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S) Estimate 8 by weighted least squares for correlated outcomes:
b* = Vb.X'C_lL,
w* = Var(b) = (' CN),

where x is the vector of observed nonzero exposure levels and C = (’:3\7(L) has diagonal
elements v, and off-diagonal elements ¢,.

Step 5 is easily carried out using a matrix programming language such as GAUSS, SC, APL,

S-PLUS, or SAS IML..

Consistency of b* under the logit model follows immediately from consistency of L. As
Appendix 3 shows, b* is more efficient than b, and v,* is consistent for var(b*) under the
assumptions that
1) the crude odds ratio parameters approximately equal the adjusted odds ratio parameters,

i.e., the sampling distribution is strictly collapsible (3);

2) the correlation matrices of the crude and adjusted odds ratios are approximately equal;

3) the variances of the crude odds ratios can be approximated by the usual formulas based
on the multinomial or Poisson distributions.

Assumption 3 is a standard assumption for unmatched studies. When assumption 3 is

violated, it is usually because matching has been employed; nevertheless, numerous studies

indicate that the impact of matching on variances is usually small (e.g., see reference 4).

Assumptions 1 and 2 will be satisfied when the adjustment factors are only weakly related

to the exposure and outcome. Assumption | can be checked by comparing the crude odds

ratios with the adjusted odds ratios. In any case, some set of externally specified constraints
is necessary in order to allow estimation to proceed when the covariate-specific data are
unreported, and assumptions -3 are far more reasonable than assuming that the L,’s are
uncorrelated (which has, up until now, been the only recourse in dose-response meta-

analyses). We also note that assumptions 1-3 are sufficient but not necessary for b* and v*

to outperform b and v.

For the Rohan and McMichael (2) data, we applied the above steps as follows:

1) The exposure categories were assigned levels of 0, 2, 6, and 11 g/day; N = (337, 167, 186,
212)"; M, = 451; L = (log 0.80, log 1.16, log 1.57)" = (—0.223, 0.148, 0.451)’; and v =
(0.0542, 0.0563, 0.0563)".

2) The fitted cell values were 160.5, 70.3, 95.5, and 124.7 for cases and 176.5, 96.7, 90.5,
and 87.3 for controls at exposure levels 0, 2, 6, and 11. As a numerical check on the
computations, note that these reproduce the adjusted odds ratios, e.g., 70.3(176.5)/
160.5(96.7) = 0.80.

3) s, =(1/70.3 + 1/96.7 + 1/160.5 + 1/176.5)* = 0.19095; similarly, ss = 0.18280 and
s = 0.17711. Thus, r,6 = (1/160.5 + 1/176.5)/0.19095(0.18280) = 0.3408; similarly,
= 0.3518 and s = 0.3674.

4) c36 = 0.3408[0.0542(0.0563)]* = 0.0188; similarly, ¢;;, = 0.0194 and cg,, = 0.0207.

5) x=(2,6, 11),

0.0188  0.0563  0.0207
0.0194  0.0207  0.0563

vp* = 0.0004270, and b* = 0.0454.
The last two numbers should be contrasted with the uncorrected results, b = 0.0334 and
v» = 0.0003494. The regression-fitted odds ratio for the highest alcohol level (11 g/day)
versus no alcohol is exp[11(0.0454)] = 1.65 for the corrected results but exp[11(0.0334)] =
1.44 for the uncorrected results. The inverse-variance weight assigned to this study in a meta-
analysis of the type discussed below would be 1/0.0004270 = 2,342 using the covariance-
corrected variance but 1/0.0003494 = 2,862 using the uncorrected variance.

[0.0542 0.0188 0.0194]
C= i
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Because Rohan and McMichael (2) reported the crude data, we may check assumption 1
by comparing the crude odds ratios with the adjusted odds ratios. All of the crude odds
ratios are within 20 percent of the adjusted odds ratios, which indicates that there is no
major violation of assumption 1.

The above method extends to analyses of person-time rate ratios, upon appropriate
redefinition of terms. Beta becomes the coefficient in a log-linear (exponential) Poisson
regression; N, becomes the total person-time observed at exposure level x; the L,’s become
adjusted log rate ratios; cell counts are fitted such that A,Ny/(A4eN,) = exp{L.); and ry,
becomes 1/(Aps,s:), where 5,2 = M, /A, Ao. For the analysis of risk ratios (as in a cohort study
with N, persons, rather than person-time), these formulas may be applied with 5,2 = M,/

A.\'AO - l/No - I/N\ and Iz = (l/AO - 1/IVO)/S,\'Sz-

EMPIRICAL COMPARISONS OF THE
ESTIMATORS

The objective of the above method is to
approximate the logistic coefficient that
would have been obtained had either more
complete study data or the estimated logistic
coefficient been reported, and to provide a
less biased variance estimate than was pre-
viously available. To compare and evaluate
the uncorrected and corrected estimators, we
analyzed 10 published data sets (5-14) for
which there were enough data reported to
compute the maximum likelihood estimate
of the logistic coefficient, 8.

The results are summarized in table 2. As
expected, both b and b* are fairly close to
the logistic coefficient from the full data.
Also as expected, the variance estimator v
for b appears to underestimate the true vari-
ance of b, for it provides values below the
estimated variance for 8 in 9 out of 10 of
the data sets.

The variance estimates for 4* tend to
equal or exceed the variance estimates for §;
this is somewhat reassuring, given that 8 is
fully efficient and b* is generally not unless
assumptions 1-3 hold. One large discrep-
ancy occurs for the alcohol-esophageal can-
cer study (10). This study shows considera-
ble heterogeneity of the alcohol slope across
age categories; in such cases, the ordinary
(inverse-information) variance estimate for
the maximum likelihood estimate is suspect,
and some authors recommend refitting the
model with a dispersion parameter or with
random effects to account for the apparent
overdispersion (15). With a random-effect
term added to the full-data model, the vari-

ance estimate for 8 is much closer to that
for b*. We also applied b* to data sets in
which there was statistically significant het-
erogeneity of the slope across strata (not
shown), and found its variance estimate to
be much larger than the variance estimate
for 8 in those cases; this result is again reas-
suring, since the conventional variance esti-
mate for 8 would be an underestimate in
such cases (15).

APPLICATION TO META-ANALYSIS

The coefficient and variance estimates ob-
tained from research reports often form the
primary data for meta-analysis. Differences
among the coefficients may be analyzed us-
ing techniques analogous to the standard
inverse-variance weighting techniques used
in contingency table analysis (1); if there is
no evidence of important differences among
the coefficients, one may conveniently sum-
marize the meta-analytic results by comput-
ing a pooled (overall) coefficient estimate.
The * primary impact of our correction
method on such meta-analyses will be to
alter the relative weighting of the study-
specific coefficients and to produce a more
accurate variance estimate for the pooled
coefficient estimate.

