B.
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Fig. 2. One-parameter (L) bifurcation diagram. Solid and dotted
lines show stable and unstable fixed points, respectively. Open and
filled circles show maximum or minimum voltages in superthreshold
and subthreshold oscillations, respectively. The oscillation emerges
through a Hopf bifurcation point at /; and ends at /=6.51; ;=—0.716,
1,=-0.173, 5=1.56, and 1,=4.69.

were considered as action potentials. In addition to superthreshold
oscillations (i.e., action potentials), subthreshold oscillations were
observed in two regimes of the intervals [/}, I,] and [/3, [;]. In the
interval between I, and L, superthreshold oscillations were only
observed, and the oscillations corresponded to the spontanecous
regular firing shown in Fig. 1B.

3.3 Hyperpolarization-activated  current regulates
firing frequency In DA neurons in the midbrain, HCN
channels are expressed from early postnatal development stages
(data not shown here). The HCN channels are activated in
hyperpolarized membrane voltage, and the current J;, was actually
observed under —70 mV in the voltage-clamp recording. In
current-clamp recording, the current component constructs a
characteristic membrane-voltage response of so called “sag” (Fig.
3A(a)), and the present model can mimic the voltage response (Fig.
3A(b)). A computational simulation of the model revealed that the
conductance (gy) of HCN channels regulated the firing frequency
of spontaneous activity in DA neurons, as illustrated in Fig. 3B.
As the conductance increased, the firing rate was monotonically
increased until g;=0.12 and over that value, the rate was decreased.
Moreover, the rate was thereafter disrupted discontinuously
around g;=0.15. Over that value, the firing frequency slowed
down, because regular firing of action potentials was changed into
the mixture of action potentials and subthreshold oscillations. The
result indicated that HCN channels regulate not only firing
frequency but also the types of oscillations (i.e., regular action
potentials or the mixture of sub- and superthreshold oscillations).

3.4 Phase-resetting curves Next, to understand
the relationship between the amount of HCN channel expression
and phase changes in periodic cycles of regular spiking,
phase-resetting curves (PRCs) were investigated. In Fig. 4A,
PRCs with four different gy, values are illustrated. If there was no
HCN channel expression (i.e., g,=0), the PRC was monophasic,
and there was no delayed phase regions in the curve. In contrast,
as the conductance was increased, a delayed phase appeared and
PRCs were biphasic (e.g., go=0.15). In addition, with increasing
conductance, the amplitude in the advanced phase was decreased,
and the amplitude in the delayed phase and the portion to the
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A, Comparison of membrane voltage responses.
In response to hyperpolarizing (negative) direct current injection,
membrane voltage traces in a representative dopaminergic cell (a)
and the present model (b) are shown. The amplitude of the injected
current was 0.1 nA in both cases.
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B, A relationship between spontaneous firing frequency and the
maximum conductance (g,) of the HCN channel.
Fig. 3. Electrical properties in the computational model of
dopaminergic neurons.

whole phase was increased. In Fig. 4B, the relationships between
advanced and delayed phases with gy, are illustrated. The results
indicated that the shape of PRCs was regulated by the HCN
channel conductance.

3.5 Stability of the coupled phase-equation model
Finally, to understand the relationship between the amount of
HCN channel expression and the stability of the model in gap
junction-coupled DA neurons, H functions in Eq. (8) and their
derivatives were numerically investigated. For four different
values of gy, the H functions and their derivatives are shown in
Figs. 5A and B. In all of the H functions, stable fixed points are

located at¢ = 0 (Fig. 5A), which means that the phase difference

¢ =6 -0, between the two phase-oscillators can eventually

converge to zero after a transient period. Therefore, over a
transient period, two oscillators are phase-locked and
synchronized. However, if there exists a relatively longer time
delay 1 to the period in the oscillation cycle, a different case
happens. This corresponds to a case where, for example, there was
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Fig. 4. HCN channel conductance (g,) dependency in phase resetting
curves. Phase resetting curves with four different values of HCN
maximum conductance g, are shown; g,=0.1, 0.05, 0.135, and 0.15 in
A. The curves are normalized by the sum of maximum phase advance
and minimum phase delay. The relationships of phase advance (o) and
delay (0) vs. g are illustrated in B.

a time delay between a spike initiation zone and a gap-junction
site. In such a case, each stable fixed point cannot be always

located at ¢ = 0 because of Eq. (9) (Fig. 5B). Moreover, if the time

delay is over 10% of the period of unperturbed oscillators, the
oscillation can be unstabilized (i.e., dH(0)/d<0 in Fig. 5B).

Furthermore, for each ¢ , the area at which

dH(0)/ d¢ < 0 against g, is shown and illustrated by gray color

in Fig. 5C. As explained above, the time delay shifted the gray
area downward. In addition, the result shown in Fig. 5C indicated

that, as g, was increased, the region at which dH (0)/ d¢ <0 was

reduced, so that the time delay T induced less instability.

In summary, the HCN channel conductance regulated the
extent of stability of the coupled oscillators of the model. In
addition, if the HCN channels were expressed and the time delay t
was equal to zero or less than 10% of the unperturbed oscillation,
the two oscillators were always synchronized and phase-locked.

