reflect the different conditions of the pathophysiological abnormalities related to arterial stiffness (11,12). Although several studies have reported abnormal central hemodynamics and increased PWV in subjects with endstage renal disease (6,7), a recent community-based population cohort study showed that the out-of-office ambulatory BP level (24-h systolic BP) may be superior to cSBP in the prediction of cardiovascular mortality (13). Thus, this study aimed to determine whether ambulatory BP profiles, central hemodynamics, and PWV are significantly related to renal function parameters in hypertensive patients with CKD in a crosssectional design.

SUBJECTS AND METHODS

Subjects

This study was conducted on 25 consecutive hypertensive patients with CKD (stage 2, 5 patients; stage 3, 6 patients; stage 4, 7 patients; and stage 5, 7 patients) who were admitted to our hospital from October 2009 to June 2011. Chronic kidney disease patients on dialysis therapy were excluded. The patients were maintained under stable sodium chloride intake (6 g/d). They underwent ambulatory BP monitoring and measurements of coefficient of variation R-R interval (CVRR), central hemodynamics, and brachial-ankle pulse wave velocity (baPWV). Written informed consent was obtained, in the formal style approved by the Ethics Committee of the Yokohama City University Hospital, before any person was enrolled in this study.

Ambulatory BP and the HR Profile

The ambulatory blood pressure and the heart rate (HR) profile were monitored every 30 minutes with a fully automated device (TM-2425, A&D, Tokyo, Japan), essentially as described previously (14-16). The ambulatory blood pressure monitoring was repeated in patients who had >20% missing values out of the expected number of readings, a >30% error rate for the total readings, or missing values for more than 2 consecutive hours. The following readings were omitted because of technical artifacts: systolic BP >250 mm Hg or < 70 mm Hg; diastolic BP > 130 mm Hg or < 30 mm Hg; pulse pressure >160 mm Hg or <20 mm Hg; systolic differences >60 mm Hg; or diastolic differences >30 mm Hg, compared with the immediately preceding or successive values (17). The patients were instructed to keep a diary to record the time of sleeping, rising, and daytime activities. Therefore, the term "day" and "night" hours in this study reflect the average period during which the subjects were awake/upright and asleep/supine, respectively. Short-term blood pressure variability, which is comprised of the coefficients of variation of the BP values obtained from ambulatory BP monitoring, is defined as the within-subject standard deviation (SD) of all systolic and diastolic readings at 30-minute intervals divided by the mean BP during the course of the measurement

period. The heart rate variability, which is comprised of the coefficients of variation of the HR values, is defined as the within-subject SD of all HR values at 30-minute intervals divided by the mean HR (18-23).

Laboratory Measurements

Blood sampling was performed between 8 and 10 am after an overnight fast. After the patients had spent 30 minutes of quiet rest in a recumbent position, blood samples were withdrawn for the measurement of laboratory parameters by routine methods in the Department of Clinical Chemistry, Yokohama City University School Hospital. We calculated the estimated glomerular filtration rate (eGFR) with an application of a revised equation for the Japanese population: eGFR (mL/min/1.73 m²) = $194 \times \text{serum creatinine}^{-1.094} \times \text{age}^{-0.287} \times 0.739$ (if female) (24).

Central Hemodynamics

The central systolic BP and augmentation index were measured by HEM-9000AI (Omron Healthcare, Kyoto, Japan) using an automatic tonometry probe wrapped onto the wrist to record radial waveforms, which are calibrated against the contralateral brachial BP measured by an arm cuff immediately after tonometry. An algorithm is then applied based on a linear regression model to estimate the cSBP from the "late systolic shoulder" (pSBP2) of the radial pulse waveform, which has been shown to agree closely with cSBP (25-28). The device uses the maxima of the "multidimensional derivatives" on the recorded pressure waveforms to detect the first and second inflection points corresponding to the early and late systolic (pSBP2) pressure readings.

Brachial-Ankle Pulse Wave Velocity

The brachial-ankle pulse wave velocity values were determined with a PP analyzer (model: BP-203RPEII; Nihon Colin, Tokyo, Japan). Pulse volume waveforms were recorded with sensors placed over the right brachial artery and both tibial arteries. The brachial-ankle pulse wave velocity values measured by this method are reported to significantly correlate with the aortic PWV determined by the catheter method (21,22,29).

Coefficient of Variation of R-R Interval

Coefficient of variation of R-R interval was measured (with) using a Cardiofax ECG-1550 (Nihon Kohden, Tokyo, Japan) with the patient in the supine position after 5-minute rest, essentially as described previously (30).

Statistical Analysis

The quantitative data are expressed as the means \pm SD. Pearson's correlation coefficient was used for the continuous scale. Spearman's correlation coefficient was used for all other scales. Analysis was performed with IBM SPSS statistics (version 19, IBM SPSS Statistics, Chicago, IL, USA). A P value < .05 was considered statistically significant.

RESULTS

Baseline Patient Characteristics, Including Ambulatory BP and the HR Profile, Central Hemodynamics, and Arterial Stiffness

Table 1 shows the baseline characteristics of the 25 hypertensive participants with CKD consisting of 5 patients in stage 2, 6 in stage 3, 7 in stage 4, and 7 in stage 5. The mean age was 66.2 ± 11.6 years, and there were 15 males and 10 females. The body mass index was 25.6 ± 4.3 kg/m², suggesting that the participants were obese hypertensive patients having moderate-to-severe impairment with albuminuria. The variables of the ambulatory BP and the HR monitoring, central hemodynamics, and arterial stiffness are shown in Table 2.

Variables Related to Renal Function Parameters

As shown in Table 3, there were significant positive relationships between UACR and 24-hour, daytime, and nighttime ambulatory systolic BP. In addition, there

Table 1. Patient characteristics (N = 25)

Sex (male/female)	15/10
Age (y)	66.2 ± 11.6
BMI (kg/m ²)	25.6 ± 4.3
Smoking (%)	60
Cerebrovascular disease (%)	20
Coronary artery disease (%)	8
Diabetes (%)	44
Dyslipidemia (%)	64
Medication	
Renin-angiotensin system inhibitor (%)	84
Calcium channel blocker (%)	84
α-Blocker (%)	32
β-Blocker (%)	12
Thiazide diuretic (%)	16
Loop diuretic (%)	32
Metabolism parameters	
Total cholesterol (mg/dL)	190.9 ± 34.2
HbA1c (%)	5.9 ± 1.0
HOMA-R	2.9 ± 2.9
Endocrine parameters	
BNP (pg/mL)	51.5 ± 81.2
PRA (ng/mL/h)	7.5 ± 17.5
Oxidative stress marker	
Pentosidine (ng/mL)	46.1 ± 28.3
Autonomic function	
CVRR (%)	2.1 ± 2.0
Cardiac function	
Ejection fraction (%)	69.1 ± 8.5
LVMI (g/m ²)	175.0 ± 116.2
Renal function	
eGFR (mL/min/1.73 m ²)	33.1 ± 23.1
UACR (mg/gCr)	820.3 ± 1225.2

Abbreviations: BMI – body mass index; BNP – B-type natriuretic peptide; CVRR – coefficient of variation R–R interval; eGFR – estimated glomerular filtration rate; HbA1c – hemoglobin A1c; HOMA-R – homeostasis model assessment ratio; LVMI – left ventricular mass index; PRA – plasma renin activity; UACR – urine albumin excretion rate.