We recomputed the meta-analysis of al-
cohol use and breast cancer by Longnecker
et al. (16) using both our covariance-
corrected method and the uncorrected
method (1). The results are given in table 3.
The change in weight produced by the cor-
rection ranged from —30 percent to 10 per-
cent. Letting k index the listed studies (k =
1,..., 16), the fixed-effects corrected pooled
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TABLE 2. Estimated regression coefficients and weights trom full-data maximum likellhood estimation (3)
and from weighted least squares regression on adjusted log relative risks, with (b*) and without (b)
correction for covariance of log relative risks, for 10 data sets*

Weight % welght is
Descripbon of study (ref.) Method Estimate SEt (1/SE?) above or below
MLET weight
Arsenic exposure and Full data (B) 0.336 0.0524 364
lung cancer in men (5) Corrected (b*) 0.311 0.0510 384 5.5
Uncorrected (b) 0322 0.0480 434 19.2
Alcohol consumption and Full data (8) 0.102 0.0373 719
colorectal cancer in Corrected (b*) 0.101 0.0400 625 -13.1
men (B) Uncorrected (b) 0.091 0.0316 1,000 39.0
Alcohot consumption and Full data (8) 0.118 0.0279 1,280
breast cancer in Caorrected (b*) 0.115 00275 1,320 3.1
women (7) Uncorrectsd (b) 0.090 0.0222 2,030 58.6
Coffes consumption and Full data (8) 0.123 0.0814 151
myocardial infarcton in Corrected (b*) 0.131 0.0846 140 ~7.3
women (8)} Uncorrected (b) 0.088 0.0734 186 23.2
Cigarette smoking and Full data (5) 108 0.100 100
myocardial infarction in Corrected (b*) 1.08 0.103 94.3 -57
women (9) Uncorrected (b) 1.09 0.098 104 4.0
Alcohol consumption and Full data (8) 109 0.103 84.3
cancer in Full data with random
men (10) effects 110 0.117 73.4
Corrected (b*) 1.03 0.122 67 -28.7, -8 1§
Uncorrected (b) 1.13 0097 106 12.4;45.0
Cigarette smoking and Full data (8) 0.740 0.0257 1,510
lung cancer In men Correctaed (b*) Q0.707 0.0292 1,170 -225
(11) Uncorrected {b) 0.902 00246 1,650 9.3
Cigarstte smoking and Full data (B) 0.472 0.0499 402
lung cancer in men Corrected (b*) 0.454 0.0598 280 -30.3
{12) Uncorrected (b} 0.668 0.0634 249 -38.1
Passive smoking and Full data (B) 0.311 0.109 84.2
lung cancer in women Corrected (b*) 0.309 0109 84.2 0
(13) Uncorrected (b) 0.328 0.0987 103 223
Sunlight exposure and Full data (8) 0.479 0.127 62.0
basal cedl skin cancer Corrected (b*) 0.478 0.125 64.0 3.2
(14) Uncorrected (b) 0.480 0119 70.8 139

treated categovically in both types of analyses. Exposure levels were coded as 0,1, 2, .

L etc., in all

* AR full-data regressions included age; weighted least squares regressions were on log relative risks adjusted for age, with age
analyses.

t SE, standard error, MLE, maximum (Ikelihood estimate.

1 In this data set, the covanate was smoking (treated categorically), not age.

§ Second set of numbers Is for random-effects estimate

coefficient estimate for these data is b,* =
Eebi* i) /(2 1/v*) = 0.00823, with esti-
mated standard error s,* = (Z;1/v*) ™" =
0.00132; for comparison, the uncorrected
pooled estimate is b, = (Z.bx/vi)/(Zi1/vi) =
0.00789, with estimated standard error s, =
(Zx1/vi)™ = 0.00121. The small difference
in point estimates is unsurprising, given the
high precision of the results and the fact that
both estimators are consistent, but the un-
corrected summary somewhat overstates the
precision of the pooled results.
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With any pooling technique, it is impor-
tant to check for between-study heteroge-
neity of the estimated parameters (1). Given
K studies to be pooled, the corrected heter-
ogeneity test statistic is

Xw? = E (be* - bp*)z/ vi¥,
which has an approximate K — 1 df chi-
squared distribution if the study-specific

slopes are homogeneous and the v*’s are
consistent for the variances of the b,*’s. If



1306 Greenland and Longnecker

TABLE 3. Estimated regression coefficients, standard errors, and weights, cofrected and uncorrected for
covariance of log relative risks, for 16 studies of alcoho! use and breast cancer reviewed by Longnecker et

al. (18)*
Corrected Uncorrected
-
o SEt (uysed b SE (1/SER

Hiatt and Bawol, 1984 (1)t 0.00434 000247 164,000 0.00385 0.00230 207,000
Hiatt ot &l., 1988 (2) 0.0109 0.00410 59,600 0.0122 0.00379 65,600
Wilett et al., 1987 (3) 0.0284 0 00564 31,400 0.0248 0.00537 34,700
Schatzkin et al., 1987 (4) 0.118 0.0476 441 0.129 0.0457 478
Harvey et al., 1987 (5) 0.0121 0.00429 54,200 0.0137 0.00408 60,000
RAosanberg et al., 1982 (6) 0.0870 0.0232 1,860 0.0902 0.0202 2,440
Webster ot al., 1983 (7) 0.00311 0.00373 71,800 0.000625 0.00333 90,000
Paganini-Hill and Ross, 1983 (8) 0.00000 0.00940 11,300 0.000000 0.00965 10,700
Byers and Funch, 1982 (9) 0.00597 0.00658 23,100 0.00810 0.00687 21,030
Rohen and McMichael, 1988 (10) 0.0479 0.0205 2,378 0.0367 0.0188 2,837
Talamini et al., 1984 (11) 0.0389 0.00768 16,900 0.0394 0.00725 19,000
O'Connell et al., 1987 (12) 0.203 0.0946 112 0.203 0.0946 12
Harris and Wynder, 1988 (13) ~0.00673 0.00418 56,900 -~0.00674 0.00403 61,500
Le et al., 1984 (14) 0.0111 0.00481 43,300 0.0107 0.00418 57,300
La Vecchia et al., 1985 (15) 0.0148 0.00635 24,800 00148 0.00530 35,600
Begg et ., 1983 (16) -0.000787 0.00867 13,300 0000128 0.00794 15,900
Pooled estimate 0.00823 0.00132 0.00789 0.00121