4. Discussion

DA cells are spontaneously active in both in vive and in vitro
recordings [1,4]. It is known that adult DA neurons are
Ca“—dependent autonomous pacemakers; that is, their basal
activity is intrinsically driven by voltage-dependent L-type Ca®*
channels [4]. Voltage-dependent Ca”* channels are multimeric
proteins in which the pore-forming o-subunit is the principal
determinant of gating and pharmacology. L-type Ca?* channels in
brain neurons have one of two a-subunits: Ca,1.2 or Ca,l.3.
However, genetic deletion of Ca,1.2 and Ca,1.3 Ca®* channels did
not stop pacemaking in DA neurons. In contrast, HCN channels
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Fig. 5. Stability analysis of the coupled-phase oscillator model.
In four different values of g, (i.e., g=0.1, 0.05, 0.135, and 0.15), H(?)

functions are shown in A. Here, t = Ty / (27) in the H functions,

where T} is the period of the uncoupled oscillators. For convenience,
H(?) was normalized by the maximum value of each function.
Similarly, in the four different values of g, the derivatives of H(?) are
illustrated in B. Borderlines between positive and negative
derivatives of H(?) are illustrated against each gy in C.

widely partner voltage-dependent Na* channels in pacemaking
[30]. Recently, Chan et al. reported that, in DA neurons from
Ca,1.3 knockout mice, HCN channels were absolutely critical,
because an antagonist for these channels completely stopped
pacemaking [31]. It is also known that, in DA neurons taken from
younger mice (less than three weeks old), HCN channels were
also very important in maintaining normal spiking rates [31].
However, as the switch to Ca,1.3-channel-dependent pacemaking
evolved, these channels became less important. Therefore, little is
known about the functional role of HCN channels in adult DA
neurons.

In this study, the conductance-based Hodgkin—Huxley type DA
cell model was first constructed on the basis of reported results
and data recorded from DA cells in rat midbrain slices. The model
mimicked membrane-voltage waveforms in spontaneous firing
(Fig. 1B) and responses to hyperpolarizing current injection (Fig.
3Ab). Next, we focused, in particular, on the functional role of
HCN channels. As shown in the Results section, if the HCN
channel conductance (gy) was increased, the firing rate was
monotonically increased until some value, and over the value, the
rate was decreased (Fig. 3B). The result indicated that there can be
an optimal value of gy for maximizing spontaneous firing rate in
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DA neurons.

Second, we numerically analyzed the stability of oscillations in
response to direct current injection and obtained the bifurcation
diagram (Fig. 2B). The bifurcation analysis of the model revealed
that there was a complex structure for spontaneous firing and for
evoked firing even in response to a simple direct current injection.
In some parameter ranges, a mixture of action potentials and
subthreshold oscillations was observed. A variety in the amount of
HCN channel expression could provide more complexity in the
bifurcation structure owing to the discontinuity of the
relationships between firing rate and HCN channel conductance
(Fig. 3B).

Third, to gain some insight into synchronized phenomena in
gap junction-coupled DA neurons, a weakly coupled
phase-equation model of two identical DA neurons was derived
after numerically computing PRCs of regular firing using the
conductance-based model. The analysis revealed that the shape of
PRCs tightly depended on HCN channel conductance, and a
HCN-channel conductance-dependent transition from monophasic
to biphasic PRCs was found. The transition was critical for the
maintenance of synchronization and phase-locking of the coupled
oscillators. In addition, to examine synchronized phenomena
among DA cells, a stability analysis of synchronization between
coupled oscillators was applied to the model. The results indicated
that HCN channels can regulate not only the frequency of firing
and subthreshold oscillations in membrane voltage but also the
extent of synchronization and desynchronization among DA cells.
Thus, in regards to the main autonomous-pacemaking role of adult
DA neurons, HCN channels in younger aged animals are similar to
L-type Ca?" channels [31]. However, we show here that HCN
channels can also contribute to the maintenance of
synchronization in coupled oscillations and stability of
synchronization regions in gap-junction coupling between DA
neurons.

In many neurons of the central nervous system, hormones and
neurotransmitters that elevate cyclic adenosine monophosphate
(cAMP) levels facilitate activation of 4, by shifting the voltage
values for half-maximal activation (¥,s) to more positive values
and by accelerating the opening kinetics. It has been shown that,
in DA neurons, the acceleration of the opening kinetics with
CAMP can be attributed to the shift in voltage dependence of
activation [32]. Thus, in the presence of high cAMP
concentrations, f, channel opening is faster and more complete
than at low cAMP levels. As it is also known that HCN channels
are expressed by SNc and VTA DA neurons, they are exquisitely
sensitive to allosteric regulation by cAMP [32]. Because SN¢c DA
neurons expressed Ca?*-inhibited isoforms of the enzyme that
produces cAMP, it is plausible that rising intracellular Ca*
concentrations dampen cAMP synthesis, leading to a shift in HCN
gating in a relatively longer time scale. Hence, the activation of
HCN channels can be regulated by the cAMP level and the Ca**
concentration [31].

5. Conclusion

To understand the functional role of HCN channels, we
constructed a conductance-based model of DA cells. To test the
validity of the model, spontaneous firing and membrane voltage
responses evoked by hyperpolarizing current injection were
compared with those from actual DA cells of midbrain slices in
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in-vitro recordings. The model analysis revealed that HCN
channels can regulate not only the frequency of firing and
subthreshold oscillations in membrane voltage but also the extent
of synchronization and desynchronization among DA cells. Hence,
HCN channels not only in premature DA cells but also in adult
DA cells have special functional roles in the regulation and
maintenance of cooperative firing through gap-junction coupling
between DA cells.