Table 2. Ambulatory BP profile, central hemodynamics, and arterial stiffness

Ambulatory BP profile	
24-h	
Systolic BP (mm Hg)	134 ± 17
Diastolic BP (mm Hg)	79 ± 14
HR (beats/min)	69 ± 10
Systolic BP variability (%)	11.0 ± 3.1
Diastolic BP variability (%)	13.1 ± 4.3
HR variability (%)	12.7 ± 4.1
Daytime	
Systolic BP (mm Hg)	136 ± 16
Diastolic BP (mm Hg)	82 ± 13
HR (beats/min)	71 ± 9
Systolic BP variability (%)	10.2 ± 3.2
Diastolic BP variability (%)	11.8 ± 4.7
HR variability (%)	12.4 ± 4.0
Nighttime	
Systolic BP (mm Hg)	129 ± 21
Diastolic BP (mm Hg)	74 ± 14
HR (beats/min)	65 ± 12
Systolic BP variability (%)	9.1 ± 3.1
Diastolic BP variability (%)	11.4 ± 3.8
HR variability (%)	7.8 ± 3.7
Central hemodynamics	
cSBP (mm Hg)	148 ± 20
AI (%)	80 ± 15
Arterial stiffness	
baPWV (cm/s)	1776 ± 363

Abbreviations: AI – augmentation index; baPWV – brachial-ankle pulse wave velocity; BP – blood pressure; cSBP – central systolic blood pressure; HR – heart rate. Values are means \pm SD.

were significant negative relationships between UACR and 24-hour and daytime HR variability. Furthermore, the circulating B-type natriuretic peptide (BNP) level and hemoglobin A1c (HbA1c) were positively related to UACR. With respect to eGFR, while the 24-hour and nighttime HR variability were positively associated with eGFR, the circulating pentosidine and nighttime HR had negative relationships with eGFR. On the other hand, neither the central hemodynamics (cSBP, AI) nor the arterial stiffness (baPWV) exhibited any significant association with renal function parameters.

DISCUSSION

The main finding of this cross-sectional study is that the renal function parameters UACR and eGFR, which are key components of the assessment of the severity of CKD, were associated with the ambulatory BP and the HR profile. On the other hand, parameters of central hemodynamics and arterial stiffness did not exhibit any significant relationship with renal function. These associations between the ambulatory BP profile and renal function status deserve further discussion.

Previous studies have reported strong correlations between the ambulatory BP levels and urinary albumin or protein excretion in both hypertensive patients and CKD patients (31–33). In this study, UACR was

Table 3. Ambulatory BP and other variables related to renal function

Variables	UACR R (P value)	eGFR R (P value)
Ambulatory BP profile		
24-h		
Systolic BP (mm Hg)	0. 639 (.001)	NS
Diastolic BP (mm Hg)	NS	NS
HR (beats/min)	NS	NS
Systolic BP variability (%)	NS	NS
Diastolic BP variability (%)	NS	NS
HR variability (%)	-0.555 (.007)	0.474 (.017)
Daytime	-0.555 (.001)	0.474 (.017)
Systolic BP (mm Hg)	0. 542 (.009)	NS
Diastolic BP (mm Hg)	NS	NS
HR (beats/min)	NS	NS
Systolic BP variability (%)	NS	NS
Diastolic BP variability (%)	NS	NS
HR variability (%)	-0.507 (.016)	NS
Nighttime	0.501 (.010)	110
Systolic BP (mm Hg)	0.720 (<.001)	NS
Diastolic BP (mm Hg)	NS	NS
HR (beats/min)	0.459 (.031)	-0.418 (.038)
Systolic BP variability (%)	NS	NS
Diastolic BP variability (%)	NS	NS
HR variability (%)	NS	0.520 (.008)
Central hemodynamics		
cSBP (mm Hg)	NS	NS
AI (%)	NS	NS
Arterial stiffness		
baPWV (cm/s)	NS	NS
Other variables		
Age (y)	-0.434 (.043)	NS
BMI (kg/m ²)	NS	NS
Total cholesterol (mg/dL)	NS	NS
HbA1c (%)	0.442 (.040)	NS
BNP (pg/ml)	0.724 (<.001)	NS
Pentosidine (ng/mL)	ŃS	-0.602 (.004)
CVRR (%)	NS	NS

Abbreviations: AI - augmentation index; baPWV - brachial-ankle pulse wave velocity; BMI - body mass index; BNP - B-type natriuretic peptide; BP - blood pressure; cSBP - central systolic blood pressure; CVRR - coefficient of variation R-R interval; eGFR - estimated glomerular filtration rate; HR - heart rate; NS - nonsignificant; UACR – urine albumin excretion rate; HbA1c – hemoglobin A1c. Values are means \pm SD.

positively correlated to 24-hour, daytime, and nighttime systolic ambulatory BP, with the strongest association being that between UACR and nighttime systolic BP. This is consistent with previous studies showing that nocturnal BP is critically important for urinary albumin or protein excretion in both hypertensive and CKD patients (17,34,35). Since the circulating BNP level and HbA1c also showed positive correlations with UACR, the patients with increased UACR are thought to have an increased circulating blood volume with relatively high blood glucose and high BP levels.

The analysis of the relationship between the ambulatory BP and the HR profile and renal function parameters unexpectedly revealed that eGFR was positively correlated to 24-hour and nighttime HR variability. The recent results of the Avoiding Cardiovascular Events through

Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) study and meta-analysis of several large-scale cohort studies showed that the preservation of eGFR concomitant with a reduction in albuminuria is important for the management of cardiovascular complications in patients with CKD (36-38). The heart rate variability is a noninvasive measure of autonomic function that actually reflects the beat-to-beat variability in HR. It is best assessed by continuous electrocardiography over a 24-hour period, although shorter-term recordings have also been utilized, as estimated with CVRR in this study.

Utilization of the ambulatory BP monitoring device TM-2425 enabled us to assess HR variability during 24hour, daytime, and nighttime periods. A lower heart rate variability has been associated with adverse cardiovascular outcomes in settings such as post-myocardial infarction, coronary artery disease, congestive heart failure, diabetes, and end-stage renal disease (39-41). Although it has not been systematically studied in the nondialysis CKD population, a recent study showed that a lower HR variability occurs commonly in advanced stage CKD patients due to cardiac autonomic neuropathy, and this is associated with increased cardiovascular complications and mortality in CKD patients, thereby suggesting an important role of HR variability in both the progression of CKD and the development of cardiorenal syndrome (42).

There is evidence that diabetes and renal dysfunction are associated with persistent oxidative and carbonyl stress, as well as inflammation (38,43). Advanced glycation end products (AGEs) are made up of a protein carbonyl compound which is produced by protein-reactive oxygen species interactions. Furthermore, the elevation of oxidative/carbonyl stress end products, including AGEs, is likely to be, at least partly, responsible for the increased cardiovascular disease in diabetic patients (44,45). Pentosidine, one of the well-defined AGEs, is synthesized through nonenzymatic reactions of pentose, and its formation is closely related to oxidative processes (46). Its relationship with the relative severity of various diseases has been reported (47), and in this study, it was demonstrated that the circulating level of pentosidine was inversely correlated with eGFR.