* Coefficients are the increase in log relative risk of breast cancer associated with average dally alcohol consumption of 1 g.
©O'Connell et al. (12) reported only two categories of alcohol intake; thus, the correction had no effect.

t SE, standard error

1 Nur'nbers n paranmesea Longnecker et al.'s (16) reference no.

the full-data coefficient f; and its variance
estimate v, are available for study k, these
may be substituted for b,* and v.* in the
formulas for b,*, v,*, and X2

Because the uncorrected variances tend to
underestimate the variances of the uncor-
rected estimators, the uncorrected heteroge-
neity statistic

Xt = ? (b = by)*/we

will tend to be inflated above its nominal
K — 1 df chi-squared distribution, and so it
will produce an invalid (supranominal) het-
erogeneity test. For the data in table 3, how-
gver, both statistics are so large (Xj»2 = 75.3
and X,? = 87.2 on 16 — 1 = 15 df) that the
homogeneity hypothests is untenable. Thus,
in this example, the pooled slope estimates
are inappropriate summaries of the studies,
and further heterogeneity analysis (such as
“meta-regression” (1)) is needed.

ANALYSIS OF NONLINEAR TRENDS IN
POOLED DATA

The methods discussed so far are useful
when one’s goal is to pool slope estimates

from several reports (1). A more flexible
method for meta-analysis of trend involves
pooling of study data before trend analysis.
We will refer to this as the “pool-first”
method. Let x; and Li; be the vectors of
nonzero exposure levels and log odds ratios
or log rate ratios observed in study k; let C;
be the estimated covariance matrix for Lyg;
let x =(x,',...,x)Y and L = (L/, ...,
L;’)’; and let G be the block-diagonal matrix
with k’th diagonal block C;~'. A pooled
estimate 8 of the common slope 8 is given
by #x’'GL, with variance estimate Vv =
(x’Gx)~"; assuming each C; is a consistent
estimator of cov(Ly), and the slope is in fact
constant across studies, v will be consistent
for var(8).

For linear-logistic estimation, the “pool-
first” method is algebraically equivalent to
the method of pooling the corrected coeffi-
cient estimates from each study. The advan-
tage of the “pool-first” method is that it is
easily extended to fitting and testing nonlin-
ear logistic models. For example, suppose
we wish to estimate 8, and 8, in the quadra-
tic logit model

Mx, 2) = ax + Bix + B + &z
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To do so, we let X be the matrix with the
first column equal to x and the second col-
umn equal to the vector with elements that
are the square of the corresponding elements
of x. A pooled estimate of 8 = (8, 82)’ is
8 = VX'GL, with covariance-matrix esti-
mate V = (X'GX)™', and a chi-squared sta-
tistic for model fit is e’Ge, where e is the
residual vector L — XB. The degrees-of-
freedom is equal to the length of e minus 2.
The chief limitation of this method is that it
cannot incorporate studies that report only
a slope estimate: A study must report dose-
specific odds ratios or rate ratios to be in-
cluded; fortunately, such reporting is stan-
dard practice.

For illustration, we applied the preceding
method to the studies reported in table 3
and obtained §, = 0.00934 for the linear
term and £, = —0.0000258 for the quadratic
term, with standard errors of 0.00229 and
0.0000429, respectively. The goodness-of-fit
statistic is 99.9 on 49 — 2 = 47 df, very
significant. The results thus indicate that the
pooled quadratic effect is small compared
with the pooled linear effect (at least within
the range of alcohol use reported by most
women in these studies), and that a quadra-
tic term explains little of the heterogeneity
of trend across studies. As was demonstrated
by the large value of X;»? given above, non-
significance of the quadratic term does not
imply that the homogeneous linear model is
adequate.

DISCUSSION

The methods given here are readily mod-
ified to allow more general model forms
than logistic or exponential. We have not
pursued this generalization, however, be-
cause empirical studies indicate that the
asymptotic theory used here (17) may be
unreliable as a practical guide for models
with parameters that are not linear in
the logit or log scales; see the paper by
Moolgavkar and Venzon (18) for some strik-
ing examples and further references.

Because the corrected estimates involve
somewhat more computation than the un-

corrected estimates, it seems natural to ask
under what conditions the correction will be
worth the effort. From the structure of the
correlation formulas, it appears that the im-
pact of the correction on individual study
weights depends in part on the percentage
of subjects who are in the reference category
of exposure. Nevertheless, knowledge of the
proportion of subjects in the reference group
does not reliably identify studies for which
the correction will make an important dif-
ference.

Because the relative weighting of the stud-
ies will not change as dramatically as the
absolute weighting, we would not expect a
large impact of the correction on overall
pooled estimates of effect. Nevertheless, the
correction could have substantial impact on
heterogeneity analyses, especially when ap-
parent “outlier” studies are based on limited
numbers in the reference category of expo-
sure.

We wish to emphasize that the correction
we have discussed here is concerned only
with improving the statistical properties of
the slope estimators. It cannot compensate
for biases in the pooled studies, publication
bias in identification of studies, noncompar-
ability of exposure or outcome measure-
ments across studies, or any of the other
problems that should be addressed in a care-
ful meta-analysis.
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APPENDIX 1

Inefficiency of the Uncorrected Point Estimator and
Inconsistency of the Uncorrected Variance Estimator

Let n be the total sample size. The uncorrected estimator b may be written
b= (xW*x)"'x’ W*L

= Yw,xL,/s,

where W is the diagonal matrix with diagonal elements w, = 1/v, and s = Zw.x?% the
uncorrected variance estimator for b obtained from a weighted least squares regression
program (after division by the computed residual mean square) will be 1/s. The asymptotic
variance of Vn(b — B) is, however, consistently estimated by

nx’ WC,Wx/s* = n/s + nx' WC,Wx/s%,

n/s + n Y X,WiCaWiXe /%, (Al)
ook

where C, = [c,x] is the covariance-matrix estimator for L from the complete data and Cp =

C., — W', Since the second term of expression Al is positive, n/s must underestimate the

asymptotic variance of vn(b — 8)by an amount proportional to the covariances of the L,’s.
An efficient estimator for g is the complete-data estimator

x'C,'xy'x'C;7'L = Su,L,.