Appendix A
A1 The transient Na* current (Jy,) is described by
Ly = gNam:IanNa(V = Ey) ,

and the voltage-dependent activation and deactivation functions
and time-constant functions are as follows:

m, (V) =10/ exp(~(V' +18.0)/7.41) +1.0]

7 (V) =0.0369+ 0‘079Iexp(-(V+ 21.2) /1403.8)
1, (V) =1.0/ [ exp((V +47.8)/3.96)+1.0]

T (V)=2.02+ 50.9exp(—(V+ 56.5) / 296.8)

A.2 The delayed rectifier K* current (k) is described by
Iy = gxma‘i(V -E) ,

and the voltage-dependent activation and time-constant functions
are as follows:

m, (V) =1.0/[exp(—(V +34.4)/8.99)+1.0]
7, (V) =0.201+ 14.4exp(—(V -17.2) /1084)

A3 The A-type potassium current (/) is described by

1, = gAmfan(V - Ey) ,

and the voltage-dependent activation and deactivation functions
and time-constant functions are as follows:

m,(V)=1.0/[1.0+exp(~(V +62.4)/16.0)
T (V)=1.62+7.99 exp(—(V +102.2)"/ 3952)
n,(7)=1.0/[1.0+exp(—(V +83.9)/5.66) |
7, =268
A4 The M-type potassium current (f) is described by
L= gumy(V = Eo)

and the voltage-dependent activation and time-constant functions
are as follows:

m, (V) =1.0/[ exp(~(V +41.5)/5.47) +1.0]
¢ (V)=875+ 172exp(—(V +25.4)"/ 735.0)

A5 The h-type cation current (/) is described by

I, = gum (V- E,)

and the voltage-dependent activation and time-constant functions
are as follows:
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my (V) =1.0/[1.0+exp((V +69.9)/10.5)]
7, (V) =320 +1850exp(~(V +81.0)" /18.1)

A.6 In the model, four different types of calcium currents
are included. The L-type calcium current (Ic,.) is described by

Teq = 8cumea V - E¢,)

and the voltage-dependent activation and time-constant functions
are as follows:

m,(V)=1.0/[1.0+exp(-(V +31.4)/5.34)]
7,(V) =47 +11.7exp(~(V +54.2)" /1034)

The N-type calcium current (Ic,y) is described by
Te = 8catecat’cas V — E)

and the voltage-dependent activation and time-constant functions
are as follows:

m,(V)=1.0/[exp(-(V +24.4)/5.47)+1.0]

7, (V) =0.0306 +18.()exp(—(V +34.5) /7200)
n, (V) =1.0/[exp((V +54.5)/5.34)+1.0]
7,(7) = 49.8+ 450exp(~(V +70.5)" /501.4)

The P-type calcium current (Ic,p) is described by
Ieop = 8caMealca V — Ec,) ,

and the voltage-dependent activation and time-constant functions
are as follows:

m (V) =1.0/[exp(-(V +25.9)/5.38)+1.0]
., (V)= 0.569+10.4exp(—(V+38.1)2 / 765.6)
n,(V)=1.0/[ exp((V +64.9)/1.87)+1.0]
(V)= 14.5+389exp(—(V+ 75.5)’ /21.5)

The T-type calcium current (Zc,r) is described by
Ieqr = Ecaealeca V — Ec,)

and the voltage-dependent activation and time-constant functions
are as follows:

m,(V)=1.0/[exp(~(V +62.4)/1.19)+1.0]
7, (V)=12.0+ 65.0exp(-—(V+68‘0)2 /36.0)
n,(7)=1.0/[exp((V +75.3)/2.77) +1.0]
7, (7)=10.0+50.0 exp(—(V +72.0) / 100)

A7 The Calcium-activated potassium SK current (Igx) is
described by

I = 8 ([C32+],)(V - Eg) ]
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Morphological Properties in Dopaminergic Neurons of the Rat Midbrain
during Early Developmental Stages and One Numerical Approach to Passive-Membrane Modeling
“takashi Tateno™™* ¥ Member

In this study, I aim to understand morphological changes in dopamdnergic neurons of the mt midbrain during carly

developmental stages and their computational properties in the dendrites. To this end, firstly, [ measured morphological details of

dopaminergic newrons using an immunochemical double-staining technique. In the viewpoint of the Rall’s equivalent-cylinder

model, secondly, T tested if the data satisfied one of conditions (3/2 power law) of the Rall’s model. On the basis of the

experimental data, 1 next investigated il some branches in the individual dendrites had special selectivity in elficient passive

propagation of membrane potentials between the branches of individual cells and different cells. The results show that the Rall's

3/2 power law was not satisfied in many branch points and that among branches of each dendrite, specific selectivity in efficient

propagation was not found. In addition, I note an implementation method in which the finite clement method is applied to

one-dimensional cable model of dendrites and give some numerical examples.
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Abstract

Fast-spiking (FS) cells in the neocortex are |nterconnected both by mhlbltory chemlcal synapses and by electncal synapses,
or. gap-junctions.. Synchromzed firing of FS neurons is important in the generation of gamma oscillations, at frequencies
between 30 and 80 Hz. To understand how these synaptic interactions control synchronization, artificial synaptic .
conductances were |nJected in FS cells, and the synaptlc phase-resetting function (SPRF), describing how the compound

