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We performed a meta-analysis of five genome-wide association
studies to identify common variants influencing colorectal
cancer (CRC) risk comprising 8,682 cases and 9,649 controls.
Replication analysis was performed in case-control sets
totaling 21,096 cases and 19,555 controls. We identified
three new CRC risk loci at 6p21 (rs1321311, near CDKNTA;
P=1.14x 107", 11q13.4 (rs3824999, intronic to

POLD3; P = 3.65 x 10-19) and Xp22.2 (rs5934683, near
SHROOM2; P = 7.30 x 10~1%) This brings the number of
independent loci associated with CRC risk to 20 and provides
further insight into the genetic architecture of inherited
susceptibility to CRC.

Many colorectal cancers develop in genetically susceptible indivi-
duals, most of whom are not carriers of germline mismatch-repair
or APC mutations'~3. Genome-wide association studies (GWAS) have
validated the hypothesis that part of the heritable risk of CRC is attri-
butable to common, low-risk variants, identifying CRC susceptibility
loci in 17 genomic regions*~!0. The statistical power of individual
GWAS is limited by the modest effect sizes of genetic variants and
financial constraints on the numbers of variants that can be followed
up. Meta-analysis of existing GWAS data offers the opportunity to
discover additional disease loci, according to current projections for
the number of independent regions harboring common variants asso-
ciated with CRC risk!!, In this study, we conducted a meta-analysis
of GWAS data and validation in multiple independent case-control
series, identifying three new susceptibility loci for CRC.

The discovery phase comprised five GWAS data sets from the UK
population, totaling 8,682 cases and 9,649 controls (Supplementary
Table 1). The Scotland1 GWAS consisted of genotyping 1,012 early-onset
Scottish CRC cases and 1,012 controls using the [llumina HumanHap300
and HumanHap240S arrays (COGS Study). London phase 1 (UK1) was
based on genotyping 940 cases with familial colorectal neoplasia and 965
controls ascertained through the Colorectal Tumour Gene Identification
(CORGI) Consortium using [llumina HumanHap550 arrays. Scotland2
was based on an additional 2,057 cases and 2,111 controls (Scottish color-
ectal cancer study (SOCS)), and UK2 samples comprised an additional
2,873 CRC cases and 2,871 controls ascertained through the National
Study of Colorectal Cancer Genetics (NSCCG). Scotland2 and UK2
samples were genotyped using Illumina Infinium-iSelect and GoldenGate
arrays for a common set of 43,140 SNPs, including the 14,982 most
strongly associated SNPs from UK1, the 14,972 most strongly associ-
ated SNPs from Scotland1 and the 13,186 SNPs showing the strongest
association in a joint analysis of all CRC cases and controls from both
phase 1 data sets. The VQ58 GWAS comprised 1,800 CRC cases from the
UK-based VICTOR and QUASAR2 adjuvant chemotherapy clinical
trials. Victor, Quasar, 1958 Birth Cohort (VQ58) cases were genotyped
using the llumina HumanHap300 and HumanHap370 arrays. The 2,690
controls, genotyped on the Illumina Human-1.2M-Duo Custom_v1
array, were from the UK population-based 1958 Birth Cohort.

Before undertaking meta-analysis of all GWAS data sets,
we searched for potential biases in each case-control series
(Supplementary Fig. 1). Comparison of the observed and expected
¥* distributions showed little evidence for inflation of the test
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Table 1 Summary results for the SNPS rs1321311 (6p21),
rs3824999 (11q13.4) and rs5934683 (Xp22.2) associated with
CRC risk

SNP Study OR 95% CI P value
rs1321311  Discovery 1.09 1.05-1.14 4.79 x 10-5
Replication 1.09 1.05-1.14 5.74 x 10-6
Japan 1.18 1.03-1.36 1.71 x 10-2
Combined 1.10 1.07-1.13 1.14 x 10-10
(Pret = 0.55, R = 0%)
1s3824999  Discovery 1.08 1.05-1.13 1.77 x 10-5
Replication 1.07 1.04-1.11 2.06 x 10-5
Japan 1.09 0.99-1.19 8.46 x 10-2
Combined 1.08 1.05-1.10 3.65 x 10710
(Phet = 0.05, 2 = 41%)
rs5934683  Discovery 1.08 1.04-1.12 8.19 x 10-5
Replication 1.07 1.04-1.10 2,16 x 10-8
Japan 1.04 0.93-1.16 5.38 x 101
Combined 1.07 1.04-1.10 7.30 x 10710