The weights w.x/s used for b are generally not proportional to the optimal weights u, unless
the covariances are zero; hence, b is inefficient.
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APPENDIX 2
Rerative Fitting Algorithm for the Crude Table

The algorithm is based on Newton’s method (19) for solving the following system for A,
the vector of fitted numbers of cases at each nonzero exposure level. We have an equation
for each observed exposure level,

L.+ log(M, — A,) + log(Ny ~— A4,) — logd, — log(No — M, + A.) =0,

where A, is the sum of the elements of A (note that 4, is not in A, since 4o = M| — A,). An
initial value A may be the crude observed totals, if available, or the null expected value
M N/n, where N is the vector of N, for x # 0 and n is the total number of subjects in the
data. The algorithm may diverge from poor starting values; in our experience, convergence
was always achieved by starting with the crude observed totals rather than the null expected
values.

At iteration /, define

AP = M, = A9,
o’ o= 1JAY + 1/(N — A, for all x (including x = 0),
L, + logdo® + log(N, — A1) — logd " — log(No — Ao") for x # 0,

e? = the vector of &,

ex(’ )

H® = the matrix with ¢! + ¢ for on-diagonal elements and c{” for all off-diagonal
elements, and

AGTD = AD 4 (H('})_‘e(l).

Convergence is achieved when the increments become negligible relative to the 4, and
N — A for all x. For person-time data, the equations become

L. + log(M, — A}) + logN, — logd, — logNy = 0;
the expression for e, is similarly modified; and ¢!’ becomes 1/4,.

APPENDIX 3 matrix of the crude log odds ratios derived
under assumptions 1-3 given in the text
using the delta method (17) applied to the
crude cross-classification of exposure and
outcome. Under assumptions [-3 in the
text, nC converges to nC,, and so nv,* con-
verges to expression A2; hence, nv,* is con-
sistent for var“[vn(b* — B8)] under assump-
tions 1-3. The assumptions also imply that
nvy* converges to

Properties of the Corrected Variance
Estimator

The asymptotic variance of vn(b* — 8)
is consistently estimated by
nx'C'C,C'x(vs*)?, (A2)

where C= rcE\JI(L) is as defined in step 5 in the
text, and C, is the (unobserved) covariance-

matrix estimator for L from the complete
data. Note that C for a single study may be
written C = W 'RW™!, where W~! is the
diagonal matrix with the variance estimators
of the adjusted log odds ratios on the diag-
onal, and R is the estimated correlation

n(x’C,7'x)™!,

which in turn converges to the asymptotic
variance of the maximum likelihood esti-
mator based on the full data; hence, under
assumptions 1-3, 4* will be more efficient
than the uncorrected estimator b.
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Facilitating meta-analyses by deriving relative effect and precision
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SUMMARY

Epidemiological studies relating a particular exposure to a specified disease may present their results in
a variety of ways. Often, results are presented as estimated odds ratios (or relative risks) and confidence
intervals (CIs) for a number of categories of exposure, for example, by duration or level of exposure,
compared with a single reference category, often the unexposed. For systematic literature review, and
particularly meta-analysis, estimates for an alternative comparison of the categories, such as any exposure
versus none, may be required. Obtaining these altemative comparisons is not straightforward, as the initial
set of estimates is correlated. This paper describes a method for estimating these alternative comparisons
based on the ideas originally put forward by Greenland and Longnecker, and provides implementations
of the method, developed using Microsoft Excel and SAS. Examples of the method based on studies of
smoking and cancer are given. The method also deals with results given by categories of disease (such
as histological types of a cancer). The method allows the use of a more consistent comparison when
summarizing published evidence, thus potentially improving the reliability of a meta-analysis. Copyright
© 2007 John Wiley & Sons, Ltd.

KEY WORDS: systematic review; meta-analysis; contrast; dose response

INTRODUCTION

In a case—control study of breast cancer risk in young women by Smith et al. [1], odds ra-
tios, adjusted for age and other covariates, were presented for passive smoking exposure among
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lifelong non-smokers. Compared to women with no reported lifetime exposure, odds ratios with 95
per cent (Cls) were given as 2.82 (1.00~7.93) for 1-200 cigarette-years and as 2.24 (0.75-6.68)
for >200 cigarette-years. Recently, in their ‘Proposed Identification of Environmental Tobacco
Smoke as a Toxic Air Contaminant’, the California EPA [2] included a long section on pas-
sive smoking and breast cancer. A table in that paper (7.4.1B) included summary estimates
for overall exposure from 19 studies, one of which was an estimate from the Smith et al. [1]
study of 2.53 (1.12-5.71). This estimate was stated to be ‘calculated by summarizing the ad-
justed lifetime exposure categories’, although no further details were given on how the calculation
was done.

We readily found that the combined estimate could be obtained precisely by conducting a simple
fixed-effects meta-analysis [3] on the two individual estimates. However, this approach assumes
that the estimates for 1-200 and >200 cigarette-years are independent, which is clearly not the
situation as both estimates involve the same reference group of zero cigarette-years. Indeed, as
the reference group included far fewer cases (10 cases) than the two exposed groups (46 and 38
cases, respectively), the erroneous calculation might have substantially underestimated the width
of the CI for the combined estimate.

Because researchers often wish to derive alternative comparisons for data presented in categories
relative to a common reference group, Easton et al. [4] proposed an alternative method for the
presentation of results, using ‘floating absolute risks’ (FARs) and their CIs, which allows such
alternative comparisons to be estimated easily and validly. Greenland et al. [S] discussed the
FAR method, admitting that it ‘can supply useful statistics and trend graphs’, but arguing that
‘it does not yield valid confidence intervals for relative risks’. In reply, Easton and Peto [6]
pointed out that the FAR ClIs were never intended actually to be CIs for relative risks, but
were only intended to facilitate their calculation by adding the floating variances of the log
relative risks for the two categories being compared. Easton and Peto [6] also noted that an
alternative approach suggested by Greenland et al. [5] in fact gave results identical to their
approach. Whatever the merits of the FAR method, very few studies have ever reported results
in this manner; hence, the problem of obtaining valid estimates from data presented as odds
ratios (for case—control studies), or relative risks (for cohort studies), by categories of exposure
remains.

In 1992, Greenland and Longnecker [7] described a method to solve a related problem. Given the
numbers of cases and controls and covariate-adjusted odds ratios and Cls by the level of exposure,
but in the absence of data on the covariances of the adjusted log odds ratios, they wished to estimate
the increase in log odds per unit of exposure taking appropriate account of the non-independence of
the odds ratios. Their method starts by using the odds ratios and the marginal totals over exposure
to derive a corresponding set of pseudo-numbers (or ‘effective’ numbers) of cases and controls con-
sistent with the input data. These numbers (which have no direct meaning by themselves), together
with the CIs of the adjusted odds ratios, could then be used to estimate the required covariances, and
hence the unit increase in log odds and its CI. Greenland and Longnecker (7] showed that their ap-
proach provided more efficient estimates of the combined odds ratio and CI than other methods pre-
viously available and also described how their method could be extended to cohort studies. Practical
examples of the method were presented in papers published in 1993 [8], and, much more recently
[9], the latter paper also providing a command, glst, written for Stata 9.1, for implementing the
method.