~synaptic input perturbs the phase of gamma-frequency spiking as a function .of the phase at which it is applled was

 measured. ‘GABAergic and gap junctional conductances made distinct contributions to the SPRF, which had a surpnsmgly g
simple piecewise linear form, with a sharp midcycle break between phase delay and advance. Ana!ysns of the SPRF showed
how the intrinsic biophysical propemes of FS neurons and their interconnections allow entrainment of firing over a wide
gamma frequency band, whose \upper and lower frequency limits are controlled by electrical synapses and GABAergic
inhibition respectlvely : 3 i
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Introduction mbhibitory postsynaptic potentials, which are correlated with the
extracellular gamma rhythm, and which synchronously inhibit
Rhythmic oscillations of concerted electrical activity can occur nearby pyramidal cells [7]. A recent study using conductance
in the neocortex and hippocampus at gamma frequencies (30— injection in neocortical pyramidal cells indicated that gamma-
80 Hz), and are thought to be associated with a variety of cognitive frequency-modulation of firing is almost completely determined by
tasks including sensory processing, motor control, and feature their inhibitory input [8]. In the hippocampus and cortex, models
binding [1,2]. A striking feature of gamma oscillations is their of interneuron activity suggest that network oscillations depend on
ability to be generated locally in the neocortex. Local gamma mutually inhibitory synaptic conductances [9,10,11].
oscillations can be produced by pharmacological [3,4], electrical Fast-spiking (FS) inhibitory interneurons are coupled by
[5] or optogenetic [6] stimulation. In wvive, synchronous gamma electrical synapses in addition to mutual and autaptic inhibitory
oscillations may be highly localized or widely distributed, even synapses [12,13,14,15]. Electrical synapses alone [12,13] or in
between hemispheres, with or without phase lags between different combination with GABAergic synapses [14] can produce syn-
areas and layers [1]. It appears, therefore, that local neocortical chronous firing in pairs of these interneurons i zifro. In addition,
circuits have an intrinsic capability for generating gamma the biophysical properties of FS neurons appear to be ideally
oscillations, while sensory inputs and connections from other suited to generating gamma rhythms: they have a hard (“type 2”)
brain regions may shape the complex spatial patterns of oscillatory onset of regular firing at about 30 Hz [16], which means that they

interaction. can be easily entrained at this frequency. They also show a strong

Synchronized firing of cortical inhibitory interneurons has been intrinsic drive for spike generation at gamma frequencies when
implicated in the production of these rhythms in many stimulated with broadbrand conductance noise [17]. Recently,
experimental and modeling studies. During spontaneous network selective optical stimulation of FS interneurons, but not of
activity of the neocortex in zivo, the power of intracellular voltage pyramidal neurons, was shown to cause gamma oscillations [6].

fluctuations at frequencies higher than 10 Hz is dominated by Electrical synapses amongst mutually inhibitory interneurons have
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Author Summary ;
Oscillations of the electrical field in the brain at 30-80 Hz *
- (gamma oscillations) reflect coordinated firing of neurons
during - cognitive, sensory, and motor activity, and are
thought to be a key phenomenon in the organization of
neural processing in the cortex. Synchronous firing of a
partlcular type. of neuron, the inhibitory fast- sp’nkmg (FS)
cell, imposes the gamma rhythm on other cells in the
network. FS cells are highly interconnected by both gap
junctions and chemical inhibition: In this study, we probed
_FS cells: with a synthetic conductance stimulus which
mimics the electrical effect of these complex connections -
in a controlled way, and directly measured how the timing
of their firing should be affected by nearby FS neighbours.
We were able to fit a mathematically SImple but accurate
“model to these measurements, the “synaptic phase-
resetting function”, which predicts how FS neurons
synchronize at dlfferent frequencies, noise Ievels, and
synaptic connection strengths. This model gives us deeper.
insight into how the FS cells synchronlze so effectively at
gamma oscxllat;ons, and will be a building-block in large-
scale simulations of the FS cell network aimed at
understandmg the onset and stabthty of patterns of '
gamma oscillation in the cortex G :

been found to increase the precision of synchrony in simulation
studies [18,19,20]. However, the relative roles of chemical
inhibition and gap-junctional coupling in shaping synchronous
oscillations in the cortex are still unclear.

The theory of synchronization of coupled oscillators uses the
concept of phase dynamics to evaluate the stability of the relative
phase of coupled oscillators in time [21,22]. The key to this
approach is to determine the effect of a very small perturbing input
on the phase of oscillation (“phase resetting”), as a function of the
point in the oscillation cycle at which it occurs. This is most often
used, under the assumptions of weak coupling and linear
summmation of phase shifts, to account for how the relative phase
of presynaptic and postsynaptic cells evolves from cycle to cycle.

However, as described above, FS cells in the cortex are actually
coupled quite strongly to other FS neighbours, with large postsynaptic
conductance changes caused by each presynaptic action potential.
Here, we have used synthetic conductance injection, or dynamic
clamp, to directly measure the phase-resetting response to conduc-
tance inputs mimicking the effects of presynaptic action potentials,
while systematically varying the relative strengths of electrical and
GABAergic inhibitory conductances. The compound synaptic
connections between FS neurons, together with the intrinsic spike-
generating properties of FS neurons, give rise to a distinctively-shaped
phase-resetting relationship, or “synaptic phase-resetting function”,
which ensures rapid and precise synchronization over a large gamma-
frequency range.