(Poet = 0.31, 2 = 13%)

statistics (Supplementary Fig. 2), thereby excluding the possibility
of significant hidden population substructure, cryptic relatedness
among subjects or differential genotype calling. Principal-component
analysis showed that the cases and controls were genetically well
matched (Supplementary Fig. 3 and Supplementary Note). Any
outliers or related individuals were excluded (Online Methods and
Supplementary Fig. 1).

We also made use of data on 260 SNPs from 2,183 cases and 2,501
controls who had been genotyped as part of the COIN cases, National
Blood Service controls (COINNBS) series. These SNPs had shown
some evidence of association with CRC in a previous meta-analysis
of the five GWAS data sets in which a smaller set of VQ cases were
genotyped® (Supplementary Table 1).

Using data from the above six studies, we derived for each SNP joint
odds ratios (ORs) and confidence intervals (Cls) under a fixed-effects
model and determined the associated P values. We identified two
SNPs, rs1321311 and rs3824999, showing good evidence of associa-
tion (P < 5.0 x 10~%) and mapping to distinct loci not previously asso-
ciated with CRC risk. The P-value threshold used does not exclude the
possibility that other SNPs represent genuine association signals but
was simply a pragmatic strategy for prioritizing replication.

To validate our findings, we conducted a replication study of rs1321311
and rs3824999, genotyping samples from nine additional case-control
series: the Colon Cancer Family Registry (CCFR1), the UK NSCCG (UK3),
the UK CORGI (UK4), an Edinburgh study (Scotland3), a Cambridge
study (Cambridge), a Croatian study (Croatia), the Finnish Colorectal
Cancer Predisposition Study (Helsinki) and a Swedish study (Sweden),
together with a Japanese study (Japan) (Supplementary Table 1). In the
combined analysis, both rs1321311 (P=1.14 x 10~1% P, , = 0.55, 2 = 0%)
and rs3824999 (P = 3.65 x 10719 P, . = 0.05, I = 41%) showed evidence
for an association with CRC at genome-wide significance (P < 5.0 x 107%)
(Table 1, Online Methods and Supplementary Table 2).

rs3824999 maps to 11q13.4 at position 74,023,198 within intron 9
of the POLD3 gene (encoding polymerase DNA-directed §3; MIM
611415; Fig. 1). The POLD3 protein is a component of the DNA
polymerase-8 complex that comprises proliferating cell nuclear anti-
gen (PCNA), the multi-subunit replication factor C and the four-
subunit polymerase complex. As well as being involved in suppression
of homologous recombination, the DNA polymerase-8 complex par-
ticipates in DNA mismatch and base-excision repair, key processes
shown to be defective in Mendelian CRC susceptibility disorders!2.
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rs1321311 maps to 6p21 at position 36,730,878 within a region
of linkage disequilibrium (LD) that encompasses the CDKNIA gene
(encoding cyclin-dependent kinase inhibitor 1A; MIM 116899; Fig. 1).
Notably, rs1321311 has been shown to be associated with electro-
cardiographic QRS duration'>. CDKNIA encodes p21WAFI/Cip1 ywhich
mediates p53-dependent G1 growth arrest'*. Moreover, p21 acts as a
master effector of multiple tumor suppressor pathways that function
independently of classical p53 tumor suppression. Also, by binding
to PCNA, p21 interferes with PCNA-dependent DNA polymerase
activity, thereby inhibiting DNA replication and modulating PCNA-
dependent DNA repair'®. Through binding to PCNA, p21 also com-
petes for PCNA binding with DNA polymerase-& and several other
proteins involved in DNA synthesis, thus directly inhibiting DNA syn-
thesis'®. Similarly, p21 represses MYC-dependent transcription and,
in turn, MYC disrupts the PCNA-p21 interaction, thus alleviating
p21-dependent inhibition of PCNA and DNA synthesis'*. Decreased
p21 expression has been reported to be a feature of dysplastic aber-
rant crypt foci in colonic mucosa and adenomas. The finding that
p21 downregulation inversely correlates with microsatellite instability
(MSI) status in CRC, irrespective of p53 status, again invokes a rela-
tionship with defective DNA repair and genomic instability!,