Some years ago, one of us (J.H.) developed a program, using Microsoft Excel, to carry
out an analogous but somewhat different method based on Greenland and Longnecker’s [7]
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effective numbers approach. In our method, we generate a set of numbers consistent with both
the adjusted odds ratio (or relative risk) and its CI, which can then be used to make any com-
parison required including a dose-related trend. This method has proved invaluable to us when
conducting a variety of meta-analyses. In the context of the Smith e al. [1] results, our method
gives a combined estimate of 2.58 (95 per cent CI 0.96-6.94) rather than the estimate of 2.53
(1.12-5.71) given by the California EPA [2]. Our estimate, which we believe to be more ap-
propriate, shows the observed association to have a p-value of 0.060 rather than 0.025, with
the associated meta-analysis weight (inverse-variance of log odds ratio) lower, at 3.93 compared
with 5.79.

In the past, we had provided only a brief description of the method, as an appendix to a paper
on lung cancer and passive smoking [10]. The objective of this paper is to clarify the details of
the method, and to make it readily available to researchers both as an Excel spreadsheet and as a
SAS macro.

The method (and software) also takes into account an alternative situation, where individual
odds ratios (or relative risks) are presented by diagnostic category (e.g. histological subtype of lung
cancer) with a common control group and where estimates are required for combined categories
(e.g. all lung cancer). The method is illustrated by worked examples. It should be noted that the
accuracy of the combined estimate is limited by the accuracy to which the values are quoted in
the study report. While the method works well in practice with results presented to the usual two
decimal places, some journals present odds ratios and relative risks to only one decimal place.
While the method usually works well here too, we have seen data presented from very large studies
where the lower and upper 95 per cent Cls are the same to one decimal place. Here, the method
would infer pseudo-numbers that were infinite and hence it would fail. However, provided the
source data are presented as non-overlapping and exhaustive categories with a common reference
group and are given to sufficient accuracy, we have found the method described below to be widely
applicable.

METHOD

The method will be described initially for a case—control study giving results for several categories
of exposure. The extension of the method to prospective studies and to studies giving results for
categories of disease rather than for categories of exposure will then be described. The method
described in this paper has been implemented both in an Excel spreadsheet and in a SAS macro.
Both implementations and their accompanying documentation are available for downloading from
the web page www.pnlee.co.uk/software.htm. These implementations are summarized in Appendix
A (Excel) and Appendix B (SAS).

Case—control studies giving results by categories of exposure

Suppose, in a case—control study, the subjects are divided into # 4+ 1 groups—an unexposed group
(i =0) and n exposed groups (i =1, ..., n)—and estimates are available (for each exposed group)
of the odds ratio compared with the unexposed group (R;) and its lower and upper 95 per cent
confidence limits (L; to U;).
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The published study odds ratios and Cls are, therefore,

Exposure category Odds ratio (95 per cent CI)

Unexposed: 0 1

1 Ry (L1-Uy)
2 Ry (L2-U2)
n Ry (Ly—Up)

Corresponding to this is an underlying, but unknown, distribution of numbers of subjects:

Exposure category Cases Controls
Unexposed: 0 Ag By
1 Ay By
2 A B,
n An Bn
Total A B

This can be regarded as n 2 x 2 tables of the form:

Cases Controls
Unexposed Agp By
Exposed A B;

For each of these, the odds ratio satisfies the equation:
A; By
R = 1
=108, (D
The variance of the log odds ratio log,(R;) is approximated by
Vi=1/Ao+1/Bo+1/A; +1/B; 2)

and the 95 per cent CI of the log odds ratio (log,(U;) to log,(L;)) is given by

log,(R;) +1.96/V; 3)

The CI for the odds ratio is calculated by exponentiating these values [11]. For alternative CIs,
1.96 can be replaced by the appropriate normal deviate z(1—4/2). For example, 1.645 and 2.58
correspond, respectively, to o levels of 10 and 1 per cent, or 90 and 99 per cent Cls.

For various purposes, it may be necessary to estimate the odds ratios for alternative comparisons,
e.g. all the exposed subjects combined versus the unexposed subjects, one exposure versus another
or high exposure versus low exposure. The approach used is similar to that of Greenland and
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Longnecker [7] in that one first reconstructs the underlying table of numbers—in this instance,
of cases and controls in each exposure category—and then derives odds ratios and Cls for the
required comparison, simply by grouping together the relevant exposure levels into a 2 x 2 table
of cases and controls by exposure and applying equations (1)—(3).

In order to estimate the 2(n + 1) numbers A;, B; (i =0, ..., n), 2(n+ 1) equations are required.
The odds ratios and CIs for the exposed categories provide 2n equations. For a solution to
be obtained, two further pieces of data that are generally reported for epidemiological studies are
used—p, the proportion of unexposed subjects among the total number of controls (Bo/ Y 7_q Bi),
and z, the relative frequency of controls to cases overall (3_7_, Bi/ 3 i_ Ai). (The rationale behind
the selection of these two specific data items is discussed later in this paper.)

The 2(n + 1) equations can now be written down. A preliminary step is to obtain the variance
of the log,(R;) estimate for each exposure level. Reorganizing equation (3) gives

V= {ﬁé—Uﬁ/—L—)}z 4)

The 2(n + 1) equations can then be written as
p=Bo/B &)
2=B/A ©)
R, =A;By/AoB; (i=1,...,n) @)
Vi=1/Ao+1/Bp+1/A; +1/B; (i=1,...,n) ®)

where p, z, and R; are given, the V; have been calculated using (4); and

n
A=Y A
i=0

These can be solved iteratively, as described in the Appendices.

As an example, we consider again the study by Smith et al. [1], but here we consider active rather
than passive smoking (because, for active smoking, the paper reports results both by categories
of exposure and overall). Table I of that paper gives results of analyses relating the total amount
smoked (cigarette-years) to breast cancer—those results are reproduced here as Table 1.

In order to assess the evidence relating smoking to breast cancer, it would be useful to have a
single odds ratio and CI for ‘Ever smoked’ (1 or more cigarette-years) against ‘Never smoked’.
This involves combining the results given for 1-200 cigarette-years smoking with those for >200
cigarette-years smoking. A meta-analysis of the pair of results presented would be invalid because
the results are not independent—they share a common comparison group.