Finally, although several variables of ambulatory BP monitoring disclosed significant relationships with the key renal function markers UACR and eGFR, central hemodynamics and arterial stiffness did not exhibit any significant association with these renal function markers. However, an interesting recent study demonstrated that the combination of CKD and increased arterial stiffness is a predictor of stroke and cardiovascular disease in hypertensive patients (48), which warrants further large-scale investigation. These results indicate that the ambulatory BP and the HR profile are affected by renal function deterioration and further studies on the causal link in CKD are needed. A limitation of this study is that the cross-sectional analysis of many variables is statistically inadequate with this small patient number.

In conclusion, the results of this study suggest that alteration in the ambulatory BP and the HR profile is closely associated with renal function deterioration in hypertensive patients with CKD, and further studies are needed to examine the influence of this association on the progression of CKD and the development of cardiorenal syndrome, as well as the relation to renal structural abnormalities (49,50).

ACKNOWLEDGMENTS

This study was supported in part by grants from the Japanese Ministry of Education, Science, Sports and Culture, by Health and Labor Sciences Research grant, and by grants from Salt Science Research Foundation (No. 1134) and the Kidney Foundation, Japan (JKFB11-25). Pacific Edit (Dr. Kevin Boru) reviewed the manuscript prior to submission.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

REFERENCES

- [1] Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:995–1003.
- [2] Casas JP, Chua W, Loukogeorgakis S, et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005; 366:2026–2033.
- [3] Spallone V, Bernardi L, Ricordi L, et al. Relationship between the circadian rhythms of blood pressure and sympathovagal balance in diabetic autonomic neuropathy. Diabetes 1993; 42:1745–1752.
- [4] Nakano S, Fukuda M, Hotta F, et al. Reversed circadian blood pressure rhythm is associated with occurrences of both fatal and nonfatal vascular events in NIDDM subjects. Diabetes 1998; 47:1501–1506
- [5] Sturrock ND, George E, Pound N, Stevenson J, Peck GM, Sowter H. Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabetes Med 2000; 17:360–364.
- [6] Palmas W, Pickering TG, Teresi J, et al. Ambulatory blood pressure monitoring and all-cause mortality in elderly people with diabetes mellitus. Hypertension 2009; 53:120–127.
- [7] Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113: 1213–1225.
- [8] Wang KL, Cheng HM, Chuang SY, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens 2009; 27:461–467.
- [9] Wang KL, Cheng HM, Sung SH, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension 2010; 55: 799–805.
- [10] Gomez-Marcos MA, Recio-Rodriguez JI, Rodriguez-Sanchez E, et al. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational

- prospective study. LOD-DIABETES study protocol. BMC Public Health 2010; 10:143.
- [11] Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 2010; 31:1865–1871.
- [12] Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010; 55:1318–1327.
- [13] Huang CM, Wang KL, Cheng HM, et al. Central versus ambulatory blood pressure in the prediction of all-cause and cardiovascular mortalities. J Hypertens 2011; 29:454–459.
- [14] Tamura K, Tsurumi Y, Sakai M, et al. A possible relationship of nocturnal blood pressure variability with coronary artery disease in diabetic nephropathy. Clin Exp Hypertens 2007; 29:31–42.
- [15] Ozawa M, Tamura K, Okano Y, et al. Identification of an increased short-term blood pressure variability on ambulatory blood pressure monitoring as a coronary risk factor in diabetic hypertensives. Clin Exp Hypertens 2009; 31:259–270.
- [16] Kanaoka T, Tamura K, Moriya T, et al. Effects of multiple factorial intervention on ambulatory BP profile and renal function in hypertensive type 2 diabetic patients with overt nephropathy – a pilot study. Clin Exp Hypertens 2011; 33:255–263.
- [17] Tamura K, Yamauchi J, Tsurumi-Ikeya Y, et al. Ambulatory blood pressure and heart rate in hypertensives with renal failure: comparison between diabetic nephropathy and non-diabetic glomerulopathy. Clin Exp Hypertens 2008; 30:33–43.
- [18] Kikuya M, Hozawa A, Ohokubo T, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension 2000; 36:901–906.
- [19] Sander D, Kukla C, Klingelhofer J, Winbeck K, Conrad B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation 2000; 102:1536–1541.
- [20] Eto M, Toba K, Akishita M, et al. Impact of blood pressure variability on cardiovascular events in elderly patients with hypertension. Hypertens Res 2005; 28:1–7.
- [21] Mitsuhashi H, Tamura K, Yamauchi J, et al. Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis. Atherosclerosis 2009; 207:186–190.
- [22] Masuda S, Tamura K, Wakui H, et al. Effects of angiotensin II type 1 receptor blocker on ambulatory blood pressure variability in hypertensive patients with overt diabetic nephropathy. Hypertens Res 2009; 32:950–955.
- [23] Ozawa M, Tamura K, Okano Y, et al. Blood pressure variability as well as blood pressure level is important for left ventricular hypertrophy and brachial-ankle pulse wave velocity in hypertensives. Clin Exp Hypertens 2009; 31:669–679.
- [24] Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53-082-002
- [25] Takazawa K, Kobayashi H, Shindo N, Tanaka N, Yamashina A. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave. Hypertens Res 2007; 30:219–228.
- [26] Kips JG, Schutte AE, Vermeersch SJ, et al. Comparison of central pressure estimates obtained from SphygmoCor, Omron HEM-9000AI and carotid applanation tonometry. J Hypertens 2011; 29:1115–1120.
- [27] Rezai MR, Goudot G, Winters C, Finn JD, Wu FC, Cruickshank JK. Calibration mode influences central blood pressure differences between SphygmoCor and two newer devices, the Arteriograph and Omron HEM-9000. Hypertens Res 2011; 34:1046-1051.
- [28] Tomiyama H, Odaira M, Matsumoto C, et al. Effects of moderate-to-severe impairment of the estimated glomerular filtration rate and of proteinuria on the central hemodynamics

- and arterial stiffness in middle-aged healthy Japanese men. Int J Nephrol 2011; 2011:427-471.
- [29] Yamashina A, Tomiyama H, Takeda K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002; 25:359-364.
- [30] Takebayashi K, Matsutomo R, Matsumoto S, et al. Relationships between heart rate variability and urinary albumin excretion in patients with type 2 diabetes. Am J Med Sci 2006; 331:72-78.
- [31] Boulatov VA, Stenehjem A, Os I. Association between albumin: creatinine ratio and 24-hour ambulatory blood pressure in essential hypertension. Am J Hypertens 2001; 14:338-344.
- [32] Palmas W, Moran A, Pickering T, et al. Ambulatory pulse pressure and progression of urinary albumin excretion in older patients with type 2 diabetes mellitus. Hypertension 2006; 48:301-308.
- [33] Marcovecchio ML, Dalton RN, Schwarze CP, et al. Ambulatory blood pressure measurements are related to albumin excretion and are predictive for risk of microalbuminuria in young people with type 1 diabetes. Diabetologia 2009; 52:1173-1181:
- [34] Nishimura M, Uzu T, Fujii T, Kimura G. Disturbed circadian rhythm of urinary albumin excretion in non-dipper type of essential hypertension. Am J Nephrol 2002; 22:455-462.
- [35] Palmas W, Pickering T, Teresi J, et al. Nocturnal blood pressure elevation predicts progression of albuminuria in elderly people with type 2 diabetes. J Clin Hypertens (Greenwich) 2008; 10:12-20.
- [36] Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 2008; 359:2417-2428.
- [37] Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with allcause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis, Lancet 2010; 375:2073-2081.
- [38] Bakris GL, Sarafidis PA, Weir MR, et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 2010; 375:1173-1181.
- [39] Fukuta H, Hayano J, Ishihara S, et al. Prognostic value of heart rate variability in patients with end-stage renal disease on chronic haemodialysis. Nephrol Dial Transplant 2003; 18:318-325.

