Breast Cancer Res Treat (2012) 134:661-670

669

ADTree outperformed MLR using an identical dataset.
MLR offers some advantages, particularly the use of
fewer variables, which facilitates data collection and
interpretation of the model. These features of each mod-
elling method represent trade-offs that should be consid-
cred when applying the models. The combined use of
multiple prediction models could enhance predictive
accuracy [27]. We are currently testing the combination of
our model and available nomograms in a prospective
study.

There are several limitations of this study. Validation
using larger databases will more accurately assess the
model. The use of many features obtained from imaging
studies or physical examination would reduce the number
of users depending on the availability of the features. The
datasets obtained from multiple institutes would contribute
to strict evaluation of the model’s versatility whereas such
datasets sometimes introduce institute-dependent bias. In
this study, we used information from individual pathology
reports and the central pathology review is more preferable
to evaluate the features in a single criteria. A Web-baged
interface to facilitate data input and prediction analysis,
like the MD Anderson Cancer Centre nomogram, and an
automated system to update the model will also be useful.
Biomarkers of tumour response, particularly those obtained
from midcourse biopsy samples, may increase the predic-
tive accuracy. Integration with subtype-specific biomarkers
is also needed to improve the accuracy of the developed
model.

In conclusion, we have established a new ADTree-based
method to predict pCR after NAC using variables readily
collected before NAC. The model could use larger number
of variables with keeping high gencralization ability and
showed the outperformed prediction accuracy compared
with MLR as well as was tolerant to missing values and
distribution bias in the datasets.
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sion tree-based prediction method—the

B, n=143;
lysis to discriminate

ariable selection dataset. The

nodal metastasis in patients with breast
nt help oncologists in the
starting treatment.

Keywords: Breast cancer, Lymph node metastasis, Data mining, Alternating decision tree
Background in elderly patients or patients with complications. Conse-

Axillary lymph node (AXLN) metastasis is one of the
most important prognostic factors in patients with pri-
mary breast cancer for predicting survival [1-4]. Sentinel
lymph node (SLN) biopsy is widely used to determine
AxLN status and avoids AxLN dissection (ALND). How-
ever, SLN biopsy is an invasive procedure. Therefore, pre-
dicting AxLN metastasis before SLN biopsy using
commonly recorded clinical variables would be helpful
for oncologists and could avoid this procedure, especially
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quently, many mathematical models have been developed
to predict AxXLN metastasis, including nomograms and
scoring systems [5-14]. For example, the Memorial
Sloan-Kettering Cancer Center (MSKCC) developed a
nomogram to predict the presence of SLN metastasis [6]
that is now used worldwide.

Technically, nomograms use multiple logistic regres-
sion {MLR) to predict a binary outcome based on a com-
bination of risk factors. This well-established method has
a limitation in that it incorporates only a few independ-
ent variables so that the model can accurately predict
risk in independent datasets, by avoiding over-fitting to
the given datasets. Such prediction models should also
tolerate missing values, which are common in clinical
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datasets. Thus, new methods to cope with a greater
number of variables and that provide accurate prediction
and robustness against missing values are required.

Machine learning has been applied to problems across
many fields, including bioinformatics [15], and it is
thought to overcome or reduce the impact of the limita-
tions of MLR. Here, we used the alternating decision
tree (ADTree) [16,17] as a core algorithm. This algo-
rithm consists of a root node and multiple simple deci-
sion trees in which an index is associated with each leaf
node, and its final predictive value is the sum of the in-
dices of the leaf nodes fulfilling the patients’ condition.
This algorithm also differs from standard ‘if~then’ deci-
sion trees and classification and regression trees
(CART). The ADTree method has several advantages
compared with these other machine learning algorithms,
including: (1) several comparative studies have shown
higher accuracy and versatility for ADTree than other
machine learning methods [18,19]; and (2) the ADTree
model structure is less complex than other methods
[16], which facilitates model interpretation and reduces
the need for model optimization.