Results

Conductance injection reproducing synaptic input

FS cells in rat somatosensory cortical slices were identified by
their morphology, action potential shape and characteristic firing
pattern in response to depolarizing current injection [12,13,23,24].
FS cells fired high frequency, nonadapting trains of action
potentials during depolarizing current steps, occasionally inter-
rupted by pauses with subthreshold oscillations, particularly
around threshold [16] (see Methods). We used conductance
injection/dynamic clamp [25,26] to reproduce the effects of
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electrical and chemical synapses (Fig. 1, see Methods). In FS cells,
both gap junctions and GABAergic synapses from neighboring
cells are located perisomatically [14], so that point conductance
injection at the soma should reasonably reproduce the electrical
effects of synaptic inputs. Gap junctions were implemented as a
static conductance between the recorded cell and a “voltage-
clamped” trajectory of “presynaptic” membrane potential. This
“voltage-source” approximation, importantly, allowed us to
characterize a functional mapping between the presynaptic spike
time and the influence on postsynaptic membrane potential,
without considering any reverse effect of gap-junctional current on
the presynaptic cell. This is valid as long as the presynaptic cell is
considered to be much more strongly controlled by its other
inputs, as when it is already part of a synchronous assembly (see
Discussion). It is estimated that each FS cell is gap-junction
coupled, directly or indirectly, with a measurable coupling, to
between 20 and 50 other FS neurons [27], so that if the
presynaptic cell is quite strongly-driven by a major proportion of
these inputs, then the effect of any one can be neglected. At rest,
this gap-junctional input produced a small postsynaptic spikelet
(Fig. 1a, left), very similar in size and shape to those observed with
natural electrotonic coupling [12,13]. We also measured coupling
coefficients (the ratio of postsynaptic to presynaptic potential
change) for gap-junctional type conductance. These were similar
to physiological values, and larger for step inputs (0.05-0.22) than
for spike inputs (0.01-0.05), owing to low-pass filtering by the
combined effects of gap junctional conductance and membrane
resistance and capacitance [28].

Many pairs of FS cells are connected by both GABAergic
(GABA,, chloride conductance) and electrical synapses [12,13,14].
We simulated GABAergic synaptic input using conductance injection
(Fig. 1a, middle). The GABA reversal potential (Egaga) was set to
—55 mV, based on gramicidin-perforated patch measurements in
this cell type [10,29], considerably more depolarized than in
pyramidal neurons [30]. Thus, inhibition is shunting in the range
of membrane potentials between spikes during repetitive firing
(Fig. 1b). Starting from the resting potential, the “IPSP” is a small
depolarisation lasting about 40 ms, again very similar to natural
IPSPs in these cells. At the resting potential, a stimulus with both
electrical and GABAergic components produces a biphasic depolar-
izing response (Fig. 1a, right) with the gap-junctional potential visible
just before the larger GABAergic potential. Unlike the gap-junctional
spikelet, though, the amplitude of the GABAergic potential can
change sign in the subthreshold, interspike range of membrane
potentials, reversing around Egagpa [12].

Perturbing spike timing

To determine how this compound synaptic input shifts the
timing of periodic firing in an FS cell, we applied conductance
inputs during periodic firing elicited by a maintained excitatory
stimulus, a step of excitatory conductance reversing at 0 mV. An
example response to a compound ‘“‘synaptic” perturbation is
shown in Fig. 1b. In phase-resetting analysis of synchronization,
the state of the neuron is characterized by a single quantity, the
phase angle, ¢(7), which — in the absence of any perturbations -
increases linearly with time, and which is reset to zero whenever it
reaches 27, corresponding to the occurrence of a spike [21]. The
variability of interspike intervals can be represented by adding
additional noise, due to stochastic gating of ion channels and other
intracellular sources of variability, to the rate of change of ¢(f). To
measure the phase reseiting, or shift in the phase, produced by
synaptic-like conductance inputs, we applied isolated single inputs
during long trains of periodic firing. Fig. 1c shows the relationship
between the time #, at which an input (in this case a compound
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Figure 1. Synaptic connections between FS cells simulated by conductance injection. a) Left, an electrical synapse (top), simulated by a
time-varying ., signal (middle), and a constant conductance of 750 pS, produces a spikelet in the recorded neuron (bottom). Center, a GABAergic
synapse (top). A transient of conductance reversing at —55 mV mimics a GABA, synaptic input (middle), producing a small depolarization from rest
(bottom). Right, a compound electrical/GABAergic connection (top). Combined input from both types of conductances (middle) produced a response
with a sharp, electrical synaptic component followed by a longer-lasting IPSP (bottom). Each panel is recorded from a different cell. b) expanded view
of the membrane potential trajectory (top, spike peaks truncated) and injected currents (bottom, gap-junctional current in black, current through
GABAergic conductance in gray, outward current is represented upwards) during application of a single compound conductance perturbation
(ge=0.2 nS, g;= 1.4 nS) starting at the time indicated by an arrow, in this case inducing a delay in the subsequent spike time. c) Relationship between
time at which input is applied and the time to next spike and d) corresponding phase-resetting relationship, or synaptic phase-resetting function.

doi:10.1371/journal.pcbi.1000951.g001

gap/GABA input) is applied, relative to the time of the preceding
spike, and the time until the next spike occurs (t,). This clearly
deviates from the line of slope —1 (dotted line) expected in the
absence of any input, and has two approximately linear regions
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separated by a sharp transition. Note the characteristic progressive
decrease in the variability of this relationship, as #, increases — this
is because the earlier the input arrives, the more time is left for
integrating the effects of noise before the next spike.
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The synaptic phase-resetting function and the effect of
varying electrical and inhibitory conductances

From this relationship, we can estimate the phase at the
moment that each input is applied, and the amount of phase
resetting A¢ produced by the input (see Methods), as shown in
Fig. 1d, in which A¢ is plotted as a function of ¢. This relationship
- the total phase-resetting effect of a synaptic input as a function of
the phase at which it arrives — we will refer to as a synaptic phase-
resetting function (SPRF), to distinguish it from a classical phase
response or phase-resetting curve, which normally describes
responses to very small, brief inputs, whose effects can be
considered to sum linearly. We examined how the parameters of
the synaptic input determine the shape of the SPRF, by varying
the magnitude of gap-junctional and GABAergic conductance,
applied individually or together (Fig. 2a~f). These components
vary physiologically, since FS cells’ interconnections can be purely
GABAergic (one-way or reciprocal), purely gap-junctional or both
[12,13,14]. In addition, there is a wide range of electrical synaptic
strengths [28].