Including the two newly discovered SNPs, a total of 19 independ-
ent risk SNPs for CRC have been identified, all mapping to auto-
somal regions of the genome. The risk of sporadic CRC is higher for
males in both economically developed and less-developed countries.
Furthermore, males are at greater overall risk for CRC and have an
earlier age of onset for Lynch syndrome'*-'7, It is possible that some
of these differences in risk are attributable to sex chromosome genetic
variation. To explore this hypothesis, we studied the relationship
between SNPs mapping to the sex-specific region of the X chromo-
some and CRC risk. Genotypes were analyzed using an extension to
the standard Cochran-Armitage test for trend'® (Online Methods).

rs5934683 was the only SNP that showed strong evidence of asso-
ciation in the meta-analysis of the UK1, UK2, Scotland1, Scotland2
and VQ58 data sets. We also genotyped rs5934683 in the UK3,
Scotland3, UK4, CCFR1, Cambridge, Croatia, Helsinki, Sweden
and Japan studies (Supplementary Table 1). In combined analysis,
1s5934683 showed evidence for an association with CRC at genome-
wide significance (P =7.30 x 10719, Py =0.31, I> = 13%; Table 1 and
Supplementary Table 2).

rs5934683 maps to Xp22.2 within a 43-kb region of LD (position
9,711,474; Fig. 1). Two genes map to this region, GPR143 (encoding
G protein-coupled receptor 143; MIM 300808), which is expressed by
melanocytes and retinal pigment epithelium, and SHROOM2 (encod-
ing shroom family member 2; MIM 300103), a human homolog of
the Xenopus laevis APX gene. rs5934683 is situated between GPR143
and SHROOM2 and seems to be within the distal promoter region of
SHROOM?2. There is also evidence of longer, less-abundant GPR143
transcripts extending into the SHROOM2 promoter. SHROOM2 is
known to have broad roles in cell morphogenesis during endothelial
and epithelial tissue development'®, Missense mutations in SHROOM2
have been detected in large-scale screens for recurrent mutations in
cancer cell lines?’. Like GPR143, SHROOM?2 regulates melanosome
biogenesis and localization in the retinal pigment epithelium?!.
Notably, abnormal retinal pigmentation, similar to the congenital
hypertrophy of retinal pigment epithelium (CHRPE) lesions that
are a component of the familial adenomatous polyposis syndrome,
has previously been shown to be an extracolonic feature of non-FAP
CRC?*%, To our knowledge, the relationship between Xp22.2 and
CRC risk represents the first evidence for the role of X-chromosome
variation in predisposition to a non-sex specific cancer.
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Figure 1 Regional plots of association results and recombination rates for the 6p21, 11q13.4 and Xp22.2 susceptibility loci. (a-¢) Association results
of both genotyped (triangles) and imputed (circles) SNPs in the GWAS samples and recombination rates within the loci at 6p21(a), 11913.4 (b) and
Xp22.2 (c). For each plot, —log;o P values (y axis) of the SNPs are shown according to their chromosomal positions (x axis). The top genotyped SNP

in each combined analysis is shown as a large triangle and is labeled by its rsID. Color intensity of each symbol reflects the extent of LD with the top
genotyped SNP. Genetic recombination rates, estimated using HapMap Utah residents of Western and Northern European ancestry (CEU) samples, are
shown with a light blue line. Physical positions are based on NCBI Build 36 of the human genome. Also shown are the relative positions of genes and
transcripts mapping to each region of association. Genes have been redrawn to show the relative positions; therefore, maps are not to physical scale.

Next, we assessed associations between clinicopathological variables
(sex, age at diagnosis, family history of CRC and tumor site, stage and
microsatellite instability) and genotype at rs1321311, rs3824999 and
rs5934683 through case-only logistic regression (Supplementary
Table 3). After adjusting for multiple testing, we did not find any
significant association.

