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Paper

The hyperpolarization-activated current regulates synchronization of
gap-junction coupled dopaminergic neurons in the midbrain

— A combined approach between computational modeling and electrophysiological recording ——

Takashi Tateno™ **, Member

To examine the functional role of hyperpolarization-activated and cyclic nucleotide-gated (HCN) current observed in
mesencephalic dopaminergic neurons, we constructed a conductance-based model that can mimic the electrical properties
obtained in electrophysiological recordings of rat brain slices. In the model, blocking the HCN current resulted in a reduction of
spontaneous firing rate and a change in the properties of autonomous pacemaking. In addition, reduced one-dimensional phase
equations and their coupled oscillators were analyzed. The analysis indicated that HCN channels can regulate the extent of
synchronization of coupled dopaminergic neurons through gap-junction connections. Thus, the HCN current can effectively
shape the autonomous and cooperative firing of dopaminergic neurons in the midbrain.

Keywords : conductance-based model, coupled oscillators, electrophysiological recording, phase equation, stability analysis

1. Introduction

Mesencephalic dopaminergic (DA) neurons play a key role in
the functions of the basal ganglia including reward-based learning
[1], cognition [2], and motor control [3]. Although recent studies
have provided significant insights into the properties of many ion
channels expressed in DA neurons [4], little attention has been
paid to hyperpolarization-activated and cyclic nucleotide-gated
(HCN) channels and their roles in neural information processing.
Among vertebrate voltage-gated ion channels, HCN channels have
two unique properties: (i) they have a reverse voltage dependence
that leads to activation upon hyperpolarization; and (ii)
voltage-dependent opening of these channels is directly regulated
by the binding of cyclic adenosine monophosphate (cAMP) [5].
However, a direct link between HCN channels and superthreshold
membrane-voltage phenomena such as firing rate modulation and
the synchronization of action potentials among DA cells has not
been systematically investigated.

In this study, to understand the functional role of HCN channels
systematically, we first constructed a conductance-based
Hodgkin—Huxley type DA cell model on the basis of reported
results in the literature and data recoded from DA cells in rat
midbrain slices. Second, to gain some insight into synchronized
phenomena in gap junction-coupled DA neurons, a weak
coupled-oscillator phase-equation model of two identical DA
neuron pairs was derived after numerically computing the phase
resetting curves of regular firing using the conductance-based
model. Third, to examine synchronized phenomena among DA
cells, a stability analysis of synchronization between coupled
oscillators was applied to the model. The results indicated that
HCN channels can regulate not only the frequency of firing and
subthreshold oscillations in membrane voltage but also the extent
of synchronization and desynchronization among DA cells. Hence,
the study presented here shed light on to a new functional role in
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DA cells of the midbrain, and

electrophysiological approaches.

using computational

2. Materials and methods

2.1 Electrophysiological recording

At a temperature of 34°C, we recorded membrane voltage from
DA neurons in slices of rat midbrain from animals aged 14-16
days. For details of the preparation, solutions, and whole-cell
recording technique, see Ref. [6]. All procedures in this study
were approved by Osaka University and complied with the NIH
Guidelines for Animal Use.

2,2 A conductance-based model

First, the somatic and single-compartment model was
represented by the following equations according to the
Hodgkin—Huxley type conductance-based scheme [7]. The model
includes ion channel currents that are known to exist in the somata
of DA cells. The model is based on those reported by Amini et al.
[8] and Kuznetsov et al. [9]. However, some terms in the current
balance equation such as ATP-pump and Na'/Ca®*-exchanger
mechanisms were omitted for simplicity. Instead, several ion
channel current terms were added on the basis of some recent
electrophysiological studies described below. In addition, some
parameters in the models were modified from data in the recent
literature and from the recording carried out in the present study.
The current balance equation in a soma is described by

Cm%:_(]Na+IK+IA+IM+]h+ICa+ISK+lL)+Iapp

where C,, is the somatic membrane capacitance and V is the
somatic membrane potential. The above model includes the
transient Na* current (ly,), delayed rectifier K™ current (), A-type
K" current (I,), muscarinic-sensitive K current (k)
hyper-polarization activation current (f), leakage current (Zp),
Ca** current (Ig,), Ca*"-activated K* or SK current (Jsg), and an
externally applied current (Z,). Furthermore, the Ca®* current has
the following four subtypes:
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where Icar, Icans Ioap and Ic,t represent L-type, N-type, P-type, and
T-type Ca®" currents, respectively, and they are different in their
voltage dependency.