Purely GABA input produced a phase delay early in the cycle,
which increased during the cycle until an abrupt critical point,
beyond which it had no effect (Fig. 2a). Introducing a small
(250 pS) gap junction, caused a linear region of phase advance
(Fig. 2b), as in Fig. 1d, which had an abrupt onset at a phase of
about 1.27. A sharp transition marks the boundary between this
region and the first, phase delay part of the phase cycle. The slope
of the phase advance region became more negative, and the
boundary between the regions, designated the critical phase ¢,
shifted earlier in the cycle, as gap junctional conductance
increased (Fig. 2¢, d, e). With no GABAergic input, a phase
advance region produced by gap junctional input is seen in
isolation (Fig. 2f).

Thus, GABAergic input retards, and gap-junctional input
advances the phase of firing. For the compound gap/GABA
input, the early region of phase delay has a slope determined by
the amplitude of inhibition, g (see Methods), and switches
abruptly, midcycle, to a region of decreasing phase advance,
whose slope is determined by g, with no detectable sign of
cancellation of the two regions in midcycle. The only clear
interaction between the electrical and GABAergic components
was that a larger gap junctional conductance shifted ¢, to earlier
in the cycle.

To quantify the goodness of fit of the piecewise linear SPRF, we
performed a chi-square test of 130 phase response curves (in total
6111 data points, 10 cells). For each SPRF, variance of phase was
estimated from an unperturbed spike train within the same
experiment (median 0% =0.021 (rad/ 2m% 111 of 130 SPRFs
contained no significant difference between the model fit and
experimental result ($<<0.05). The average reduced chi-square
value was 0.80, meaning that the overall fit of the model is
extremely good, given the measured degree of variance in the
phase. On the whole, the relatively simple piecewise linear model
performs remarkably well.

The dependencies of the slopes and breakpoint on the strengths
of g; and g, were also fitted by linear relationships (Figure 3). The
negative slope of the region of phase delay was proportional to
inhibition («=ag;, Fig. 3b), the negative slope of the phase
advance region was proportional to excitation (f=bg,, Fig. 3a),
while ¢, was weakly sensitive to g, (§,=c—dg,, Fig. 3c). Average
values of @ and & of this piecewise linear model for the SPRF were
a=0.16/nS m=7 cells, 3 cells providing insufficient data for
analyzing this dependency), b=0.69/n8 (n = 10 cells). ¢ and d were
more variable from cell to cell, and the pooled data in fact showed
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little overall dependence on g, (not shown). Nevertheless (e.g.
Fig. 3c), the weak relationship is clear within individual cells.

Entrainment by synaptic input

Having established that conductances resembling the synaptic
mput of neighboring FS cells can consistently modify spike timing,
we next tested the ability of FS cells to synchronize to, or to be
entrained by this input. To wvisualize the time course of
entrainment, we examined responses stroboscopically [22],
sampling the phase of the FS cell at the times of periodic stimuli,
Figure 4 shows such an experiment. Before the conductance pulses
are switched on (open circles), the phase changes in a “sawtooth”
pattern, reflecting detuning - the continuously growing phase
difference between two oscillators of different frequencies. After
the conductance transients begin (Fig. 4, filled circles), the phase
quickly converges on a fixed value relative to the stimulus, at about
0.67 (dashed line), which matched the expected equilibrium phase
difference from solving Equation 2 with parameters for this cell.
Thus the FS cell becomes phase-locked and frequency-locked to
the stimulus train, with spikes occurring around 0.6m before, or
equivalently 1.4m after cach stimulus. After the end of the
stimulation train, the phase reverts to the drifting detuned state.

The piecewise linear SPRF could also account for the frequency
band over which synchronization was possible. Fig. 5 shows an
experiment in which an FS neuron firing at a steady frequency F
was stimulated repeatedly with a periodic synaptic conductance
input at frequency f; and an index of the synchrony of the cell with
the input (S, varying between 0 and 1, see Methods) was measured
over a range of frequencies. As seen in Fig. 5a, this changes from a
low level when f is very different from F, to a high value
approaching 1, when f =~ F. Because of the effects of noise in the
neuron, there is no absolute phase locking (§<<1), and the change
in synchrony with input frequency does not have abrupt
boundaries, but falls away continuously as the difference between
JSand F grows. It is clear that the central region of high synchrony
lies below the unperturbed or natural firing frequency Fwhen only
inhibition is applied (Fig. 5b), above F when only gap-junctional
conductance is applied (Fig. 5¢), or both above and below F when
a compound input is applied (Fig 5a). This observation was
duplicated by the piecewise linear model of the SPRF, analysis of
which (see Methods) predicted the 1:1 synchronized frequency
bands shown in gray, for the deterministic (noise-free) case — in this
neuron, these boundaries corresponds to a synchrony of about 0.7.
The synchronized frequency band is much narrower for either
gap-junctional stimulation alone (Fig. 5b) or GABAergic inhibition
alone (Fig. 5b). Iterations of the noisy stroboscopic map derived
from the fitted SPRF (Eq. 2) showed that it could also reproduce
the distribution of § adequately (black curves in Fig. 5a—c). Thus
the piecewise linear model of the SPRF appears to account very
well, both for the frequency range and degree of synchronization
in noise.