To analyze comprehensively the associations at 6p21, 11q13.4 and
Xp22.2, we imputed genotypes in GWAS cases and controls using
HapMap 3 and 1000 Genomes Project data for the autosomal regions
and HapMap release 21 for Xp22.2 (Fig. 1 and Online Methods).
We did not find substantive evidence of stronger associations at
the 6p21.2 and Xp22.2 risk loci. However, at the 11q13.4 locus,
rs72977282, mapping 3,188 bp 5" to POLD3, was more strongly asso-
ciated with CRC than rs3824999 (Fig. 1 and Supplementary Table 4).
No nonsynonymous SNPs showing strong LD (2 > 0.4, D’ > 0.8) with
rs1321311, rs3824999 or rs5934683 at 6p21, 11q13.4 and Xp22.2 loci,
respectively, were identified. These data indicate that it is likely that
the associations between 6p21, 11q13.4 and Xp22.2, and CRC risk are
mediated through changes that influence gene expression rather than
protein sequence.

To examine whether any directly genotyped or imputed SNPs lie
within or very close to a putative transcription factor-binding and/
or enhancer element, we conducted a bioinformatics search using
Transfac?4, ENCyclopedia of DNA Elements (ENCODE) CHIP-Seq
and ENCODE UW DNAasel Hypersensitivity data. These analyses
did not provide evidence that rs1321311, rs3824999 or rs5934683, or
any closely correlated SNP maps to a known or predicted region of
transcriptional regulation (Supplementary Table 4).

To explore whether the rs1321311, rs3824999 and rs5934683 asso-
ciations (or those of proxy SNPs) reflect cis-acting regulatory effects
on POLD3, CDKNIA, GPR143 or SHROOM2, we conducted expres-
sion studies using Illumina HT-12 arrays with RNA extracted from
42 samples of normal colonic epithelium (Supplementary Table 5).
We also analyzed publicly available mRNA expression data from fibro-
blasts, lymphoblastoid cell lines (LCLs), T cells, adipose tissue and
CRCs2%26 (Supplementary Table 5). In silico analysis revealed a statis-
tically significant relationship between the genotype at rs1321311 and
expression of CDKNIA. However, this was observed only in LCL and
T-cell data, with no evidence of an effect in the colon (Supplementary
Table 5). We also found that the risk allele at rs5934683 was asso-
ciated with a marked reduction in SHROOM2 expression in both
normal colonic epithelium and CRC tissue (Supplementary Fig. 4).
The relationship between SHROOM?2 expression in normal colonic

epithelium and rs5934683 genotype was very strong (P=1.3 x 1077)
and was significant after accounting for all genes tested on the HT-12
array (P = 9.0 x 107*). Indeed, rs5934683 genotype accounted for 55%
of the variation in SHROOM2 expression. Exploring the relation-
ship between SHROOM?2 expression, rs5934683 risk genotype and
CRC causation will be of considerable interest, not least because of
the observations of an association between excess pigmented lesions
in the retinal pigment epithelium and CRC?*2?3, There was no signi-
ficant difference in the observed minor allele frequency (MAF) of
1s5934683 between female and male cases, raising the possibility that
skewed X-chromosome inactivation might underscore the associated
CRC risk. Favored X-chromosome inactivation producing a normal
phenotype has been documented in X-linked dominant disease®,
and skewed X-chromosome inactivation has been implicated as a
risk factor for breast cancer?®. The expression data were consistent
with full dosage compensation, but, due to sample and effect sizes,
we are currently unable to confirm or refute a dosage effect on risk.
There was no detectable relationship between rs3824999 and POLD3
expression in any of the expression studies. It should be noted that
these exploratory analyses could only detect >5% differences in RNA
expression by genotype with 80% power at a single time point, and,
hence, we could not exclude any subtle effects of genotype on target
tissues relevant to CRC.

By pooling GWAS data and conducting extensive replica-
tion analyses, we have identified three new loci influencing CRC
susceptibility. The loci are of modest effect size, which is not unex-
pected, given that common alleles with a larger impact on CRC were
likely to have been discovered in previous studies. Although addi-
tional analyses are required to determine the functional consequences
that lead to CRC, our findings highlight the importance of variation
in genes encoding components of the p21WAFU/Cipl signaling path-
way in CRC. This pathway, elucidated through the extended inter-
action network of CDKNIA, incorporates not only POLD3, which was
discovered as a CRC risk locus here, but also MYC and other genes
(including SMADs and other transforming growth factor (TGF)-f
pathway genes) that we have previously identified as risk factors
for CRC.