Excluding /g, for an ion channel type j, the current description
(Z)) can be written by

I = ama’nb./(V-—Ej)

PR s B

where g, mj;, m; and E; are a maximum conductance, the
Hodgkin—Huxley type activation and inactivation gating variables,
and the reversal potential of the ion, respectively. Here, a; and b;
are some non-negative integers. The gating variables are solutions
of the following first-order differential equation described by
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where z is one of the gate variables (i.e., m; or n). In Eq.

), z, (V) and 7,(V) are the voltage-dependent steady-state

value and time-constant of the gating variable z at membrane
voltage V, respectively.

For simplicity, we characterized the steady-state variable by a
sigmoid or Boltzmann-type relationship, and the time constant (in

ms) by a Gaussian relationship; they are described in the Appendix.

Individual ionic membrane currents were characterized by their fit

to published voltage-clamp experimental data, which are available

in the literature, or to unpublished data recorded in our experiment.

In addition, we used some ion-channel kinetics models from
published DA neuron models [8,9]. However, data fitting obtained
from voltage-clamp recording is not the only criteria for
formulating ionic current descriptions. These descriptions may
have to be modified to fit whole-cell membrane potential data in
our experiments. These adjustments are justified considering that
the voltage-clamp experiments were performed on a particular DA
cell of a particular mouse, for example, and there is considerable
variation in the waveform of the ionic current response from cell
to cell. Therefore, we adjusted the model parameters (specifically,
several maximum conductance values of ion channels) to fit the
data in our experiment.
Calcium dynamics of the soma is described as

d[Ca™], _ 23

2+
dt aF P(:a[ca ]I)

70 F( I, — 2
where [Ca™7; is the intracellular Ca** concentration of the soma
and I, is the sum of all the calcium currents. Intracellular Ca®*
was removed from the cell by an unsaturable pump with
maximum rate density Pc., and the pump was treated as
nonelectrogenic. £ is the ratio of free to total calcium, 7 is the time
constant of [Ca®"]; changes, zc, is the valence of calcium, and F is
Faraday’s constant.

2.3 Model parameter selection

In the following section, we describe the kinetics of the ion
channels in the above model and parameters in detail. The
voltage-dependent activation and/or inactivation curves and time
constant used in the model are given in Appendix.
Transient Na* current (Jy,) and delayed rectifier K current
(k). The Iy, and I gating kinetics are the same as those written in
Kuznetsov et al. [9]. For The Iy, and Ik gating kinetics in the
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model, the order pairs (a;, b)) of the activation and inactivation
variables in Eq. (3) are (3, 1) and (4, 0), respectively. However,
the voltage-dependency functions of the gate variables and time
constants are mimicked by using a sigmoid relationship and by a
Gaussian relationship, respectively, as stated previously. The
maximum conductance values gn=120 mS/cm? and 2x=0.2
mS/cm? and the reversal potential values En,=55 mV and Ex=—90
mV were used.

Transient outward A-type potassium current (/). The
4-aminopyridine (4-AP)-sensitive, or A-type potassium current
({s), has been observed in DA neurons [10,11]. The A-type
potassium current in DA neurons can contribute to spontaneous
firing and plays a role in the regulation of action-potential
frequency by slowing the recovery of the membrane potential to
baseline levels [10,12]. The steady state activation and
inactivation characteristics of I, were determined by fitting
published voltage-clamp data [11]. The order pair of the activation
and inactivation variables is (3, 1). The maximum conductance
value g,=0.5 mS/cm” was used.

