982

bipartite sequence in human tumors are extremely rare. In this
context, Goldman et al showed that in a neuroblastoma cell
line expressing cytoplasmically sequestered wild-type p53,
p53 target genes (p2/ WAFI1 and MDM?2) were up-regulated
following cell irradiation (18). These results also suggest
that wild-type p53 retains some functional activity when it
is sequestered in the cytoplasm, although p53 homologues,
such as p63 and p73, may have been involved in the result. By
contrast, our experimental system was a p53-specific inducible
system; therefore, involvement of p53 homologue activation
is unlikely.

Our previous knowledge of p53-dependent apoptosis was
that after genotoxic stress, activated p53 transactivated its
downstream genes in a sequence-specific manner in the cell
nucleus and induced apoptosis in cells through the direct or
indirect induction of the downstream protein(s); however, a
transactivation-independent mechanism for p53-dependent
apoptosis has been reported by several laboratories (19,20). In
addition, we previously indicated a lack of correlation between
p53-dependent transactivation activity and the ability to induce
apoptosis, and speculated that a transactivation-independent
mechanism may exist (17). We excluded the nuclear function of
p53, including the sequence-specific transactivation function,
by introducing R306G, a mutation in the bipartite sequence
at residues 305 and 306. A conditional expression system
of cytoplasmically sequestered p53 was constructed and we
found that cytoplasmically sequestered p53 retains its ability
to arrest cell proliferation (wild-type p53) and induce apop-
tosis (S121F). These results strongly support a cytoplasmic
apoptotic function of p53. Notably, however, cytoplasmically
sequestered p53 transactivated downstream genes. Therefore,
we did not clarify whether cytoplasmic p53-dependent apop-
tosis depends on either a direct or an indirect transactivation
mechanism or is independent of transactivation.

Additional experiments are required to evaluate which
mechanism is crucial for p53-dependent apoptosis and
to clarify the mechanism underlying super p53 (S121F)-
dependent apoptosis.
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Elental Prevented and Reduced Oral Mucositis during Chemotherapy in Patients Esophageal Cancer: Tadahisa
Fukui*', Yuriko Itoh™*!, Mika Orihara*?, Kazuya Yoshizawa *?, Hiroaki Takeda *?, Sumio Kawada ** and Takashi Yoshioka *!
(*'Dept. of Clinical Oncology, **Dept. of Gastroenterology, Yamagata University Faculty of Medicine)
Summary

Stomatitis is a side effect caused frequently by chemotherapy in patients with esophageal cancer, but a standard treatment
for it has not been established. Reactive oxygen species are known to be among the causes of stomatitis induced by chemo-
therapy or radiotherapy, and some reports suggest that their influences might be reduced by the oral supplementation of
glutamine. Elental® is one of the widely-used nutritional supplements, and its pack contains 1, 932 mg of L-glutamine (an
especially high amount.). Therefore, we examined the preventive or reducing effects Elental® mey have on oral mucositis.
Fifteen patients with esophageal cancer received chemotherapy, six of whom had grade one oral mucositis. All of those six
patients entered the investigation, and seven courses of Elental® were administered. After seven courses, all six patients oral
mucositis declined from grade 1 to grade 0. This result suggests that Elental® has preventive or reducing effects on oral
mucositis. Key words: Oral mucositis, Chemotherapy, Esophageal cancer, Glutamine, Elental® (Received Jan. 18, 2011/Ac-
cepted Apr. 14, 2011)
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Targeting colon cancer stem cells using a new curcumin
analogue, GO-Y030
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BACKGROUND: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many
types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly
developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown.

METHODS: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase
(ALDH)-positive and CD133-positive subpopulations (ALDH ™ /CD 133 ). The levels of STAT3 phosphorylation and the effects of
STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined.
RESULTS: Our results observed that ALDH™/CDI33 ¥ colon cancer cells expressed higher levels of phosphorylated STAT3 than
ALDH-negative/CD | 33-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and
curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced
STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed
tumour growth of cancer stem cells from both SW480 and HCT-1 (6 colon cancer cell lines in the mouse model.