URLs. R suite, http://www.r-project.org/; detailed information
on the tag SNP panel, http://www.illumina.com; dbSNP, http://
www.ncbi.nlm.nih.gov/projects/SNP/; International HapMap
Project, http://www.hapmap.org/; 1000 Genomes Project, http://
www.1000genomes.org/; SNP Annotation and Proxy Search (SNAP),
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http://www.broadinstitute.org/mpg/snap/; IMPUTE, https://
mathgen.stats.ox.ac.uk/impute/impute.html; SNPTEST, https://
mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html;
TRANSFAC Matrix Database, http://www.biobase-international.
com/product/transcription-factor-binding-sites; Wellcome
Trust Case Control Consortium, www.wtccc.org.uk/; Mendelian
Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/omim;
SIFT: http://sift.jcvi.org/; PolyPhen, http://genetics.bwh.harvard.
edu/pph/; GLOBOCAN, http://globocan.iarc.fr/; Cancer Genome
Atlas, http://cancergenome.nih.gov/; The ENCyclopedia of DNA
Elements (ENCODE) Project, http://genome.ucsc.edu/ENCODE/;
GENe Expression VARiation (Genevar), http://www.sanger.ac.uk/
resources/software/genevar/; Catalogue of Somatic Mutations in
Cancer (COSMIC), http://www.sanger.ac.uk/genetics/ CGP/cosmic/;
Haploview, http://www.broad.mit.edu/mpg/haploview/.

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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Ethics statement. Collection of blood samples and clinicopathological
information from subjects was undertaken with informed consent and
ethical review board approval at all sites in accordance with the tenets of the
Declaration of Helsinki.

Data sets, sample preparation and genotyping. Full details of each data set
are provided in the Supplementary Note.

DNA was extracted from samples using conventional methods and quanti-
fied using PicoGreen (Invitrogen). The VQ, UK1 and Scotland1 GWAS cohorts
were genotyped using Illumina Hap300, Hap2408S, Hap370 or Hap550 arrays.
The 1958BC and NBS samples were genotyped as part of the WTCCC2 study
on Hap1.2M-Duo Custom arrays. The CCFR1 samples were genotyped using
Hlumina HaplM or HaplM-Duo arrays. In UK2 and Scotland2, genotyp-
ing was conducted using custom Illumina Infinium arrays, according to the
manufacturer’s protocols. Some SNPs from COIN samples were genotyped on
custom Illumina GoldenGate arrays. To ensure quality of genotyping, a series
of duplicate samples was genotyped, resulting in 99.9% concordant calls in all
cases. Other genotyping was conducted using competitive allele-specific PCR
KASPar chemistry (KBiosciences), TagMan (Life Sciences) or MassARRAY
(Sequenom). Details of all primers, probes and conditions used are avail-
able upon request. Genotyping quality control was tested using duplicate
DNA samples within studies and SNP assays, together with direct sequencing
of subsets of samples to confirm genotyping accuracy. For all SNPs, >99%
concordant results were obtained.

Quality control and sample exclusion. We excluded SNPs from analysis if
they failed one or more of the following tests: GenCall scores of <0.25; overall
call rates of <95%; MAF of <0.01; departure from Hardy-Weinberg equilibrium
(HWE) in controlsat P < 1 x 10~* or in cases at P < 1x 1075; outliers in terms of
signal intensity or X:Y ratio; showed discordance between duplicate samples;
or, for SNPs with evidence of association, poor clustering on inspection of
X:Y plots. We excluded individuals from analysis if they failed one or more
of the following tests: duplication or cryptic relatedness to estimated identity
by descent (IBD) of >6.25%; overall successfully genotyped SNPs of <95%;
mismatch between predicted and reported gender; outliers in a plot of het-
erozygosity versus missingness; and evidence of non-European ancestry in
principal-components analysis-based testing in comparison with HapMap sam-
ples. Details of all sample exclusions are provided (Supplementary Fig. 1).