Frequency bands of deterministic and stochastic
synchronization

We next used the SPRF to predict the frequency ranges of
entrainment for different strengths of inhibition and electrical
coupling (Fig. 6), by analyzing the bifurcations at the onset of
synchrony in the stroboscopic map of the phase, i.e. the map of the
phase of the postsynaptic cell at successive presynaptic spike times in a
regular train (see Methods, equation 2). For the deterministic (zero
noise) case, 1:1 entrainment corresponded to a stable fixed point of
the map, labelled ¢+ in the example shown in Fig. 6a. As the amount
of detuning (difference between f and F) varies, the map shifts
vertically, so that at certain stimulus frequencies, the fixed point
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Figure 2. SPRFs in one cell for different strengths of gap-junctional and inhibitory conductance. a) inhibition only. Phase delay increases
linearly as the phase of onset of the synaptic perturbation increases, before an abrupt loss of sensitivity late in the cycle. b) As gap-junctional
conductance is introduced, phase delay switches to a region of linear phase advance late in the cycle “+” symbols indicate outliers excluded from the
piecewise linear fit using Grubbs' test, as described in the Methods. ¢), d), e). As gap-junctional conductance is increased, the slope of the phase
advance region becomes larger, and the point of switching is shifted progressively earlier in the cycle. f. switching off inhibition completely leaves

only the late phase advance (compare to (d)).
doi:10.1371/journal.pcbi.1000951.9002

disappears (at a “corner-collision” bifurcation [31]). Thus, it is
possible to plot the regions in which there is synchronization in the
geof plane (Fig 6b) or the g;.f plane (Fig. 6¢,d). These form Arnol’d
tongues [22] in which the frequency range of entrainment shrinks as
the synaptic strength is reduced.

This analysis shows a number of effects which are relevant to
the physiological function of FS neurons. Increasing g, strongly
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increased the upper frequency limit of entrainment and weakly
increased the lower limit (Figs. 6b). When g;=0 it is impossible to
entrain firing with f/<F. Conversely, with g, =0, it is impossible to
entrain for f>F, and increasing g; strongly reduces the lower
frequency limit of entrainment (Fig. 6¢,d).

Since physiologically, entrainment must occur in the face of
considerable noise, we also investigated the effect of adding noise
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Figure 3. SPRF parameters depend on the strength of synaptic perturbation in a simple manner. a. Dependence of the phase advance
slope (— ) on the gap-junctional conductance (for g;=1.5 nS). Data pooled from 120 measurements in 10 cells. b. Dependence of the phase delay
slope (—a) on g;. Data from 43 measurements in 7 cells. c. Dependence of the critical phase at which delay switches to advance (¢,) on the gap-

junctional conductance g, in one cell.
doi:10.1371/journal.pcbi.1000951.g003

to the phase map. It is possible to define stochastic bifurcation
points of the map F, at which there is a qualitative change in the
nature of the stochastic dynamics. These points coincide with the
deterministic bifurcation frequencies [32] for =0 (see Methods
for details). We examined the frequency extents of this kind of
stochastic entrainment at different noise levels (Fig. 6b—d). In all
cases, increasing the noise in the phase shrinks the region of
entrainment. For 6=0.1 rad/2n, which was a typical noise level in
these cells  vitro, the area of stochastic entrainment shrank to a
third or less of the noise-free case. This noise-induced distortion is
not symmetrical in the frequency axis. For example, Fig. 6d shows
that in the absence of electrical coupling, the lower frequency limit
of entrainment was highly susceptible to noise while the upper
limit was not. The greater the level of electrical coupling (g.), the
more the upper limit was reduced by noise.

The SPRF makes several predictions. First, FS cells receiving
purely electrical synaptic input will synchronize effectively when
driven at frequencies higher than F. Higher frequencies can be
followed with stronger electrical input. Second, cells will
synchronize to purely inhibitory input at frequencies lower than
F, and stronger inhibition allows lower frequencies to be followed.
Third, combined electrical and inhibitory input allows cells to
synchronize to frequencies both above and below their unper-
turbed frequency. Although noise diminishes the frequency band
of synchronization, sometimes asymmetrically, these conclusions
remain valid in the presence of noise. For typical strengths of
combined electrical-inhibitory synaptic connections, 20 Hz or
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Figure 4. Entrainment of firing to a periodic conductance input.
An example of a stroboscopic plot of the phase of a neuron, observed in
phase with stimulation by a compound synaptic-like conductance of
(F=56 Hz, f=50 Hz, g.=750 pS and g;=3 nS). The conductance pulses
are applied during the period indicated by filled circles. Dashed line
indicates the equilibrium solution of Eqg. 2 for this cell.
doi:10.1371/journal.pcbi.1000951.g004
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greater bandwidths of stochastic synchronization persist even in
quite high levels of noise (¢ =0.1).