The purpose of this study was to develop a new math-
ematical model to predict AxLN metastasis in patients
with primary breast cancer using preoperative clinico-
pathological information.

Methods

Patients

The training datasets consisted of consecutive patients
who were treated at two institutions in Japan. Patients
with histologically confirmed primary invasive breast
cancer who underwent SLN biopsy or ALND without
prior treatment were eligible for this study. We included
patients whose maximum tumor size was<4 cm. We
identified 148 patients from the Tokyo Metropolitan
Cancer and Infectious Diseases Centre Komagome Hos-
pital who were treated between 2005 and 2006 (Tokyo
dataset) and 143 patients from Kyoto University Hospital
treated between 2008 and 2009 (Kyoto dataset).

The external validation dataset was collected from
Seoul National University Hospital, Korea, and consisted
of patients consecutively treated between January 6,
2010, and April 16, 2010 (Seoul dataset). We included
174 patients who underwent SLN biopsy and met the
same eligibility criteria as the modeling dataset. All data-
sets were collected after establishing the methodology
for SLN biopsy, and no significant difference in SLN bi-
opsy accuracies was expected [20,21].

The study protocol was approved by the institutional
review board at Kyoto University Hospital. All patient
data were anonymized and allocated numbers according
to Japanese ethical guidelines for epidemiologic research.
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Data collection and sentinel lymph node biopsy

Clinical data collected included age, body mass index
(BMI), menopausal status, physical findings (based on
inspection or palpation), diagnostic mammography and
ultrasonography findings, pathological findings from
needle biopsy before treatment (e.g., histological type,
histological/nuclear grade, estrogen receptor status, pro-
gesterone receptor status, and human epidermal growth
factor receptor 2 [HER2] status), and type of axillary sur-
gical procedure (SLN biopsy or ALND) as predictive
variables. Pathological findings from surgical specimens
(presence or absence of lymph node metastasis) were
used as outcome variables for prediction by the ADTree
model. All data were retrospectively collected from data-
bases maintained at each institution.

The grading criteria were established by a committee
of specialists from the fields of breast surgery, diagnos-
tic radiology and pathology. We reviewed all of the
images from which mammographic and ultrasonographic
variables were obtained, and these parameters were deter-
mined using Japanese diagnostic guidelines for mammog-
raphy and ultrasonography based on the American
College of Radiology Breast Imaging Reporting and Data
System [22]. These variables were reviewed by physicians
certified for imaging diagnosis by the relevant accredit-
ation organizations in Japan.

The techniques used for SLN biopsy and histological
evaluations are described elsewhere [21]. In the Tokyo
dataset, SLNs were identified using a radioactive tracer
(®*™Tc-phytate). In the Kyoto dataset, they were identi-
fied using blue dye and a fluorescence navigation tech-
nique using indocyanine green. In the Seoul dataset,
SLNs were identified using both blue dye and a radio-
active tracer. At each institution, the SLNs were step-
sectioned, stained with hematoxylin and eosin (H&E),
and diagnosed by trained pathologists. Lymph nodes
obtained after ALND were evaluated using a single H&E-
stained section from each node. Metastases were defined
as the presence of a tumor deposit > 0.2 mm in diameter
in at least one lymph node. Several clinical trials have
reported no significant differences in the identification
rate or accuracy of SLN methodologies [20,23,24].

Data analysis

A summary of the model development and validation pro-
cedure is shown in Appendix A (Additional file 1). The
model development phase consisted of three steps. First,
bias-control virtual datasets were generated from the
Tokyo dataset by randomly selecting individuals allowing
for redundant selection. These datasets contained an ap-
proximately equal ratio of patients negative and positive
for AXLN. Second, a prediction model containing multiple
ADTrees was trained on a generated dataset, and the
mean value of the individual trees’ predictions values was



Takada et al. BMC Medical informatics and Decision Making 2012, 12:54
http//www.biomedcentral.com/1472-6947/12/54

used to enhance the accuracy and generalization ability in
a process referred to as the ensemble technique [25]. This
model development procedure was repeated for different
modeling conditions, e.g. the number of nodes, and all vir-
tual datasets. Third, we selected the model yielding the
best area under the receiver operating characteristics
(ROC) curves (AUC) value with the Kyoto dataset. Finally,
we performed external validation of the chosen model
using the Seoul dataset.