- [40] Oikawa K, Ishihara R, Maeda T, et al. Prognostic value of heart rate variability in patients with renal failure on hemodialysis. Int I Cardiol 2009; 131:370-377.
- [41] Pop-Busui R, Evans GW, Gerstein HC, et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010; 33:1578-1584.
- [42] Chandra P, Sands RL, Gillespie BW, et al. Predictors of heart rate variability and its prognostic significance in chronic kidney disease. Nephrol Dial Transplant 2012; 27:700-709.
- [43] Hou FF, Ren H, Owen WF Jr, et al. Enhanced expression of receptor for advanced glycation end products in chronic kidney disease. J Am Soc Nephrol 2004; 15:1889-1896.
- [44] Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 2003; 92:785-792.
- [45] Jandeleit-Dahm K, Lassila M, Allen T. Advanced glycation end products in diabetes-associated atherosclerosis and renal disease: interventional studies. Ann N Y Acad Sci 2005; 1043:759-766.
- [46] Miyata T, Ueda Y, Horie K, et al. Renal catabolism of advanced glycation end products: the fate of pentosidine. Kidney Int 1998; 53:416-422.
- [47] Piroddi M, Palazzetti I, Quintaliani G, et al. Circulating levels and dietary intake of the advanced glycation end-product marker carboxymethyl lysine in chronic kidney disease patients on conservative predialysis therapy: a pilot study. J Ren Nutr 2011; 21:329-339.
- [48] Ohishi M, Tatara Y, Ito N, et al. The combination of chronic kidney disease and increased arterial stiffness is a predictor for stroke and cardiovascular disease in hypertensive patients. Hypertens Res 2011; 34:1209-1215.
- [49] Moriya T, Tanaka K, Hosaka T, Hirasawa Y, Fujita Y. Renal structure as an indicator for development of albuminuria in normo- and microalbuminuric type 2 diabetic patients. Diabetes Res Clin Pract 2008; 82:298-304.
- [50] Ohnuki K, Umezono T, Abe M, et al. Expression of transcription factor Snail and tubulointerstitial fibrosis in progressive nephropathy. J Nephrol 2012; 25:233-239.

Combination Therapy of Angiotensin II Receptor Blocker and Calcium Channel Blocker Exerts Pleiotropic Therapeutic Effects in Addition to Blood Pressure Lowering: Amlodipine and Candesartan Trial in Yokohama (ACTY)

Akinobu Maeda,¹ Kouichi Tamura,¹ Tomohiko Kanaoka,¹ Masato Ohsawa,¹ Sona Haku,¹ Kengo Azushima,¹ Toru Dejima,¹ Hiromichi Wakui,¹ Mai Yanagi,¹ Yasuko Okano,¹ Tetsuya Fujikawa,² Yoshiyuki Toya,¹ Shunsaku Mizushima,² Osamu Tochikubo,² Satoshi Umemura¹

¹Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan, ²Department of Epidemiology and Public Health, Yokohama City University Graduate School of Medicine, Yokohama, Japan

Abstract

Recent guidelines recommend combination antihypertensive therapy to achieve the target blood pressure (BP) and to suppress target organ damage. This study aimed to examine the beneficial effects of combination therapy with candesartan and amlodipine on BP control and markers of target organ function in Japanese essential hypertensive patients (N = 20) who did not achieve the target BP level during the monotherapy period with either candesartan or amlodipine. After the monotherapy period, for patients already being treated with amlodipine, a once-daily 8 mg dose of candesartan was added on during the combination therapy period (angiotensin II receptor blocker [ARB] add-on group, N = 10), and a once-daily 5 mg dose of amlodipine was added on for those already being treated with candesartan (calcium channel blocker [CCB] add-on group, N = 10). Combination therapy with candesartan and amlodipine for 12 weeks significantly decreased clinic and home systolic blood pressure (SBP) and diastolic blood pressure (DBP). In addition, the combination therapy was able to significantly reduce urine albumin excretion without decrease in estimated glomerular filtration ratio and resulted in significant improvements in brachial-ankle pulse wave velocity, central SBP, and insulin sensitivity. Furthermore, the CCB add-on group showed a significantly greater decrease in clinic and home DBP than the ARB add-on group. The calcium channel blocker add-on group also exhibited better improvements in vascular functional parameters than the ARB add-on group. These results suggest that combination therapy with candesartan and amlodipine is an efficient therapeutic strategy for hypertension with pleiotropic benefits.

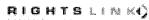
Keywords: hypertension, therapy, renal function, central systolic blood pressure, arterial stiffness, insulin resistance

INTRODUCTION

Accumulated results of clinical trials showed that strict control of blood pressure (BP) is essential to prevent target organ damage and to reduce cardiovascular mortality in hypertensive patients (1,2). The angiotensin II receptor blocker (ARB) and dihydropyridine calcium channel blocker (CCB) are the first-line antihypertensive drugs for most patients with hypertension, but monotherapy with either ARB or CCB achieves the target BP recommended by the hypertension guidelines in only a limited number of patients and, thus, combination therapy is required in a majority of patients (3).

This study aimed to examine the beneficial effects of combination therapy with ARB candesartan and CCB

amlodipine on BP profile and several target organ functions in Japanese essential hypertensive patients who did not achieve the target BP level according to the Japanese Society of Hypertension Guidelines for the Management of Hypertension during the monotherapy period with either candesartan or amlodipine (4).


SUBJECTS AND METHODS

Study Population and Design

The study participants, aged 26–76 years, were recruited from the Outpatients Department of Internal Medicine, Yokohama City University Hospital (Yokohama, Japan). The entry period was from January 2010 to January

Address correspondence to Kouichi Tamura, MD, PhD, FACP, FAHA, Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan. E-mail: tamukou @med.yokohama-cu.ac.jp

Received 19 August 2011; revised 2 September 2011; accepted 5 September 2011.