To identify individuals who might have non-northern European ances-
try, we merged our case and control data from all sample sets with the
60 European (CEU), 60 Nigerian (YRI) and 90 Japanese (JPT) and 90 Han
Chinese (CHB) individuals from the International HapMap Project. For each
pair of individuals, we calculated genome-wide identity-by-state distances on
the basis of markers shared between HapMap 2 and our SNP panel and used
these as dissimilarity measures upon which to perform principal-components
analysis. Principal-components analysis was performed in R using CEU,
YRI and HCB HapMap samples as references. The first two principal com-
ponents for each individual were plotted, and any individual not present
in the main CEU cluster (>5% of the principal-component distance from
the HapMap CEU cluster centroid) was excluded from subsequent analyses
(Supplementary Fig. 3).

We had previously shown the adequacy of the case-control matching and
possibility of differential genotyping of cases and controls using quantile-
quantile plots of test statistics. The inflation factor A was calculated by divid-
ing the mean of the lower 90% of the test statistics by the mean of the lower
90% of the expected values from a y? distribution with 1 degree of freedom.
Deviation of the genotype frequencies in the controls from those expected
under HWE was assessed by y? test (1 degree of freedom) or by Fisher’s exact
test, where the expected cell count was <5.

Statistical and bioinformatic analysis. Main analyses were undertaken using
R (v2.6), STATA v.11 and PLINK (v1.06) software?®. The association between
each SNP and risk of CRC was assessed by the Cochran-Armitage trend test.
ORs and associated 95% Cls were calculated by unconditional logistic regres-
sion. Meta-analysis was conducted using standard methods®’. Cochran’s Q
statistic to test for heterogeneity”” and the I? statistic to quantify the proportion

of the total variation due to heterogeneity were calculated?'. I* values of 275%
are considered characteristic of large heterogeneity"*2. Associations by sex,
age and clinicopathological phenotypes were examined by logistic regression
in case-only analyses.

For SNPs on the non-pseudoautosomal region of the X chromosome, males
carry only one copy, and, in females, most loci are subject to X inactivation®,
To test for X-chromosome associations, we used an extension to the standard
1-degree-of-freedom Cochran-Armitage test for trend'® whereby males can be
regarded as homozygous females. This 1-degree-of-freedom trend test adjusts
for the different variances for males and females.

Prediction of the ungenotyped SNPs was carried out using IMPUTEv2,
based on HapMap Phase 3 haplotypes, release 2 (HapMap Data Release 27,
phase 3, February 2009, on NCBI Build 36 assembly, dbSNP26) and 1000
Genomes Project data. Imputation of the X-chromosome loci was only
possible using IMPUTEv1 with HapMap Data Release 21 on NCBI Build 35.
Imputed data were analyzed using SNPTEST v2 to account for uncertainties in
SNP prediction. An imputation info score of 0.95 was used to remove SNPs with
poor imputation quality. LD metrics between HapMap SNPs were based on Data
Release 27, phase 3 (February 2009), on NCBI Build 36 assembly, dbSNP26,
viewed using Haploview software (v4.2) and plotted using SNAP. LD blocks
were defined on the basis of HapMap recombination rate, as defined using the
Oxford recombination hotspots** and on the basis of distribution of confidence
intervals as defined?*. To annotate potential regulatory sequences within disease
loci, we implemented in silico searches using Transfac Matrix Database v7.29
(ref. 24) and PReMod 10 (ref. 36) software. We used the in silico algorithms SIFT
and PolyPhen to predict the impact of amino-acid substitutions.