The established model was further evaluated as follows.
First, we performed bootstrap analysis using the Seoul
dataset to obtain unbiased estimates of the developed
model. Second, the relative importance of the variables
in the model was analyzed by randomly changing the
values of each variable (sensitivity analysis). Third, miss-
ing values in the Seoul datasets were changed to random
values to evaluate the model’s tolerance against missing
values (missing value analysis). Fourth, the number of
trees in the prediction model was reduced to evaluate the
relationship between the number of variables in the
model and the prediction accuracy (pruning analysis).

Two hundred bias-controlled datasets were generated
using different random values. The number of nodes
(called boosting iterations) in an ADTree was expanded
from 10, 11, ... to 20 in each trial. For the ensemble pro-
- cedure, we randomly sampled individuals to generate
multiple datasets, and the averaged prediction of the
trained models for each dataset was used [26]. In this en-
semble procedure, the number of ADTrees ranged from
2, 3, ..., to 20, with a random seed to generate random
values (1, 2, ..., and 10). Two hundred replicates with
different random values were generated for each boot-
strap, sensitivity and missing value analysis.

Weka (ver. 3.6.1; University of Waikato, Hamilton, NZ)
[27] was used for resampling, the ensemble procedure
and ADTree development. The Mann—Whitney test and
AUCs with 95% confidence interval (CI) were calculated
using GraphPad Prism version 5.04 (GraphPad Software,
Inc.,, San Diego, CA). JMP® (ver. 7.0.1, SAS Institute,
Cary, NC, USA) was used for other statistical analyses.

Results

The clinicopathological characteristics of patients in
each dataset are summarized in Table 1. The proportion
of patients with AXLN metastasis was 29.7%, 30.8% and
23.6% in the Tokyo, Kyoto and Seoul datasets. The pro-
portion of patients with AXLN metastasis in the Seoul
dataset was not significantly different from the other
datasets (P =0.292).

The model with the best AUC value in the Kyoto data-
set included five ADTrees with 13 nodes (Figure 1 and
Appendix B (Additional file 1)). A total of 15 variables
were included: age, BMI, seven ultrasonographic vari-
ables (maximum tumor size, tumor depth/width ratio,
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multifocality, echogenic halo, interruption of the anterior
border of the mammary gland, maximum size' of lymph
nodes, and a loss of hilum in lymph nodes), two mam-
mographic variables (shape and distribution of calcifica-
tion), two physical examination variables (skin dimpling
and nipple discharge) and two pathological variables
(histological/nuclear grade, HER2 status). The method
used to calculate the score is shown in Appendix C
(Additional file 1).

The ROC curves for each dataset are shown in
Figure 2. The AUC values were 0.917 (95% CI: 0.871-
0.964, P < 0.0001) for the Tokyo dataset, 0.770 (95% CI:
0.689-0.850, P < 0.0001) for the Kyoto dataset and 0.772
(95% CIL 0.689-0.856, P < 0.0001) for the Seoul dataset.
Box plots of the predicted probabilities of AxXLN metas-
tasis are shown in Figure 3. The model discriminated
node-positive patients from node-negative patients at
statistically significant levels (P <0.0001), although
there was some overlap of the predicted probability dis-
tribution of node-negative and node-positive status in
each dataset.

The mean AUC values yielded by bootstrap analysis
remained high for each dataset, being 0.916 (95% CI:
0.913-0.919), 0.766 (95% CI: 0.760-0.772) and 0.768
(95% CI: 0.763-0.774) for the Tokyo, Kyoto and Seoul
datasets, respectively. A calibration plot of the model
developed using the Kyoto and Seoul datasets is shown
in Appendix D (Additional file 1). The predicted prob-
abilities were divided into quintiles according to their
values, and the mean and actual frequencies of AXLN
metastasis were plotted for each quintile.