CONCLUSION: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated
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Colorectal cancer is the third leading cause of cancer-related
deaths in the United States. For patients with advanced colon
cancer, the 5-year survival rate is less than 10%. Recent evidence
suggests the existence of a small population of tumourigenic stem
cells responsible for tumour initiation, metastasis and resistance to
chemotherapy and radiation. Increasing evidence suggests that
cancer stem cells are also relevant to colorectal cancer, and that
they have an important role in cancer spread and recurrence
(Barker et al, 2007; O’Brien et al, 2007; Ricci-Vitiani et al, 2007;
Boman and Huang, 2008). It is important to identify the regulatory
mechanisms and signalling pathways involved in colon cancer
stem cells and develop novel reagents to target this refractory
colon cancer stem cell population.

The signal transducers and activators of transcription (STAT)
protein family represents a group of transcription factors that have
a role in relaying extracellular signals initiated by cytokines and
growth factors from the cytoplasm to the nucleus (Calo ef al, 2003;
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STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.
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Frank, 2007; Germain and Frank, 2007). Following activation,
phosphorylated STATs dimerise and translocate to the nucleus,
where they regulate the expression of numerous critical genes
involved in cell cycle progression, proliferation, invasion, and
survival, However, the constitutive activation of STAT3 is frequently
detected in primary human cancer cells, including colorectal
carcinoma cells (Corvinus et al, 2005; Kusaba et al, 2005). Persistent
STAT3 activation is associated with enhanced proliferation and
invasion of colorectal cancer cells in vitro and tumour growth in a
colorectal tumour model in vivo, and inhibition of STAT3 induces
apoptosis and reduces tumour cell invasion in colorectal cancer cells
(Corvinus et al, 2005; Lin et al, 2005; Tsareva et al, 2007; Xiong et al,
2008). These reports indicate that constitutively activation of STAT3
is one of the important pathways that contribute to the oncogenesis in
colorectal cancer and can serve as an attractive therapeutic target for
colorectal carcinoma.

During the past decade, a number of developmental pathways
that regulate cancer stem cells, especially in breast cancer stem
cells, have been elucidated. These pathways include Notch,
Hedgehog, Wnt, human epidermal growth factor receptor 2, AKT
etc (Liu and Wicha, 2010). However, the role of STAT3 in colon
cancer stem cells and the effect of STAT3 inhibition in colon
cancer stem cells are still unknown.
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Many markers and features of cancer stem cells have been
defined. The transmembrane protein CD133 (Prominin-1 or
ACI133) is one of the markers that was first used to identify and
isolate stem cells in brain cancers (Singh et al, 2004). Subsequently,
CD133 was used to isolate stem cells from a host of other normal
and cancerous tissues, including colon cancer (O’Brien et al, 2007;
Ricci-Vitiani et al, 2007). Another potential colon cancer stem cell
marker is aldehyde dehydrogenase 1 (ALDHI), a detoxifying
enzyme that oxidises intracellular aldehydes and thereby confers
resistance to alkylating agents (Magni et al, 1996; Yoshida ef al,
1998). Implantation of as few as 100 ALDH™ cells was capable of
tumour initiation (Huang et al, 2009). When using ALDH and
CD133 together to form tumour xenografts, ALDH ¥/CD133 % cells
showed an increased ability to generate tumour xenografts
compared with ALDH¥/CD133~ or ALDH™ alone (Huang et al,
2009). The present study uses both ALDH and CD133 together as
markers for colorectal stem cells and examines the role of the
STAT3 pathway in these cancer stem cells. Qur results indicated
that ALDH?/CD133" subpopulation of colorectal cancer stem
cells expressed higher levels of STAT3 phosphorylation compared
with ALDH™/CD133" subpopulations.