2011. This study consisted of a 4-week monotherapy period and 12-week combination therapy period. The eligible subjects were mild-to-moderate essential hypertensive patients who were already treated with a oncedaily 5 mg dose of amlodipine monotherapy or with a once-daily 8 mg dose of candesartan monotherapy at the initiation of the monotherapy period and did not achieve the target BP level according to the Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH2009) during the monotherapy period (4). The subjects were treated with either monotherapy for more than 4 weeks. After the monotherapy period, for the patients already being treated with amlodipine, a once-daily 8 mg dose of candesartan was added on during the combination therapy period (ARB add-on group), and a once-daily 5 mg dose of amlodipine was added on for those already being treated with candesartan (CCB add-on group). Exclusion criteria included patients who exhibited severe hypertension (clinic systolic BP [SBP] \geq 180 mm Hg and/or diastolic BP [DBP] \geq 110 mm Hg), patients with renal insufficiency (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m²), women who were nursing or pregnant, and patients with clinically significant heart disease, moderate-tosevere hepatic dysfunction, and known hypersensitivity to any component of the study medications.

Measurements of clinic BP and home BP (HBP) were performed before and 12 weeks after the start of the combination treatment. Venous blood and urine samples for the hematological, biochemical, and renal parameters were drawn and collected in the morning after an overnight fast on the same day the measurements of clinic BP, brachial-ankle pulse wave velocity (baPWV), and central systolic blood pressure (cSBP) were performed. We calculated eGFR with an application of a revised equation for the Japanese population: eGFR (mL/min/1.73 m²) = $194 \times \text{serum creatinine}^{-1.094} \times \text{Age}^{-0.287} \times 0.739$ (if female) (5). This study was approved by the Ethics Committees of Yokohama City University Hospital, and written informed consent was obtained from every participant.

Clinic BP and Home BP Measurements

Clinic blood pressure was measured in the sitting position after at least 5-minute rest using a sphygmoman-ometer. Two measurements were taken 1 minute apart, and their average was used for calculation. The home blood pressure measurement was performed using a validated cuff oscillometric device Omron 705IT (HEM-759-E; Omron Healthcare, Kyoto, Japan) according to the Japanese Society of Hypertension Guidelines for the Management of Hypertension (4,6). The patients were instructed to measure their morning HBP (measured after awakening and before breakfast and taking antihypertensive medication) in a sitting position, and the average of morning HBP values for the 3-day period before visiting was calculated.

Central Systolic Blood Pressure and Brachial-Ankle Pulse Wave Velocity

The central systolic blood pressure was measured by HEM-9000AI (Omron Healthcare) using an automatic tonometry probe wrapped onto the wrist to record radial waveforms, which are then calibrated against the contralateral brachial BP measured by an arm cuff immediately after tonometry. An algorithm based on a linear regression model is then applied to estimate cSBP from the "late systolic shoulder" (pSBP2) of the radial pulse waveform, which has been shown to agree closely with cSBP (7–10). The device uses the maxima of the "multidimensional derivatives" on the recorded pressure waveforms to detect first and second inflection points corresponding to early and late systolic (pSBP2) pressures.

The brachial-ankle pulse wave velocity values were determined with a PP analyzer (BP-203RPEII; Nihon Colin, Tokyo, Japan). Pulse volume waveforms were recorded with sensors placed over the right brachial artery and both tibial arteries. The brachial-ankle pulse wave velocity values measured by this method are reported to significantly correlate with the aortic pulse wave velocity (PWV) measured by the catheter method (11–13).

Statistical Analysis

The quantitative data are expressed as means \pm SEM. For the statistical analysis of difference between monotherapy and combination therapy, Wilcoxon signed-rank test was performed, and for the statistical analysis of difference between the ARB add-on group and CCB add-on group, Mann–Whitney's *U*-test was performed, by using SPSS software (version 16.0, SPSS, Chicago, IL, USA). A *P* value of <.05 was considered as statistically significant.

RESULTS

Baseline Patient Characteristics

Table 1 shows the baseline characteristics of the total 20 participants consisting of 10 hypertensive patients (ARB add-on group) precedingly being treated with amlodipine (5 mg/day) and 10 hypertensive patients (CCB add-on group) precedingly being treated with candesartan (8 mg/day) before the start of the combination therapy. Mean age was 62.0 ± 3.1 years, and the number of males and females was 12 and 8, respectively. Body mass index was 25.6 ± 1.1 kg/m², suggesting that the participants correspond to obese hypertensive patients as a whole.

With respect to BP control, HBP as well as clinic BP did not achieve the target BP level according to the JSH2009 guideline (home SBP/DBP 150 \pm 1/87 \pm 1 mm Hg; clinic SBP/DBP 153 \pm 1/89 \pm 2 mm Hg). Eleven patients were with slightly impaired renal function and albuminuria (urine albumin-to-creatinine ratio [UACR] 373 \pm 124 mg/g-creatinine; eGFR 73.3 \pm 4.6

Table 1. Baseline patient characteristics (N = 20)

	Total (<i>N</i> = 20)	ARB add-on group ($N = 10$)	CCB add-on group ($N = 10$)	ARB versus CCB
Sex (male/female)	12/8	7/3	5/5	NS
Age (y)	62.0 ± 3.1	63.1 ± 3.1	60.8 ± 5.2	NS
CKD (stage 1 to 3)	11	5	6	NS
Stage 1	4	0	1	
Stage 2	3	2	4	
Stage 3	4	3	1	
Diabetes mellitus	2	1	1	NS
BMI (kg/m^2)	25.6 ± 1.1	25.3 ± 1.1	25.9 ± 1.8	NS
Clinic BP				
SBP (mm Hg)	153 ± 1	152 ± 1	154 ± 1	NS
DBP (mm Hg)	89 ± 2	87 ± 4	91 ± 2	NS
PR (beats/min)	75 ± 1	75 ± 1	74 ± 1	NS
HBP morning			4	
SBP (mm Hg)	150 ± 1	148 ± 1	151 ± 1	NS
DBP (mm Hg)	87 ± 1	86 ± 1	88 ± 1	NS
Renal function				
UACR (mg/g-Cr)	373 ± 124	374 ± 190	373 ± 150	NS
eGFR (mL/min/1.73 m ²)	73.3 ± 4.6	73.9 ± 7.3	72.6 ± 5.3	NS
Cardiac function				
BNP (pg/mL)	25.9 ± 6.9	13.9 ± 2.4	33.8 ± 9.3	NS
Vascular function				
baPWV (cm/s)	1912 ± 79	1953 ± 122	1871 ± 91	NS
AI (%)	88 ± 4	84 ± 3	92 ± 6	NS
cSBP (mm Hg)	165 ± 4	159 ± 5	171 ± 5	NS
Glucose metabolism				
HOMA-R	3.9 ± 0.5	3.7 ± 0.7	4.1 ± 0.7	NS

Abbreviations: ARB – angiotensin II receptor blocker; CCB – calcium channel blocker; CKD – chronic kidney disease; BMI – body mass index; SBP – systolic blood pressure; DBP – diastolic blood pressure; HBP – home blood pressure; PR – pulse rate; UACR – urine albuminto-creatinine ratio; PR – estimated glomerular filtration rate; PR – brain natriuretic peptide; PR – brachial-ankle pulse wave velocity; PR – augmentation index; PR – central systolic blood pressure; PR – homeostasis model assessment ratio; PR – not significant. Data are shown as means PR – the presentages.

mL/min/1.73 m²) and also with slightly impaired systemic insulin sensitivity (homeostasis model assessment ratio [HOMA-R], 3.9 ± 0.5). Briefly, participants were characterized as middle-aged, obese, mild-to-moderate hypertensive patients with impaired renal function and insulin resistance. There were no significant differences in patient characteristics between ARB add-on group and CCB add-on group at baseline.