In the sensitivity analysis, the AUC values decreased
remarkably when the following variables were randomly
replaced: echogenic halo, maximum size of the lymph
nodes, maximum size of the tumor, skin dimpling, and
interruption of the anterior border of the mammy gland.
This indicates that the developed model was more sensi-
tive to this variable than the other variables, which
hardly affected AUC values (Figure 4). In the missing
value analysis, 33 and 19 patients with missing values
were selected from the Kyoto and Seoul datasets, and we
validated the developed model by replacing missing
values with random values. This procedure was repeated
200 times for each dataset, and the mean AUC values
were 0.884 (95% CIL: 0.882-0.887) and 0.688 (95% CL:
0.684-0.692) for the Kyoto and Seoul datasets, respect-
ively. In the pruning analysis, the number of trees was
reduced from 5 to 1, and AUC values were calculated
for the Tokyo datasets in cross-validation mode, in
addition to the Kyoto and Seoul datasets (Appendix E
(Additional file 1)).

The predictive performance of the MSKCC nomogram
and a scoring system developed at Russells Hall Hospital,
United Kingdom, were evaluated using the Seoul dataset
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Table 1 Patient characteristics and incidence of lymph node metastasis
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Variables Tokyo dataset Kyoto dataset Seoul dataset p-
No % No % No % value®
No. of patients 148 (100) 143 (100) 174 (100)
Age <0.001
Median 55 &0 50
Range (31-85) (26-88) (25-74)
Body mass index 0019
Median 229 223 23.2
Range (16.6-43.2) (14.8-31.4) (17.8-37)
Unknown 3 ) 0 ) 1 ©6)
Clinical T classification ) 0.2621
-M 102 (68.9) 100 (69.9) 108 62.1)
T2 46 (31.1) 43 (30.1) 66 (37.9)
Clinical N classification 0.002
NO 137 (92.6) 135 (94.4) 174 (100)
N1 " (74) 8 (5.6) 0 0)
Skin dimpling <0001
Yes 22 (149 14 9.8) 2 n
No 109 (73.6) 129 90.2) 172 (98.9)
Unknown 17 (11.5) 0 ©) 0 ©)
Nipple discharge 0238
Yes 6 4.1) 2 (1.4) 3 (1.7)
No 138 93.2) 141 (98.6) 170 97.7)
Unknown 4 2.7) 0 ) 1 0.6)
Mammography
Presence of masses 0.284
Yes 90 (60.8) 88 61.5) 102 (586)
Focal asymmetry 22 (14.9) 20 (14 39 (224)
No 35 (23.6) 26 (18.2 33 (19)
Unknown 1 0.7) 9 6.3) 0 )
Presence of calcifications 0.037
Yes 67 45.3) 44 (30.8) 59 (339
No 81 (54.7) 94 65.7) 15 66.1)
Unknown 0 )] 5 (3.5) 0 0)
Shape of calcifications 0010
Fine branching 4 ©) 1 (2.3) 3 [CR))]
or casting
Pleomorphic 9 (134) 1" (25) 21 (35.6)
Amorphous or 43 (64.2) 27 61.4) 35 (59.3)
indistinct
Round or benign 11 (164) 4 9.1) 0 (O}
Unknown 0 ) 1 (23) 0 (0)
Distribution of calcifications 0.024
Linear or segmented 26 (38.8) 14 (31.8) 22 (37.3)
Grouped or clustered 30 (44.8) 29 (65.9) 36 61
Regional or diffuse (134) 1 (2.3) 1 1.7)
Unknown B3) 0 © 0 ()
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Table 1 Patient characteristics and incidence of lymph node metastasis (Continued)
Ultrasonography
Presence of masses 0.264
Yes 142 (95.9) 133 93) 161 92.5)
No 5 (34) 10 7) 13 (7.5)
Unknown 1 0.7) 0 0) 0 (©)}
Multifocality 0.114
Yes 27 (19) 14 (10.5) 21 (13)
No 115 81) 119 (89.5) 140 (87)
Maximum tumor size (mm) 0.004
Median 16 16.1 19
Range (4-37) (5-35) (4-37)
Depth/width ratio 0.001
Median 0.72 067 0.64
Range (0.31-1.36) (0.22-1.43) (0.33-1.27)
Unknown 0 ) 9 6.8) 0 (0)
Echogenic halo <0.001
Yes 32 (22.5) 62 (46.6) 38 (236)
No 109 (76.8) 71 (534) 123 (764)
Unknown 1 0.7) 0 0) 0 Q)
Interruption of the anterior border of the mammary gland 0.807
Yes 99 (69.7) 91 (684) 106 (65.8)
No 43 (30.3) 42 (31.6) 54 (335)
Unknown 0 ) 0 ©) 1 (©86)
Detection of LNs 0.130
Detectable 49 (33.1) 37 (25.9) 56 (322)
Not detectable 82 (55.4) 105 (734) 117 67.2)
Unknown 17 (11.5) 1 0.7) 1 0.6)
Maximum size (mm) of LNs 0.010
Median 11 10 10
Range (5-22) (3-32) 4-17)
Unknown 0 (0) 4 (10.8) 1 (1.8)
Hilum of LNs 0.021
Detectable 43 (87.8) 27 (73) 36 (64.3)
Not detectable (12.2) 9 (24.3) 20 (35.7)
Unknown ) 1 (2.7) 0 0)
Histological type 0.584
Invasive ductal 135 912 129 (902 160 92)
carcinoma
Invasive lobular 5 (34) 3 (VA)) 7 4
carcinoma
Other specific types 8 (5.4) 11 (7.7) 7 “)
Estrogen receptor’ 0023
Positive 119 (80.4) 114 (79.7) 121 (69.5)
Negative 27 (182) 29 (203) 53 (30.5)
Unknown 2 (14 0 ) 0 )
Progestercne receptor’ 0427
Positive 83 (56.1) 89 (62.2) 96 (55.2)
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Table 1 Patient characteristics and incidence of lymph node metastasis (Continued)