Discussion

Measuring the effect of synaptic conductance on phase
of periodic firing

A number of previous theoretical and experimental studies have
examined the phase-resetting properties of cortical neurons.
Ermentrout and Kopell developed a theoretical approach to
calculate what they termed the “synaptic interaction function”
based on phase response curves and the assumption of weak
coupling [33]. Reyes and Fetz (1993) stimulated synaptic inputs to
regularly-firing pyramidal neurons to measure the phase resetting
produced by EPSPs [34], while Stoop et al. (2000) used similar
measurements to predict input frequency regions for entrainment
and chaos [35]. Netoff et al. used dynamic-clamp to measure phase-
resetting (or spike-time response curves) by artificial excitatory or
inhibitory conductances in excitatory stellate cells of medial
entorhinal cortex, and oriens-lacunosum-molecular interneurons
in the CAl region of hippocampus [36], and were able to
demonstrate synchronization in pairs of neurons connected by
artificial conductances mimicking synaptic connections, or between
biological neurons and simulated neurons. In fast-spiking inhibitory
cells, Mancilla et al. (2007) measured phase-resetting relationships
for small current pulses (weak coupling) and showed that they could
account quite well for synchronization of pairs of gap-junction
coupled FS cells, both experimentally and in a biophysical model of
TS neurons [37]. In this paper, we go further, by using conductance
injection (dynamic clamp) to reproduce the combined effect of gap-
junctional and strong synaptic connections, and using this to predict
the resulting synchronized frequency bands, and their dependence
on synaptic strength, including the effect of noise in the synaptic
phase-resetting function on synchronization.

The conductance pulses which we have used are based on the
physiological properties of the synaptic connections between FS
neurons. In FS neurons of a basket morphology, APs initiate in the
axon [38] arising usually from a proximal dendrite, [39] and
receive many of their inhibitory connections and gap junctions
from other fast-spiking interneurons perisomatically [14]. Thus,
dynamic clamp recordings at the soma should provide a
reasonably realistic simulation of the natural gap-junctional and
fast inhibitory input.

In order to carry out this analysis, we have made the
approximation that, between spikes, the presynaptic voltage of the
gap-junctional input was held at a resting potential of =70 mV, . In
other words, we have focused on the effect of gap-junctional current
flow associated with the discrete event of the presynaptic spike. This
approach does not take account of the way in which presynaptic
membrane potential would gradually depolarize between spikes, if
firing periodically. We have also ignored the two-way nature of
coupling between cell pairs. In other words we model entrainment of
one cell by another, rather than synchronization of a symmetrical
coupled pair. Although both electrical and inhibitory coupling can
often be asymmetrical [13,40], they may also be quite symmetrical.
However, the entrainment studied here models the situation where
the presynaptic cell is already imperturbably-driven as part of a strong
synchronously-firing assembly of FS neurons, so that the phase and
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Figure 5. Frequency dependence of entrainment. The synchrony measure S (see Methods) is plotted as a function of the frequency of the
entraining input. Conductance values as shown. a) compound gap-junctional/inhibitory input. b) pure inhibitory input. ¢} pure gap-junctional input.
d) random level of synchrony in the absence of conductance input. Arrowheads indicate the natural firing frequency F in the absence of
perturbations, and gray regions indicate the frequency bands of 1:1 synchronization predicted by the measured SPRF. Solid curves in (a)-(c) show the

calculated steady-state synchrony of the fitted noisy SPRF model.
doi:10.1371/journal.pchi.1000951.g005

frequency of its firing will be clamped to that of its predominant input.
Thus, the SPRF that we measure should be an effective model for
describing recruitment of new cells to such a synchronous assembly.

It is expected that the preferred firing frequency F of the
postsynaptic cell may also affect the form of the SPRF, since the
timing of intrinsic ion channel kinetics will shift relative to phase as
the cycle length changes. In a few experiments where we were able
to address this issue, we indeed found evidence of a change in the
parameters of the SPRF model. 4, the dependence of phase delay
on g, increased quite strongly as firing frequency increased, and ¢,
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shifted earlier in the cycle as firing frequency increased. The
dependence of b and 4 on firing frequency was not marked. The
relatively strong effect on a may partly reflect the long duration of
the IPSP conductance relative to the period of the cycle.

The synaptic phase-resetting function

The synaptic phase-resetting function, or SPRF, for compound
nput was distinguished by the following features: an extremely
abrupt midcycle switch from phase delay to phase advance, which
shifted weakly towards the early part of the cycle as the strength of
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Figure 6. Bifurcation analysis of frequency bands of synchronization. a) piecewise linear map between phase at stimulus n and phase at
stimulus n+7. The point ¢* on the diagonal is a stable fixed point of the map, as illustrated by the converging orbit ¢;, @5, ... showing that 1:1
entrainment occurs at this stimulus frequency. b) bifurcation points of 1:1 entrainment in the g,, f plane, g;=1.5 nS. 1:1 entrainment occurs in the gray
regions. ¢ =0, deterministic case. For 6=>0, stochastic bifurcation points with added Gaussian noise in the phase (see text). ¢) synchronization region in
the g,, f plane, with g, = 0. (d) as in (b), with g.=0.75 nS. Raising g, strongly increases the upper frequency limit of entrainment, and weakly increases the
lower limit. Noise shrinks the stochastic synchronization region. Parameters: a=0.12/nS, b=0.625/nS, ¢=0.8*2r rad, d=0.2*2% rad/nS.

doi:10.1371/journal.pcbi.1000951.g006

electrical coupling was increased; amplification of the phase delay
region by increasing inhibition; and amplification of the phase
advance region by increasing gap-junctional coupling. We found
that these qualitative features were also present in a biophysical
model of firing in fast-spiking cells [41] (see Methods), incorpo-
rating voltage-gated sodium, Kv1.3 and Kv3.1/3.2 potassium
channels, and stimulated with exactly the same inputs as used
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experimentally (Fig. 7). In this fully-deterministic model, we also
observed a very fine local structure of fluctuations around the main
relationship, particularly in the phase delay. Despite these
qualitative similarities between the model and experimental
results, there were also major differences. In experiments, phase
advance was produced exclusively by gap-junctional conductance
and phase delay exclusively by inhibition, while in the model, gap-
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