Effects of Combination Therapy with ARB and CCB on BP Profile

As a whole, combination therapy with candesartan and amlodipine for 12 weeks significantly decreased clinic SBP and DBP, although the reduction of DBP in the ARB add-on group did not reach a statistical significance (Figure 1A). With respect to changes in clinic BP by combination therapy, the CCB add-on group showed a significantly greater decrease in clinic DBP and a marginally larger reduction of clinic SBP than the ARB add-on group (Figure 1B). Achievement of target BP control, which was defined as BP values less than 130/80 mm Hg in patients with diabetes or chronic kidney disease (CKD) or less than 140/90 mm Hg in those without diabetes or CKD, according to the JSH2009, was

attained in an average of 50% of patients in the CCB add-on group and 40% in the ARB add-on group.

Similar to clinic BP, combination therapy with candesartan and amlodipine significantly decreased home morning SBP and DBP (Figure 2A). Again, the CCB add-on group showed a greater reduction of home morning DBP than the ARB add-on group (Figure 2B).

Effects of Combination Therapy with ARB and CCB on Renal Function, Vascular Function, Cardiac Function, and Insulin Sensitivity

Combination therapy with candesartan and amlodipine for 12 weeks significantly decreased UACR (Figure 3A) and there was no significant difference in the decrease in UACR between the ARB add-on group and the CCB add-on group (Figure 3B). In addition, the reduction of UACR by the combination therapy was not accompanied with decline in eGFR in either the ARB add-on group or the CCB add-on group (Figure 3A and B).

Concerning parameters of vascular function, combination therapy with candesartan and amlodipine for 12 weeks significantly improved both baPWV and cSBP as a whole (Figure 4A and B). However, while the CCB addon group showed significant reductions of baPWV and

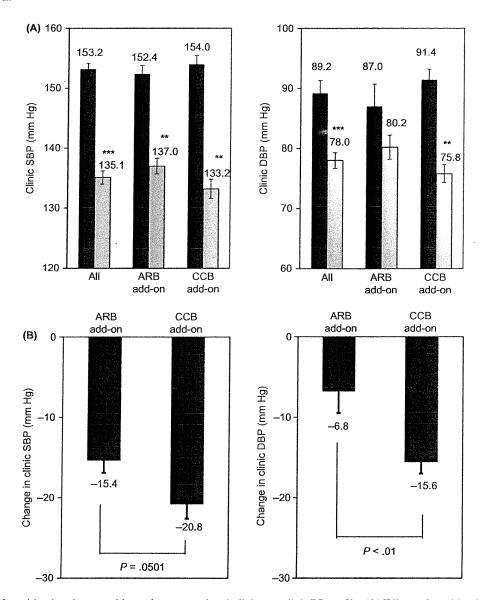


Figure 1. Effects of combination therapy with candesartan and amlodipine on clinic BP profile. (A) Effects of combination therapy on clinic SBP and DBP. Black bars indicate values at baseline and gray bars indicate values after 12 wk combination therapy. **P < .01, ***P < .001, 12 wk versus baseline. (B) Comparison of change in clinic BP between the ARB add-on group and the CCB add-on group. Values are expressed as means \pm SEM.

cSBP, the ARB add-on group failed to exhibit statistically significant improvements in baPWV and cSBP. With respect to cardiac function, the circulating brain natriuretic peptide level was significantly improved only in the CCB add-on group (Figure 4C). Finally, the combination therapy significantly improved HOMA-R and there was no difference in the degree of improvement between the ARB add-on group and the CCB add-on group (Figure 4D).

DISCUSSION

The main finding of this study was that the combination antihypertensive therapy with candesartan and amlodipine successfully decreased clinic BP and HBP in both hypertensive patients precedingly being treated with amlodipine and in those precedingly being treated with candesartan before the start of the combination therapy. In addition, the combination therapy was able to significantly reduce UACR without decrease in eGFR and resulted in significant improvements in vascular function and insulin sensitivity. These pleiotropic effects by combination therapy with candesartan and amlodipine deserve further discussion.

Recent clinical guidelines for hypertensive patients recommend combination therapy such as renin–angiotensin system inhibitors and CCB or diuretics, and in this study, the combination therapy with candesartan and amlodipine was effective for efficient lowering of clinic BP and HBP in Japanese essential hypertensive patients.

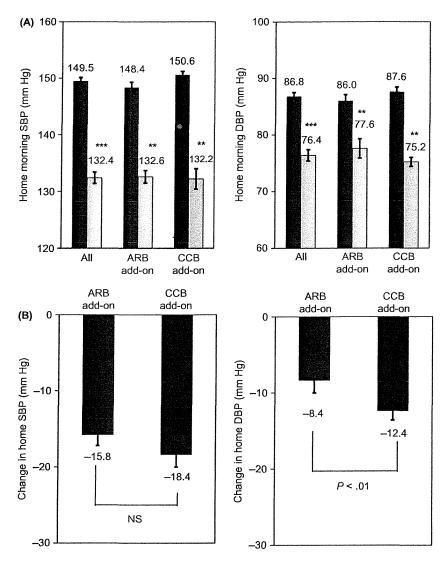


Figure 2. Effects of combination therapy with candesartan and amlodipine on home morning BP profile. (A) Effects of combination therapy on clinic SBP and DBP. Black bars indicate values at baseline and gray bars indicate values after 12 wk combination therapy. **P < .01, ***P < .001, 12 wk versus baseline. (B) Comparison of change in home morning BP between the ARB add-on group and the CCB add-on group. Values are expressed as means \pm SEM.

Interestingly, with respect to BP lowering efficacy, the CCB add-on group exerted greater reductions of clinic BP and HBP than the ARB add-on group, which would be consistent with a previous result of CASE-J trial in Japan showing that the BP level achieved with candesartan treatment was not as low as that achieved with amlodipine treatment (14).

Accumulated evidence indicates that ARB is able to improve albuminuria better than CCB through the reduction of intraglomerular pressure (15). However, the decreases in UACR by combination therapy were comparable in the ARB add-on group and the CCB add-on group in this study. Previous results of VALUE and CASE-J trials showed that the BP lowering effects of the CCB-based regimen were more pronounced than the ARB-based regimen, especially in the early several months period (14,16), and another study demonstrated

that the decreases in BP significantly contributed to the decreases in albuminuria by combination therapy with ARB and CCB in CKD patients (17). Since the CCB add-on group showed a significantly greater decrease in clinic DBP and a marginally larger reduction of clinic SBP than the ARB add-on group in this study, the comparable reduction of UACR in the ARB add-on group and the CCB add-on group seems to be consistent with these previous findings.