No completely unadjusted analysis is given (that labelled as unadjusted in Table I of Smith
et al. [1] actually being matched for age and general practitioner), but we can use the numbers of
cases and controls to calculate these (see Table II).
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Table 1. Odds ratios of breast cancer by amount
smoked, taken from Smith ef al. [1].

Number of subjects Odds ratio
(95 per cent CI)
Cigarette-years Cases Controls Adjusted
Never smoked 348 355 1
1-200 236 239 1.00 (0.78-1.29)
>200 167 157 1.02 (0.76-1.37)

Table II. Unadjusted odds ratios of breast cancer by amount smoked,
calculated from the numbers of subjects given by Smith ef al. [1].

Number of subjects Odds ratio
(95 per cent CI)
Cigarette-years Cases Controls Unadjusted, calculated
0 348 355 1
1-200 236 239 1.00731 (0.79808-1.27140)
>200 167 157 1.08509 (0.83389-1.41195)

Table III. Overall unadjusted odds ratio of breast cancer, calculated from
the numbers of subjects given by Smith ez al. [1].

Number of subjects Odds ratio
(95 per cent CI)
Cigarette-years Cases Controls Unadjusted, calculated
0 348 355 1
>0 403 396 1.03815 (0.84766-1.27145)

Using these values for odds ratios and CIs (to five or more decimal places) and assuming that the
numbers of subjects are unknown, the Excel solving method described in Appendix A generated
an estimated table of numbers of subjects (not shown) with a maximum absolute inaccuracy of less
than 0.02. As the odds ratios and Cls were input to fewer decimal places, the maximum inaccuracy
increased to 0.05 for four decimal places, to 0.30 for three, and to 5.54 (an error of 1.6 per cent)
for two.

The numbers of cases and controls from Table II can be combined into a single ‘Exposed’ group
and used to calculate an overall unadjusted odds ratio (95 per cent CI) (see Table III).

Using the numbers of subjects estimated by the Excel method gave an estimated odds ratio (95
per cent CI) of 1.03815 (0.84766-1.27144), accurate to four decimal places.

Published study reports do not give results to this level of detail. Reducing the odds ratio (CI)
values entered in the Excel spreadsheet to two decimal places resulted in estimated numbers of
subjects as shown in Table IV and an estimated odds ratio (95 per cent CI) of 1.04 (0.85-1.27),
which, to two decimal places, is the same as the value calculated above (using the actual numbers
of cases and controls).
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Table IV. Numbers of subjects estimated using the Excel
spreadsheet when the input values are reduced to two
decimal places (Smith ef al. [1] data).

Number of subjects

Cigarette-years Cases Controls
0 349.221 356.751
1-200 241.540 244.304
>200 163.943 153.650

Table V. Effective numbers of subjects (representing the ‘adjusted’ population), estimated
using the Excel spreadsheet (Smith et al. [1] data).

Actual numbers Estimated effective numbers from adjusted results
Cases  Controls Cases Controls
Never smoked 348 355 295.811 296.990
1-200 cigarette-years 236 239 205.264 206.082
200+ cigarette-years 167 157 127.206 125.209

Other examples give odds ratio (CI) values that differ in the second decimal place. This degree
of inaccuracy would typically have no appreciable effect on a meta-analysis.

The preceding analysis is unrealistic, in that the unadjusted results are generally of little interest.
For many associations, there are a number of established confounding factors that should be taken
into account in the risk estimates quoted in a systematic review. In order to handle adjusted results,
we follow Greenland and Longnecker [7] in supposing that a table of pseudo-numbers of subjects
can be estimated that represents an ‘adjusted’ population—the numbers of subjects effectively used
when an adjusted analysis is carried out. The process described above can then be carried out in
exactly the same way as before, but using the adjusted odds ratios and CIs provided in the report
of the study.

As an example, the adjusted odds ratios and CIs for total amount smoked (never smoked, 1-200
cigarette-years, 200+ cigarette-years, to two decimal places) from Table I of the paper by Smith
et al. [1] were entered in the Excel version of the method. The estimated effective numbers of
subjects (see Table V) were rather lower than the actual numbers of subjects, as would be expected
since adjustment usually increases the variance of an estimate [12].

The adjusted odds ratio (CI) for ever smoked versus never smoked, which we estimated as
1.0076 (0.8074-1.2574) from this table, can be compared with the adjusted result actually given
in Table I of the paper of 1.01 (0.81-1.26), which is the same to two decimal places.

In the example above, there is very little variation in risk by level of exposure, and it is
unsurprising that the method comes up with an apparently appropriate answer. As an example with
more variation in risk, we consider data from the lung cancer case—control study of Matos et al.
[13]. Odds ratios for current smoking versus lifelong non-smoking were reported (in Table IIT of
that paper) overall and by various aspects of the smoking habit, all adjusted for the same list of
covariates. The relevant data by age at the start of smoking are given in Table VL.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:954-970
DOI: 10.1002/sim

-76-



ALTERNATIVE COMPARISONS FROM RELATED ODDS RATIOS OR RELATIVE RISKS 961

Table VI. Odds ratios of lung cancer by age at starting to smoke, taken
from Matos et al. [13].

Number of subjects Odds ratio (95 per cent CI)
Age at start Cases Controls Adjusted
Non-smoker 11 110 1
<15 45 41 11.3 (5.3-24.3)
15-19 49 58 8.6 (4.1-18.2)
20+ 18 33 5.3 (2.3-12.5)

Table VII. Odds ratios of lung cancer by the number of cigarettes smoked
per day, taken from Matos ef al. [13].

Number of subjects Odds ratio (95 per cent CI)
Cigarettes/day Cases Controls Adjusted
Non-smoker 11 110 1
1-14 5 32 1.6 (0.5-5.0)
15-24 42 54 8.0 (3.4-16.8)
25+ 65 46 15.0 (7.1-31.9)

From these data, we estimated the combined odds ratio for current smoking as 8.54 (4.32-16.87)
using the Excel method. This compares seemingly well with the values published by Matos et al.
[13] of 8.5 (4.3-16.7), given that the odds ratios and CIs were shown to only one decimal place.

Interestingly, basing the calculation on the data by number of cigarettes/day suggested a possible
error in the source paper (see Table VII). Here, the Excel method gave a combined estimate of
9.06 (4.48-18.34), which is not so close to the 8.5 (4.3-16.7) given by Matos et al. [13]. This may
be because the odds ratio for 15-24 cigarettes/day is some distance away from the centre of the
95 per cent CI on a log scale (the square root of 3.4 x 16.8 being 7.56 and not 8.0) and suggests
a possible typographical error.