Negative 63 (42,6} 54 378 78 {448
Uriknown 2 (143 §] (o)1 Q )]
0019
18 {22 1 7.7 29 (167}
121 818 3 {916} 123 718}
9 ©.1 i o5 20 (1.5
<0.001
1 64 “43.2) 43 4 (2.3
2 47 (31.8) 53 {441 82 {471}
3 27 {182} 36 (25.2) 88 (306}
Unknown 10 E5 1 {073 0 )
0292
44 (29.7) 44 (308 41 (236}
No 104 (70.3) 49 {69.2} 133 (764}
Note:

Abbreviations: LN, lymph node.

?Estrogen receptor or progesterone receptor positive was defined as 210% positively stained cells on immunohistochemical (HQ) testing.

fHﬁRZ positive was defined as IHC 3+ or pasitive on fluorescence in site hybridization testing.

She i test or Kruskal-Wallis test was used depending on the distribution of patients in each variable and dataset.

[6,28]. Both models included lymphovascular invasion  biopsy, we used LVI status assessed on surgical speci-
(LVI) as an input variable. However, LVI is not routinely  mens. The resulting AUC values were 0.664 (95% CJ;
reported for needle biopsy samples because of its uncer-  0.560-0.768, P=0.0033) for the nomogram and 0.620
tain diagnostic role [29]. As preoperative pathological  (95% CI; 0.509-0.731, P=0.0032) for the scoring system
diagnosis in the Seoul dataset was performed by needle  using individuals  without missing values (n=131)