Analysis of patient characteristics at baseline unexpectedly revealed that substantial participants were complicated with CKD and overt albuminuria. However, the combination therapy with candesartan and amlodipine for 12 weeks succeeded to efficiently suppress albuminuria, irrespective of preceding medication, without further decline in eGFR. This is likely to be an important advantage of the combination therapy with ARB and

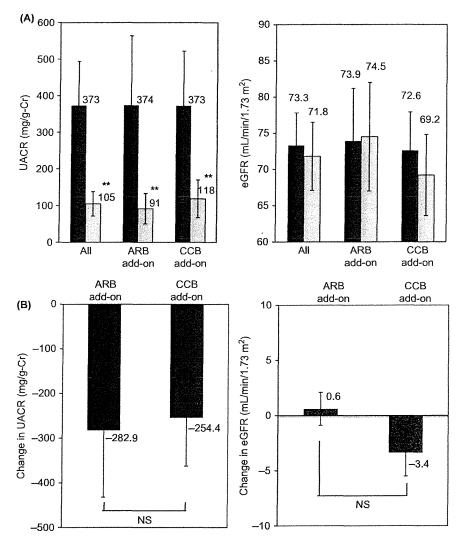


Figure 3. Effects of combination therapy with candesartan and amlodipine on parameters of renal function. (A) Effects of combination therapy on urine albumin excretion ratio (UACR) and estimated glomerular filtration ratio (eGFR). Black bars indicate values at baseline and gray bars indicate values after 12 wk combination therapy. $^{\star\star}P < .01$, 12 wk versus baseline. (B) Comparison of change in UACR and eGFR between the ARB add-on group and the CCB add-on group. Values are expressed as means \pm SEM.

CCB, since several recent epidemiological studies and intervention trials demonstrated that efficient reduction of albuminuria with preserved eGFR is important to inhibit the progression of CKD and to prevent the development of cardiovascular complication (18–20).

The calcium channel blocker add-on group exhibited better improvements in vascular functional parameters such as baPWV and cSBP than the ARB add-on group in this study. A previous study showed that the add-on amlodipine therapy had benefits in terms of the vascular function and vascular structure of hypertensive patients precedingly treated with an ARB, which were independent of its depressor effects but with a concomitant decrease in ambulatory BP variability (21), and a recent study also demonstrated that amlodipine had a stronger inhibitory effect on ambulatory short-term BP variability than indapamide and candesartan in essential hypertensive patients (22). Ambulatory short-term BP variability has been shown

to depend on sympathetic vascular modulation and on atherosclerotic vascular changes (23,24). Several previous animal studies showed that exaggerated short-term BP variability without significant changes in mean BP impaired endothelial function by inhibiting NO production and induced chronic cardiovascular inflammation and remodeling (25,26). Ambulatory short-term BP variability is suggested to be clinically relevant by the fact that hypertensive patients with similar 24-hour mean BP values exhibit more severe organ damage when the short-term BP variability is greater (12,13,24,27-30). We also demonstrated that intensified multifactorial intervention, with tight glucose regulation and the use of valsartan and fluvastatin, improved ambulatory BP profile, preserved renal function, and reduced urinary albumin excretion in type 2 diabetic hypertensive patients with overt nephropathy (31).

Recent post hoc and meta-analyses also showed that several parameters of BP variability, such as visit-to-visit

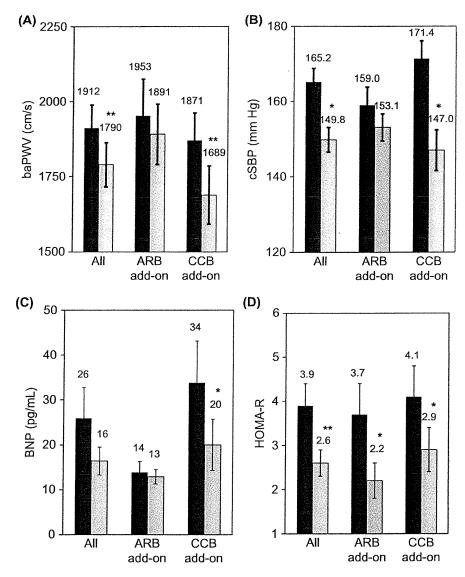


Figure 4. Effects of combination therapy with candesartan and amlodipine on parameters of vascular function, cardiac function, and insulin sensitivity. Effects of combination therapy on brachial-ankle pulse wave velocity (A, baPWV), central SBP (B, cSBP), brain natriuretic peptide (C, BNP), and homeostasis model assessment ratio (D, HOMA-R). Black bars indicate values at baseline and gray bars indicate values after 12 wk combination therapy. *P < .05, **P < .01, 12 wk versus baseline. Values are expressed as means \pm SEM.

BP variability and home-measure BP variability in addition to ambulatory BP variability, reflect organ damages and are potential predictors of cardiovascular events, including stroke independently of mean SBP (32–40). Furthermore, these analyses also displayed that CCB is the most effective drug class for reduction of BP variability. Nevertheless, since the clinic BP and HBP lowering effects were larger in the CCB add-on group than in the ARB add-on group in this study, it is still possible that a preferential improvement in vascular function parameters in the CCB add-on group is derived from the better BP control.

In this study the combination therapy with candesartan and amlodipine improved insulin resistance comparably in the ARB add-on group and the CCB add-on group. This observation would be consistent with a previous result showing that CCB reduced glucose

intolerance in diabetic mice via different mechanism than ARB, thereby suggesting the clinical possibility that the combination of CCB and ARB could be more efficacious than monotherapy in the treatment of insulin resistance (41). A limitation of this study is the study design. Because the aim of the study was to examine the beneficial effect of combination therapy, the control group should be under monotherapy for strict comparison. However, this study compared the parameters during the period of monotherapy and during the combination therapy. Thus, this study design could not fully exclude the time effect of therapy.

Finally, although only the beneficial effects of combination treatment with ARB and CCB were examined in this study, combination treatment with ARB (or angiotensin-converting enzyme [ACE] inhibitor) and diuretics

is also recommended in the guidelines. Since previous studies reported differential effects between CCB and diuretics when used in combination with ARB on central hemodynamics, arterial stiffness, metabolic profile, and albuminuria in hypertensive patients (5,42–44), further studies are needed to estimate a potential advantage of the ARB + CCB combination over the ARB + diuretics combination for the treatment of hypertension. In conclusion, the results of this study suggest that combination therapy with candesartan and amlodipine is an efficient therapeutic strategy for hypertension with pleiotropic benefits.

ACKNOWLEDGMENT

This study was supported in part by grants from the Japanese Ministry of Education, Science, Sports and Culture, by Health and Labor Sciences Research grant, and by grants from Salt Science Research Foundation (No. 1134) and the Kidney Foundation, Japan (JKFB11-25).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

REFERENCES

- [1] Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:995–1003.
- [2] Casas JP, Chua W, Loukogeorgakis S, et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005; 366:2026–2033.
- [3] Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 2008; 359:2417–2428.
- [4] Ogihara T, Kikuchi K, Matsuoka H, et al. Society of Hypertension Guidelines for the Management of Hypertension (JSH 2009). Hypertens Res 2009; 32:3–107.
- [5] Ishimitsu T, Numabe A, Masuda T, et al. Angiotensin-II receptor antagonist combined with calcium channel blocker or diuretic for essential hypertension. Hypertens Res 2009; 32:962–968.
- [6] Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron 705IT (HEM-759-E) oscillometric blood pressure monitoring device according to the British Hypertension Society protocol. Blood Press Monit 2006; 11:27–32.
- [7] Takazawa K, Kobayashi H, Shindo N, Tanaka N, Yamashina A. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave. Hypertens Res 2007; 30:219–228.
- [8] Kips JG, Schutte AE, Vermeersch SJ, et al. Comparison of central pressure estimates obtained from SphygmoCor, Omron HEM-9000AI and carotid applanation tonometry. J Hypertens 2011; 29:1115–1120.
- [9] Rezai MR, Goudot G, Winters C, Finn JD, Wu FC, Cruickshank JK. Calibration mode influences central blood pressure differences between SphygmoCor and two newer devices, the arteriograph and Omron HEM-9000. Hypertens Res 2011; 34:1046–1051.