Case—control studies giving results by categories of disease

The odds ratio and variance definitions given as (1) and (2) above can also be used for the 2 x 2
table below:

Exposed Unexposed
Controls Ey Uy
Cases E; U;

which allows for a number of distinct categories of disease, such as different histological types
of a cancer, rather than categories of exposure, and uses a common control group. The method
described above for results by exposure is equally applicable to results by disease, with Eg, Up,
E;, U; corresponding, respectively, to Ag, Bg, A;, B;. Here, p is the proportion of controls among
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Table VIII. Odds ratios of environmental tobacco smoke by the type of
lung cancer, taken from Fontham et al. [14].

Number of subjects QOdds ratio
(95 per cent CI)
Subjects Exposed Unexposed Adjusted
Controls 158 1095 1
Adenocarcinoma 62 426 1.04 (0.75-1.46)
Other histological types 24 128 1.79 (1.08-2.95)

the unexposed, and z is the ratio of unexposed to exposed, overall. Both p and z can be calculated
for any study that reports the numbers of subjects studied.

As an example of this situation, data were taken from the Fontham et al. [14] study of environ-
mental tobacco smoke exposure and lung cancer in non-smoking women. Data from Table II of
the source paper relating to pipe smoking by the spouse are reproduced in Table VIIIL.

Here, the odds ratio for all lung cancer types estimated by the method is 1.178 (0.872-1.590),
quite similar to the value of 1.19 (0.88-1.60) given in the source paper.

Prospective (cohort) studies giving results by categories of exposure

Consider a prospective study with By unexposed subjects and B; subjects exposed at level
i (i=1,...,n), of whom Aqg and A; subjects, respectively, develop the disease being studied.
This gives the 2 x 2 table:

Diseased At risk
Unexposed Ao By
Exposed A; B;

for a study in which subjects are analysed by categories of exposure. The unexposed population is
common to all comparisons. Each individual comparison represents a study of a specific exposure.

Katz et al. [15] recommend a method of obtaining a CI for cohort study data (their Method
C) in which the log relative risk log,(R;) is taken to be approximately normally distributed with
approximate mean:

A; By
log, (R;) = log, (;@—) ©)
* The variance is estimated as
Vi=1/Ao—1/Bo+1/A; — 1/B; (10)

and approximate 95 per cent Cls for the log relative risk are

log, (R;) +1.96,/V; (11)

Note that these are identical to equations (1)—(3), except for the negative signs in the expression
for variance. Therefore, the method presented above for case—control studies is applicable to
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prospective studies as long as relative risks (not odds ratios) are available, the 2 x 2 table is
appropriately defined (as shown above) and the calculation of the variance is modified. The value
p is now defined as the proportion of unexposed subjects among those at risk, and z is the ratio
of number at risk to the total number of diseased subjects.

Note that, in the above, the relative risk (A; Bo/AoB;) is estimated by the risk ratio. The method
also provides a good approximate solution for rate ratios where ‘at risk’ is replaced by ‘person-
years at risk’, as the terms in 1/Bg and 1/B; generally contribute virtually nothing towards the
estimated variance.

Prospective (cohort) studies giving results by categories of disease

Consider a prospective study with Up unexposed subjects and Eg exposed subjects, of whom U;

and E; subjects, respectively, develop disease category i (i =1, ..., n). The 2 x 2 table becomes
Exposed Unexposed
At risk Eo Uo
Diseased E; U;

The at-risk population is common to all comparisons, while each comparison represents an analysis
using a distinct definition for the disease of interest. The Katz et al. [15] method is therefore
applicable to each comparison. Here, p is the proportion of unexposed at-risk subjects among the
sum of the unexposed at-risk and the unexposed diseased subjects, and z is the ratio of the sum
of the unexposed at-risk and unexposed diseased subjects to the sum of the exposed at risk and
exposed diseased subjects.

Use of p and z with adjusted data

Here, we return, for simplicity, to the situation of case—control studies with results given by
categories of exposure. When the method is applied to data that are unadjusted for covariates, it
seems that, provided the odds ratios and Cls are given to sufficient accuracy, and provided two
additional independent pieces of data are available to allow the 2(n 4 1) equations to be solved,
the actual table of numbers of cases and controls by exposure can be estimated correctly. There
is no specific reason to select p (the proportion of unexposed subjects among the total number of
controls) and z (the relative frequency of controls to cases overall) as the additional data items.
One could equally well, for example, derive the correct table of numbers from the odds ratios, the
CIs, the total number of cases, and the total number of controls.

When the method is applied to adjusted data, the situation is rather different. One does not
actually have any further precise information about the pseudo-numbers other than the odds ratios
and ClIs. One may know p or z for the unadjusted numbers, but one cannot infer that these
values apply to the pseudo-numbers corresponding to the adjusted odds ratios and Cls. One could,
for example, imagine a situation where the disease only occurs in subjects with level A of a
confounding variable, and that level A is very common in those exposed to the agent of interest. In
that situation, p based on the unadjusted data may substantially exceed the appropriate p for the
adjusted analysis (with those with levels of the confounding variable other than A not contributing
to the adjusted analysis at all).
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Table IX. Sensitivity analysis showing the effect of varying the values of
p and z on the estimated odds ratios and CIs for current smoking (based
on data shown in Table VI—Matos et al. [13]).

p z Odds ratio (95 per cent CI)
0.3 10 8.696 (4.202-17.998)
1.967 8.739 (4.266-17.901)
0.5 8.760 (4.390-17.480)
0.4545 10 8.463 (4.194-17.077)
1.967 8.542 (4.324-16.875)
0.5 8.621 (4.549-16.337)
0.6 10 8.292 (4.265-16.119)
1.967 8.432 (4.481-15.867)
0.5 8.560 (4.774-15.349)

In practice, p and z were selected as the additional items of information to be assumed known
for a number of reasons. First, the values were usually readily available from papers presenting
results from epidemiological studies. Second, it was clear that constraining total numbers of cases
or controls or exposed or unexposed subjects to be the same for the adjusted data as for the
unadjusted data is inappropriate, as adjustment tends to increase the width of CI, so that pseudo-
numbers based on adjusted data are smaller than the actual numbers used in the unadjusted analysis
[12]. Third, it seemed reasonable to suppose that in most circumstances adjustment would not have
a large effect on p and z. Finally, odds ratios and CIs for comparisons estimated by the method
seem in many situations to be little affected by the precise choice of p and z.