Relationship between SNP genotype and mRNA expression. Expression
studies in colonic epithelium. To examine for a relationship between
SNP genotype and mRNA expression in colonic epithelium, 42 samples
were collected fresh immediately after surgical resection of specimens for
colorectal cancer (n = 34), solitary adenoma (n = 5) or benign conditions (not
inflammatory bowel disease) (n = 3). For 2 of the 42 subjects, 3 samples of
mucosa were harvested from different locations of the fresh resected bowel.
Normal epithelium was dissected from muscularis propria, and samples were
snap frozen and placed in RNAlater (Applied Biosystems) and kept at 4 °C
overnight before storage at —80 °C. Tissue was disrupted and homogenized
using TissueLyser LT (Qiagen), and RNA was extracted using the Ribopure
kit (Applied Biosystems). RNA integrity and concentration were assessed on
an Agilent Bioanalyzer, and RNA purity (A260/A280 and A260/A230) was
assessed by Nanodrop. RT-PCR products were analyzed on HumanHT-12
Expression BeadChips, which were scanned using Illumina HiScan. Array
data processing and analysis were performed using Illumina GenomeStudio
software (version 2011.1). Microarray data were exported from Illumina
BeadStudio software, processed and normalized using the R Bioconductor
beadarray and limma packages®”*%. Before normalization, probes that were
not detected (detection P value > 0.01) on the microarrays were removed.
Microarrays were quantile normalized to remove technical variation. Three
mucosal samples were available for 2 of the 42 subjects, and, for these, we used
the average signal of the replicates in the analysis. The limma package was used
to find differentially expressed genes, using the functions ImFit, eBayes and
topTable. To test all associations between SNPs and expression, a linear model
was fitted to the expression level of each probe, using this genotype value
as effect. For SNP associations with gene expression on the X chromosome,
gender was added to the model. Significant associations were considered as
<0.05, using P values adjusted for multiple testing with the Benjamini-
Hochberg method from R’s p.adjust function.

In silico analysis of publicly available expression data. We analyzed expression
data generated from (i) fibroblasts, lymphoblastoid cell lines (LCLs) and T cells
derived from the umbilical cords of 75 Geneva GenCord individuals?%;
(ii) 166 adipose, 156 LCL and 160 skin samples derived from a subset of healthy
female twins of the MuTHER resource® using Sentrix Human-6 Expression
BeadChips (Illumina)**#%; and (iii) AgilentG4502A_07_3 custom gene expres-
sion data on 154 CRCs obtained as part of the Cancer Genome Atlas project.
Power of assays to establish a relationship between genotype and expression
was evaluated using STATA software.
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Assignment of microsatellite instability in colorectal cancers. Tumor MSI
status in CRCs was determined using the mononucleotide microsatellite loci
BAT25 and BAT26, which are highly sensitive MSI markers. Briefly, 10-mm
sections were cut from formalin-fixed paraffin-embedded CRC tumors and
lightly stained with toluidine blue, and regions containing at least 60% tumor
were microdissected. Tumor DNA was extracted using the QIAamp DNA Mini
kit (Qiagen), according to the manufacturer’s instructions, and genotyped for
the BAT25 and BAT26 loci using either [**P]-labeled or fluorescently labeled
oligonucleotide primers (in the UK2-UK3 and COINNBS studies, respec-
tively). Samples showing at least five novel alleles compared to normal DNA
at either or both markers were assigned as MSI-high (MSI-H)*!.
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Hepatocellular carcinoma.(HCC) is the fifth most common
cancer worldwide, with an increasing incidence globally."?
Recently, obesity and metabolic syndrome were shown in
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several epidemiologic studies to increase the risk of HCC.>™
Because the prevalence of obesity and metabolic syndrome
has been increasing in both Japan and Western nations, a
possible association between obesity and hepatocarcinogenesis
has attracted considerable attention in recent years.

The mechanism by which obesity and metabolic syndrome
promote hepatocarcinogenesis remains not fully understood.
However, obesity-induced dysregulation of adipokines, cyto-
kines secreted by adipose tissue, is considered to play a key
role.” - Adipose tissue controls the functions of other organs
through the  secretion of various adipokines such as leptin,
adiponectin, tumor necrosis factor o (TNFo), interleukin-6
(IL-6), and resistin. Obesity with visceral fat accumulation
increases the levels of leptin, TNFa, IL-6, and resistin, and
decreases adiponectin levels.*” These adipokines flow directly
into the liver through the portal vein and exert a variety of
effects on liver diseases.®

Adiponectin, one of the major adipokines, possesses anti-
inflammatory and insulin-sensitizing properties, and levels
typically decline with increasing body weight.” Hypoadiponec-
tinemia has been implicated in the development of obesity-
related morbidities such as dyslipidemia and cerebrovascular
disease.'®"* In addition, hypoadiponectinemia has been
reported to enhance hepatic steatosis, inflammation, fibrosis,