-
™ -‘l."‘g.:ittti!*sd"‘ 3 US f 3’(Qxiitiukhﬂtltwl:ki 2
1. US LN, maxsizez 1.1 ¥ tumer, interruption of i M
E i § the anterior border i j 5 PE, Sk‘ ‘mpsmg
n
~0.587
. : v P T, -
| & Histologic grade 2: US tumor, 12 Histological grade i 4 Age 280 £ US tumor, 13:US tumor, max } 8 US LN, hitum
22 " DiW ratio 2 0.68 22 years echogenic halo size2 2.4 cm '
Y, v a y
Cos2 > P My
b
8: Pathological,
HERZ positive

Figure T ADTree model. The final prediction mods! consisted of five ADTree-based prediction models; the other four models are de
Appendix § {Additional file 1} The method used 1o calculate the iction score for each model is shown in Appendix C (Additional
final predi g ad by cal the five ADTree models,
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(Appendix F (Additional file 1)). The AUC value using
the corresponding patients in the Seoul dataset was
0.777 (95% ClL: 0.689-0.864, P < 0.001) for ADTree.

Discussion

A data-mining model generated using the ADTree en-
semble technique improved the prediction of AXLN me-
tastasis in patients with primary breast cancer, compared
with older models such as the MSKCC nomogram.
Evaluation using an external validation dataset and boot-
strap analysis revealed high AUC values of 0.772 and

(a) Tokyo (b) Kyoto (c) seoul
A A )
g 100 . 5100 g
'eg’ 801 oo 0 é 80 ’E
Z 60 Z 60 3
5 % 5
> 40 2 40 g
2 20 % 20 3
S g ¢
o o o

=3

LN LN+ LN- LN+ TULN- LNt
Figure 3 Box plots showing the predicted probabilities of
lymph node metastasis for the Tokyo (a), Kyoto (b) and Seoul
(c) datasets. In each figure, the boxes show the actual number of
lymph node-negative (LN-) and -positive (LN+) patients,
respectively. The whisker box-plots indicate the 5%, 25%, 50™, 75™
and 95™ percentiles (from the bottom bar to the upper bar) of the
predicted probabilities. The probabilities <5% and >95% are plotted
individually. The differences between LN- and LN + were statistically
significant (P < 0.0001; Mann-Whitney test) in all datasets. The
median predicted probabilities of LN- and LN + were (a) 33.5

(95% Cl: 31.8—394) and 789 (95% ClI: 69.3-80.4), (b) 33.6 (95% Cl:
29.1-38.0) and 589 (95% (I: 49.3-62.9), and {c) 32.3 (95% CI:
28.8-35.8) and 59.9 (95% Cl: 48.2-62.6).

( (
100 - 0.84+ .
0.80- T
0.764 % ?%‘%'*% o é‘* %‘ ...........
—~ 80 - O on
2
2 I o068
- 0.64
_é" 60 7 0.60
> 056y
= S ST A R S I R SR id
. . R GO SIS sl A e
w 40 Hf ¥ Tokyo dataset SSS ST 5 SelSe T
8 i ---'Kyoto dataset T H G & LIS
o @ & RS
20 ..'?' ........... Seoul dataset \39 \z‘éQ\)%\' 2 \{:,\' \\\(\(p\
. &° & 3¢
NS ~ (,°
. “\\t‘
0 T T "
0 20 40 60 80 100 Figure 4 Sensitivity analysis using the Seoul dataset.
apr s Whisker-box plots showing 0, 25, 50, 75 and 100% (from the bottom
- o
100 SPECIflCIty ( /°) bar to the upper bar) of the area under the curve (AUC) values
Figure 2 Receiver operating characteristic (ROC) curves of when the variable was randomly replaced 200 times. The horizontal
the prediction model. The area under the ROC curve (AUC) dashed line indicates the AUC value in the external validation test
values were 0.917 (95% Cl: 0.871-0.964, P < 0.0001), 0.770 (95% Cl: without any variable replacement.
0.689-0.850, P < 0.0001) and 0.772 (95% CI: 0.689-0856, P < 0.0001)
for th.; To:<yo, Kyoto and Seoul (validation dataset) datasets, 0.768, respectively. However, the prediction was not per-
| fespectively. fect and there are several issues that may affect the pre-

diction performance.