Muscarinic-sensitive K™ current (fy). The muscarinic-sensitive
K" current or M-current () is a voltage-dependent slow delayed
rectifier K* current and is activated at the subthreshold range of
the membrane potential. This current is also known to be
Tetraethylammonium chloride (TEA) sensitive and contributes to
the regulation of action potential generation and excitability [13].
Iy has been shown to be present in midbrain DA neurons with
intracellular voltage-clamp recording in brain slices [14,15]. The
order pair of the activation and inactivation variables is (1, 0). The
maximum conductance value gy~=15.0 uS/cm? was used.
Hyperpolarization-activated cation current (/). Doperminergic
neurons have a hyperpolarization-activated cation current (l;)
[16,17]. The voltage dependency of steady state activation of J,
was determined by fitting our unpublished data, which was
recorded from rat midbrain slices in our voltage-clamp recording
experiments. In the 7, model, the voltage dependency of
conductance and time constant are similar to the model in Amini
et al. [8], although the parameters were different on the basis of
the data [16,17] (see also Appendix A). The order pair of the
activation and inactivation variables is (1, 0). The reversal
potential £;=—39.0 mV was used. In this analysis, the maximum
conductance value g,=0.135 mS/cm? was used as the default
value; however, the value was changed in some analyses described
in Results to examine the effects of HCN channel expression.
Calcium currents (Jc,). As described previously, the model
includes L-, N-, P-, and T-type voltage-dependent calcium currents.
For L-, N-, and P-type calcium currents, the voltage dependency
of a steady-state of the gate variables and the time constant
functions was obtained after fitting the parameters to
conductance—voltage (g—V) relationships reported in Durante et al.
[18]. Similarly, for the low-threshold T-type Ca®* current, the
voltage dependency of a steady state of the gate variables and time
constant functions was obtained from results in Kang and Kitai
[19]. Our parameters are modifications of those used by Amini et
al. [8] because of our g-V function selection. The reversal potential
for the calcium currents has been set to a constant 100 mV as used
in Kuznetsov et al. [9] (i.e., Ec;,=100 mV). For the L-, N-, P-, and
T-types of calcium current, the order pairs of the activation and
inactivation variables were (1, 0) (1, 1), (1, 1), and (1, 1),
respectively, and the maximum conductance values gc,=0.15,
2can—0.0375, gcp=0.0375, and g¢,7=0.02 in mS/cm?® were used.
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Calcium-activated small-conductance potassium current (Igx).
DA neurons are known to contain at least two types of
calcium-activated potassium currents [20]. The apamin-sensitive,
small-conductance (SK) Ca**-activated K* current or slow
afterhyperpolarization (AHP) current is included in the model.
The SK channel conductance (gsx) was represented as

[Cal’
[Ca] + K]

g« ([Cal) = g

The conductance model was the same as that reported in Kohler et
al. [21]. The conductance depends on the forth power of
intracellular calcium concentration ([Ca®*];) to best represent the
known characteristic of the SK channel [21]. The calcium
half-activation concentration value K, has been set to 250 nM
[9,22]. The other Ca**-dependent K" current is the
big-conductance (BK) or maxi-type channel, which is known to be
apamin-insensitive and blocked by TEA. Although the BK
channel current is associated with the modulation of excitability
because of its role in producing a fast AHP [20], it is less essential
for slow underlying oscillations and super-threshold spiking
behaviors than the SK channel current. In the present study,
therefore, we have excluded the BK current from our model. The
maximum conductance value ggx=50.0 pS/cm® was used.

Leak current (/1). The present model includes a nonspecific
linear background current without gate variables. This current is
the main component of the input resistance of the model. In
current-clamp recording, we measured the input resistance of DA
neurons using 600-ms hyperpolarizing current pulses with
amplitude —10 to —20 pA by holding the potential at —60 mV, and
the average input resistance of DA cells was 630 MQ. The result
showed that the conductance value gy was 12.0 puS/cm® by
assuming the soma was a cylinder whose diameter and length
were 14 pm and 30 um, respectively. The reversal potential value
was set to Ex=90 mV as used in Kuznetsov et al. [9]. In the
cutrent balance Eq. (1), the somatic membrane capacitance C,=1
uF/cm? was used.