- [10] Tomiyama H, Odaira M, Matsumoto C, et al. Effects of moderate-to-severe impairment of the estimated glomerular filtration rate and of proteinuria on the central hemodynamics and arterial stiffness in middle-aged healthy Japanese men. Int J Nephrol 2011; 2011:427471.
- [11] Yamashina A, Tomiyama H, Takeda K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002; 25: 359–364.
- [12] Masuda S, Tamura K, Wakui H, et al. Effects of angiotensin II type 1 receptor blocker on ambulatory blood pressure variability in hypertensive patients with overt diabetic nephropathy. Hypertens Res 2009; 32:950–955.
- [13] Mitsuhashi H, Tamura K, Yamauchi J, et al. Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis. Atherosclerosis 2009; 207:186–190.
- [14] Ogihara T, Nakao K, Fukui T, et al. Effects of candesartan compared with amlodipine in hypertensive patients with high cardio-vascular risks: candesartan antihypertensive survival evaluation in Japan trial. Hypertension 2008; 51:393–398.
- [15] Uzu T, Sawaguchi M, Maegawa H, Kashiwagi A. Reduction of microalbuminuria in patients with type 2 diabetes: the Shiga Microalbuminuria Reduction Trial (SMART). Diabetes Care 2007; 30:1581–1583.
- [16] Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 2004; 363:2022–2031.
- [17] Kaneshiro Y, Ichihara A, Sakoda M, Kurauchi-Mito A, Kinouchi K, Itoh H. Add-on benefits of amlodipine and thiazide in non-diabetic chronic kidney disease stage 1/2 patients treated with valsartan. Kidney Blood Press Res 2009; 32:51–58.
- [18] Bakris GL, Sarafidis PA, Weir MR, et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 2010; 375:1173–1181.
- [19] Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375:2073–2081.
- [20] Herzog CA, Asinger RW, Berger AK, et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2011; 80:572–586.
- [21] Ichihara A, Kaneshiro Y, Sakoda M, Takemitsu T, Itoh H. Addon amlodipine improves arterial function and structure in hypertensive patients treated with an angiotensin receptor blocker. J Cardiovasc Pharmacol. 2007; 49:161–166.
- [22] Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension 2011; 58:155–160.
- [23] Parati G, Di Rienzo M, Mancia G. Neural cardiovascular regulation and 24-hour blood pressure and heart rate variability. Ann NY Acad Sci 1996; 783:47-63.
- [24] Tamura K, Tsurumi Y, Sakai M, et al. A possible relationship of nocturnal blood pressure variability with coronary artery disease in diabetic nephropathy. Clin Exp Hypertens 2007; 29:31–42.
- [25] Eto M, Toba K, Akishita M, et al. Reduced endothelial vasomotor function and enhanced neointimal formation after vascular injury in a rat model of blood pressure lability. Hypertens Res 2003; 26:991–998.
- [26] Kudo H, Kai H, Kajimoto H, et al. Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation. Hypertension 2009; 54:832–838.

- [27] Eguchi K, Ishikawa J, Hoshide S, et al. Night time blood pressure variability is a strong predictor for cardiovascular events in patients with type 2 diabetes. Am J Hypertens 2009; 22:46-51.
- [28] Ozawa M, Tamura K, Okano Y, et al. Blood pressure variability as well as blood pressure level is important for left ventricular hypertrophy and brachial-ankle pulse wave velocity in hypertensives. Clin Exp Hypertens 2009; 31:669–679.
- [29] Shigenaga A, Tamura K, Dejima T, et al. Effects of angiotensin II type 1 receptor blocker on blood pressure variability and cardiovascular remodeling in hypertensive patients on chronic peritoneal dialysis. Nephron Clin Pract 2009; 112:c31-c40.
- [30] Shintani Y, Kikuya M, Hara A, et al. Ambulatory blood pressure, blood pressure variability and the prevalence of carotid artery alteration: the Ohasama study. J Hypertens 2007; 25:1704–1710.
- [31] Kanaoka T, Tamura K, Moriya T, et al. Effects of multiple factorial intervention on ambulatory BP profile and renal function in hypertensive type 2 diabetic patients with overt nephropathy—a pilot study. Clin Exp Hypertens 2011; 33:255–263.
- [32] Kikuya M, Hozawa A, Ohokubo T, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension 2000; 36:901–906.
- [33] Eto M, Toba K, Akishita M, et al. Impact of blood pressure variability on cardiovascular events in elderly patients with hypertension. Hypertens Res 2005; 28:1–7.
- [34] Kikuya M, Ohkubo T, Metoki H, et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension 2008; 52: 1045–1050.
- [35] Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet 2010; 375:906-915.

- [36] Rothwell PM, Howard SC, Dolan E, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol 2010; 9: 469–480.
- [37] Ushigome E, Fukui M, Hamaguchi M, et al. The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertens Res 2011; 34:1271–1275.
- [38] Manios E, Stamatelopoulos K, Tsivgoulis G, et al. Time rate of blood pressure variation: a new factor associated with coronary atherosclerosis. J Hypertens 2011; 29:1109–1114.
- [39] Bilo G, Parati G. Rate of blood pressure changes assessed by 24 h ambulatory blood pressure monitoring: another meaningful index of blood pressure variability? J Hypertens 2011; 29:1054–1058.
- [40] Tamura K, Azushima K, Umemura S. Day-by-day homemeasured blood pressure variability: another important factor in hypertension with diabetic nephropathy? Hypertens Res 2011; 34:1249–1250.
- [41] Iwai M, Li HS, Chen R, et al. Calcium channel blocker azelnidipine reduces glucose intolerance in diabetic mice via different mechanism than angiotensin receptor blocker olmesartan. J Pharmacol Exp Ther 2006; 319:1081–1087.
- [42] Matsui Y, Eguchi K, O'Rourke MF, et al. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension 2009; 54: 716–723.
- [43] Matsui Y, Eguchi K, Ishikawa J, Shimada K, Kario K. Urinary albumin excretion during angiotensin II receptor blockade: comparison of combination treatment with a diuretic or a calciumchannel blocker. Am J Hypertens 2011; 24:466–473.
- [44] Tamura K, Kanaoka T, Ohsawa M, et al. Emerging concept of anti-hypertensive therapy based on ambulatory blood pressure profile in chronic kidney disease. Am J Cardiovasc Dis 2011; 1:236–243.