Different variations in patient variables between the
training and validation datasets possibly lowered the
AUC values for the external validation. There were fewer
patients with AxLN metastasis in the Seoul dataset
(23.6%) compared with the Tokyo (29.7%) and Kyoto
(30.8%) datasets, although this was not statistically sig-
nificant (P=0.29) (Table 1). One reason for this differ-
ence is that patients who underwent ALND were
included in the Tokyo and Kyoto datasets (14.8%) but not
in the Seoul dataset. Interestingly, the number of node-
positive patients in the Tokyo and Kyoto datasets was
slightly higher among patients who underwent ALND
compared with those who underwent SLN (39% vs. 29%),
although this was not significant (P=0.15). Despite these
differences, the AUC values for the Kyoto and Seoul data-
sets were similar (0.770 and 0.772, respectively).

The calibration plot (Appendix D (Additional file 1))
revealed that the predictive probability for the AxLN
metastasis high-risk group was overestimated in both
the Kyoto and Seoul datasets. Controlled bias in the
training dataset consisting of approximately 50% of
AxLN-positive patients (Appendix A (Additional file 1))
likely introduced this overestimation. As demonstrated
by Rouzier et al. [30], the calibration curves for the
Seoul dataset were improved (corrected) by fitting the
data to the Kyoto dataset using a polynominal function,
which resulted in near-ideal lines (i.e., y = x). Meanwhile,
the calibration plots for the lower risk groups were rela-
tively good, even without correction, for both the Kyoto
and Seoul datasets.

Sensitivity analysis revealed the degree of influence of
the variables in the developed model (Figure 1 and
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Appendix B (Additional file 1)). In this analysis, the
values of each variable were randomized (Figure 4). Of
the variables causing a greater decrease in AUC values,
AxLN size is directly associated with lymph node metas-
tasis. Tumor size is used as a predictive factor in the
MSKCC nomogram [6]. Echogenic halo, interruption of
the anterior border the mammary gland on ultrasonog-
raphy, and skin dimpling are features that reflect tumor
infiltration into the surrounding tissue [31,32]. There-
fore, these variables might represent tumor characteris-
tics in the prediction models.

The mean AUC values obtained for the missing value
analysis (0.884 for Kyoto and 0.688 for Seoul) were very
different from those obtained for all individuals (0.770
for Kyoto and 0.772 for Seoul) because of the small
number of individuals with missing values. However, the
differences between the upper and lower Cls were small
(0.0047 for Kyoto and 0.0081 for Seoul), which indicates
that the developed model has low sensitivity to missing
values. One possible reason for this feature is that
ADTree can calculate a range of predictive probabilities,
even for cases with missing values (see the legend of Ap-
pendix C (Additional file 1)). By contrast, standard ‘if-
then’ decision trees and CART models cannot calculate
this probability. In addition to the simple structure and
high accuracy of ADTree analysis, this tolerance to the
missing value is also valuable when applying machine
learning to clinical data with missing values.

In the pruning analysis, the AUC values for the data-
sets from all three institutes generally improved accord-
ing to the number of ADTrees in the prediction model
(Appendix E (Additional file 1)). Although increasing
the number of trees resulted in a more complex model
that requires more calculation time for prediction, the
model developed using the ensemble procedure showed
improved accuracy and generalizability.