Calcium dynamics. The parameters in Eq. (5) were the same
those used in the Kuznetsov et al. model [9]: f=0.050, 1=4.0 ms,
z¢=2.0, and P,=2,500 pm/s.

Computer simulations were performed using XPPAUT [23]
with the stiff method and Matlab Ver. 7.5 (Mathworks, Natick,
Massachusetts, U.S.A.) with a nonstiff solver (a build-in function
of the Runge—Kutta 4th/5th-order method, ode45). A time step of
50 us was used in all computer simulations.

2.4 Phase-resetting curves.

DA neurons in vivo and in vitro show spontaneous periodic
activity at the rate of 0.5-4.0 Hz. Generally speaking, the
mechanisms underlying such periodic activity of a system can be
complex with many hidden variables, and all dynamical variables
in such a system thus cannot be directly observed. However,
useful information about the dynamics of the system can be gained
by studying phase-resetting curves (PRCs) [24], which describe
the phase shift of the oscillation in response to a perturbing pulse
of variable amplitude at each phase of the oscillation. A
perturbation is weak if its effect on the amplitude and intrinsic
period is negligible. This approximation is often valid in firing
neurons, where a small current pulse delays or advances the next
spike (action potential) without changing its shape or average
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firing frequency. However, to construct precise PRCs, we need to
apply short pulse-like stimulation to neurons repetitively at many
phase points during one cycle for a long time [25]. As the
experimental method usually damages neurons, it is hard to obtain
true PRCs in electrophysiological experiments. In contrast, if we
have a complete description of periodic oscillations, and if it is
written by a set of ordinary differential equations, the PRC is
directly calculated using the adjoint method proposed by Williams
and Bowtell [26]. Because such a complete description of
dynamical variables is impossible in real neurons, therefore, PRCs
obtained from the present model can give a reasonable counterpart
in DA neurons.

2.5 A coupled oscillator model and its stability analysis

To gain some insight into synchronized phenomena in gap
junction-coupled DA neurons, a weakly coupled one-dimensional
phase-equation model of two identical DA neurons was
constructed. If the neural oscillators have robust limit cycles, the
full equations reduce to ones whose interactions are through the
differences in the phases of their periodic cycles. Much has been
written about such coupled phase-oscillators (see Koppel and
Ermentrout [27] and Hoppensteadt and Izhikevich [28] for review).
Here, we assume that two identical neural oscillators are reduced
to two phase equations as following: for 7, /=1 or 2,

do,ldt=w,+cH(6,-6,) (i#)),

where §; and 8, are phases in the two limit cycles, wg is the
frequency of the uncoupled oscillators, and ¢ is a small parameter.
The interaction function H is T-periodic in the argument and it can
be explicitly computed from the original set of Egs. (1)-(5).

Letg =6, -0, . Then,

H@)=g/T- [ PO[V+4) -0,

where g is the conductance of gap-junction coupling between the
cells, T is the period of the original limit cycles, P(¢) is the PRC,
and V; (¢) is the membrane voltage of the original limit cycles. In
Eq. (8), the conductance g only contributes the function H as a
scale factor. In the following, therefore, we consider g=1.0 uS/cm’.
The function of P(¢) is the normalized T-periodic solution to the
adjoint equation of the present model and numerically computed
by the method proposed by Williams and Bowtell [26]. One of the
goals of the analysis in this study is to determine the stability of
the synchronous, phase-locked, and antiphase-locked solutions,
and how it depends on the parameters (specifically, the HCN
channel conductance) in the model. It is known that a

4 if and if

dH(¢,)/ d¢ > 0[29]. In particular, the synchronous phase-locked

phase-locked  solution is  stable only

solution is stable if and only ifdH(0)/d¢>0.In many neural

systems, there exists the possibility of delays at many levels. In
particular, there are delays due to axonal and dendritic propagation,
and delays encountered when gap-junction coupling was far from
the source of the oscillation or the spike initiation zone and must
be communicated through dendrites. In the simplest case, a delay
effect is described by a phase transition of the interaction function
with delay 7.