To illustrate the final point, Table IX shows the effect of varying p and z for data from the lung
cancer case—control study of Matos et al. [13]. The data by age at start of smoking are used for
estimating the overall covariate-adjusted odds ratios and Cls for current smoking versus lifelong
non-smoking. The values of p of 0.4545 and z of 1.967 shown in the table are those derived from
the unadjusted data, which led to our estimate of 8.54 (4.32-16.87). Although variation in the
estimated odds ratio is evident as p and z change, this is not large, given the substantial variation
in p and z allowed in this sensitivity analysis. It is of interest to compare these estimates with the
lower odds ratio and narrower CI of 8.25 (5.26-12.95) when the three estimates by age at start
are combined by fixed-effects meta-analysis [3], incorrectly assuming that they are independent.

DISCUSSION

A standard method of presenting results from epidemiological studies by level of exposure involves
presenting the numbers of cases and controls (or at risk) for each level, together with covariate-
adjusted effect estimates (odds ratios or relative risks) and their CIs for all but one level relative to
the other (baseline) level. Often researchers are interested in alternative comparisons, for example,
combining present with past exposure, in order to be able to compare ever with never exposure.
However, the standard data presentation does not in general allow the calculation of valid alternative
effect estimates (although it can do so in the simple situation of a pairwise comparison of two of
the original exposure levels), and never allows the calculation of their valid Cls. This is because
the effect estimates at the different exposure levels are non-independent and the standard data
presentation does not give information on covariances between the estimates.
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The idea of generating a table of effective numbers of subjects by exposure level corresponding
to all the adjusted effect estimates was put forward by Greenland and Longnecker [7] and applied
by Berlin ez al. [8] as a method of obtaining trend estimates from summarized dose—response data.
(By ‘corresponding’ we mean that applying standard formulae for 2 x 2 tables to the effective
numbers will generate the required effect estimates.) The method presented in this paper is a
modification of this, in which the generated table of effective numbers corresponds both to the
adjusted effect estimates and to their Cls. The table allows adjusted effect estimates and Cls to be
calculated for any alternative comparison of levels (including a dose-related trend statistic), and
can help a dose-response meta-analysis and/or support a sensitivity analysis for methodological
bias [16]. Our method has also been extended to the situation where the original data are for two
exposure levels and multiple disease categories, rather than two disease categories and multiple
exposure levels.

When using this method, some care should be taken to ensure that the categories to be combined
are non-overlapping and, together, are equivalent to the stated summary category. For example,
smokers categorized as smoking ‘<20 cigarettes per day’ and 20+ cigarettes per day’ could
reasonably be combined to represent ‘All cigarette smokers’, provided data were available on
cigarette consumption for all (or most) of the sample. However, ‘cigarette smokers’, ‘pipe smokers’,
and ‘cigar smokers’ could not be combined into ‘smokers’ if some subjects appeared in more than
one of the three categories. Similarly, the lung cancer categories ‘squamous cell carcinoma’ and
‘adenocarcinoma’ could be combined to represent ‘Lung cancer: squamous -+ adeno’, whereas
including an extra category ‘other lung cancer’ would justify the title ‘All lung cancer’.

The method has the advantage of being widely applicable as it makes use of data values that are
generally available in a published study. We put forward no proof that the method always gives
a unique solution, and indeed in extreme situations the method can fail to converge (although,
as noted in Appendix A, this can often be resolved by using different starting points for the
iteration process). However, we have found that the method gave seemingly appropriate estimates
in practical applications on many hundreds of sets of study results.

There is certainly scope for further work to gain greater insight into possible circumstances
when the method may give unsatisfactory results. However, we feel that the method is a useful
one, especially when one is trying to conduct a meta-analysis, as it assists in allowing risk estimates
to be presented in a consistent way. While some studies publish estimates for overall exposure
and some publish only estimates by level of exposure, and one wishes to incorporate an estimate
from every study into the meta-analysis to gain additional power, it is clearly helpful to obtain
an estimate for overall exposure from those studies that only give results by exposure level. One
can of course try to obtain an estimate from the author using the source data, but that is not
always feasible, especially if the study was conducted many years ago. In this circumstance, our
method can help to obtain reasonable estimates—certainly better than estimates obtained using
methods that ignore the interdependence of the estimates by level. We hope that making available
the Excel spreadsheet and the SAS macro on the website www.pnlee.co.uk/software.htm will help
to facilitate future meta-analyses.

APPENDIX A: THE EXCEL IMPLEMENTATION

The Excel spreadsheet, which can be downloaded from www.pnlee.co.uk/software.htm, uses the
approach described below for solving the equations. The method varies only slightly between
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case—control and prospective studies and between studies giving categories of disease rather than
levels of exposure, as described above. The spreadsheet provides drop-boxes for selecting study type
(case—control or prospective) and categorization (by exposure levels or by categories of disease),
and the details of the spreadsheet’s formulae depend on the values selected. The description below
is based on a case—control study giving odds ratios and Cls by levels of exposure merely in order
to simplify the terminology. Some details of the calculations are different for prospective (cohort)
studies, as described above.
The user takes the following actions:

1. Selects study type (case—control) and categorization (by exposure levels) using the drop
boxes.

2. Enters a 2 x 2 table of the overall numbers of subjects in the study—the numbers of cases
and controls according to whether exposed or unexposed-—as given in the study report.

3. Enters, for each level of exposure, the odds ratio and CI as given in the study report.

4. Specifies how the exposure levels will be grouped for the required estimated odds ratio and
CI.(note that the user can also specify that individual exposure levels are to be excluded
from this estimate).

5. Clicks the ‘Solve’ button to generate optimized estimates of the effective numbers of cases
and controls (Ag to A, and Bp to By) and hence the required estimated odds ratio and CL

The spreadsheet is set up to make the following calculations.

Using the 2 x 2 table of overall numbers of subjects to estimate p, z, Ay, and By

The proportion of unexposed in the population (p) is estimated from the 2 x 2 table as

Number of unexposed controls

Total number of controls

and the ratio of controls to cases (z) is calculated from the 2 x 2 table as

Total number of controls

Total number of cases

The 2 x 2 table of overall numbers of subjects is also used to give initial values for Ag and By
using the numbers of unexposed cases and controls, respectively. These values will not necessarily
be used in the final table of estimated numbers of cases and controls because for adjusted odds
ratios the numbers in that table will be effective numbers of cases and controls rather than the
actual numbers.

Estimating the number of cases for level i

The variance of the estimated log relative risk (V;) is calculated for each exposure level using

equation (4). From these, together with the odds ratio for each exposure level and the initial values

for Ag and By, initial estimates are calculated for the number of cases for each exposure level:
From equation (1),

Y
AgR;
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