The AUC value of the MSKCC nomogram for the
authors’ own external validation sets was 0.754 [6], which
is similar to our own for the Seoul dataset (0.772). There-
fore, the AUC values of the developed model, the
MSKCC nomogram, and the Russells Hall Hospital scor-
ing system were compared with an external validation
dataset (Seoul), which yielded values of 0.777 (95% CI:
0.689-0.864, P<0.001), 0.664 (95% CIL: 0.560-0.768,
P=0.0033) and 0.620 (95% CIL 0.509-0.731, P=0.0032),
respectively (Appendix F (Additional file 1)). The higher
AUC value for our ADTree method might be attributed
- to the flexible model structure and the greater number
of variables incorporated into the model. By compari-
son, the main advantage of both the MSKCC nomogram
~ and the Russells Hall Hospital scoring system is that
they require a small number of variables, which can fa-
cilitate data collection and interpretation of the model.
Thus, these features of each modeling method represent
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trade-offs that should be considered when applying the
models.

In addition to AUC value-based prediction perform-
ance, the false-negative rate (FNR) of the prediction
model is also important when applying these models in
clinical settings. For example, when a predictive value
of <20% is defined as low risk for AXLN metastasis, the
FNR of both the ADTree model and the MSKCC nomo-
gram using the Seoul dataset was relatively good (5.3%
and 2.6%, respectively). However, the nomogram pre-
dicted that only 6.9% of the patients were AXLN nega-
tive, compared with 23.7% using the developed model.

Unlike the MSKCC nomogram and our ADTree
model, Reyal et al. developed MLR-based nomograms
using the molecular subtype classification defined by a
combination of ER and HER2 status with clinical para-
meters that included tumor size, LVI and age [33]. The
decision to use ER/HER2 subtype might be attributed to
the expected relationship between intrinsic breast cancer
subtype and lymph node metastasis. Instead, we treated
these variables as independent possible predictive factors
and ADTree did not select ER status, but did select
HER? status in model development. Interestingly, HER2
status showed the lowest sensitivity in our model and
the contribution of this subtype-related variable to
AxLN metastasis was not significant in our study.

There are several limitations and perspectives to be
discussed. First, to eliminate inter-institute or inter-
interpreter variations, a standardized ultrasonography/
mammography scoring system is vital because these vari-
ables are key factors for the accurate prediction of AXLN
metastasis. Since a larger number of variables is required
to achieve accurate prediction, unlike conventional pre-
diction models or scoring systems, a web-based user
interface, such as the one used for the MSKCC nomo-
gram [6], will help to encourage its use and to ensure it is
used correctly. In addition to calculating the probability
of AXLN metastasis, a web-based platform can also assist
with data collection and ensure the prediction model is
kept up to date. Alternatively, machine learning-based
medical classification systems have been developed fol-
lowing the introduction of electronic medical record sys-
tems [34-36]. Integrating prediction tools with electronic
record systems will enable researchers not only to im-
prove classification algorithms using high-dimensional
datasets, but also to avoid time and effort transferring
data into the classification system. Although the variables
used in our developed model are frequently assessed in
preoperative examinations, our proposed model is very
flexible as it can incorporate new diagnostic methods or
criteria. We are now developing a web-based platform to
allow wider use of our model. Finally, further validation
using prospective and larger datasets is indispensable be-
fore it can be used clinically.
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Conclusions

In summary, we have developed a new data-mining ap-
proach based on a combination of ADTrees to predict
AxLN status in patients with primary breast cancer, as a
case study. The modeling method showed accurate and
versatile prediction using datasets from three institutions,
despite using a large number of variables. This is one of
the main benefits of using data-mining methods, unlike
conventional MLR methods that can only use a few inde-
pendent variables to eliminate multicollinearity. The ro-
bustness of the model against missing values is also an
important property of prediction models. We believe that
the approach used here could replace the conventional
statistical methods and provide useful information to aid
decision-making before starting treatment.

Additional files

Additional file 1 Appendix A: Processes used to develop the predictive
model. Additional B: ADTree-based prediction models. Additional C:
Calculation of the predictive score in each ADTree model. Additional D:
Calibration plots of the ADTree-based model for the Kyoto and Seoul
datasets. Additional E: AUC values and the number of nodes in the
pruning analysis. Additional F: ROC curves of the ADTree model, the
MSKCC nomogram and the Russells Hall Hospital scoring system using
the Seoul dataset (n=131).
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