Curcumin is the primary bioactive compound isolated from
turmeric, the popular Indian curry spice. Curcumin has anti-
inflammatory, antioxidant, chemopreventive and chemotherapeu-
tic properties by regulating multiple cell signalling pathways,
including the STAT3 pathway (Aggarwal and Shishodia, 2006). It
has been used against various types of cancers, including colon
cancer, with little to no toxicity (Hatcher et al, 2008). Our results
indicated that curcumin inhibited STAT3 phosphorylation, cell
viability, and tumoursphere formation in ALDH /CD133 " colon
cancer stem cells. A novel curcumin analogue, GO-Y030 (Shibata
et al, 2009), also inhibited STAT3 phosphorylation, the expression
of STAT3 downstream target genes, cell viability, tumoursphere-
forming capacity, and induced apoptosis in ALDH™/CD133%
cells. The effects of GO-Y030 were more potent than curcumin.
Furthermore, GO-Y030 inhibited tumour growth of ALDH™/
CD133* cells in the mouse model in vivo. Our results suggest that
STATS3 is a novel therapeutic target in colorectal cancer stem cells,
and the novel curcumin analogue, GO-Y030, might be used as a
new therapeutic reagent to target colon cancer stem cells in future.

MATERIALS AND METHODS

Colon cancer cell lines

Human colorectal cancer cell lines (DLD-1, HCT-116, SW480, and
HT29) were purchased from the American Type Culture Collection
(Manassas, VA, USA) and maintained in Dulbecco’s Modified
Eagle Medium supplemented with 10% fetal bovine serum (FBS),
4.5g1™! 1-glutamine, sodium pyruvate, and 1% penicillin/strepto-
mycin. All cell lines were stored in a humidified 37°C incubator
with 5% CO,.

GO-Y030 and curcamin

Curcumin was purchased from Sigma-Aldrich (St Louis, MO, USA).
GO-Y030 (Supplementary Figure 1), a new curcumin analogue
(Shibata et al, 2009), was provided by Dr Shibata’s laboratory.

Computational binding studies of GO-Y030

Molecular docking program MLSD based on AutoDock 4 was used
to dock GO-Y030 to the binding sites of the STAT3 SH2 domain
(PDB code 1BG1). ADT tool was used to prepare parameter and
input files as previously reported (Huey et al, 2007; Li and Li,
2010). The small molecule GO-Y030 was docked to STAT3 SH2
using Lamarckian Genetic Algorithms (LGA) and Particle Swarm
Optimisations (PSO) as searching methods. Docking simulations
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were repeated for 100 runs, with 1.0 and 6.5 million energy
evaluations being used for PSO and LGA, respectively, in each run.
The Docking found a few distinct conformational clusters. The
binding modes of GO-Y030 were clustered with an RSMD of 2.0 A.
The major clusters with top binding energies were visually
examined for binding modes.

Cell viability assay

Colon cancer stem cells (3000 per well in 96-well plates) were
incubated with desired concentrations of compounds in triplicate
at 37°C for 72 h. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium
bromide viability assays were performed and the absorbance was
read at 595nm. Half-maximal inhibitory concentrations {ICsq}
were determined using Sigma Plot 9.0 Software (Systat Software
Inc., San Jose, CA, USA).

Isolation of cancer stem cells

The ALDEFLUOR kit (StemCell Technologies, Durham, NC, USA)

was used to isolate subpopulations with high ALDH enzymatic

activity as previously described (Ginestier et al, 2007). Briefly, cells

were trypsinised to single cells using 0.05% trypsin and subse-

quently suspended in ALDEFLUOR assay buffer containing ALDH

substrate (BAAA, 1 umoll™" per 1 x 10°cells) and then incubated

for 40 min at 37°C. For each sample, an aliquot of cells was stained

under identical conditions with 15mmoll™" diethylaminobenzal-

dehyde (DEAB), a specific ALDH inhibitor, as a negative control.

In all experiments, the ALDEFLUOR-stained cells treated with

DEAB served as ALDH-negative controls. Anti-human PE-CD133

antibody (Miltenyi Biotec, Auburn, CA, USA) were used to identify

CD133-positive cells, ALDH'/CD133" and ALDH /CD133~

subpopulations were separated from SW480, HCT116, DLD-1,

and HT29 colon cancer cells by a FACS Wantage SE (Becton

Dickinson, Palo Alto, CA, USA) Flow Cytometer. After sorting,

ALDH'/CD133% cells were cultured in serum-free stem cell

medium (mammary epithelial basal medium) to maintain cancer

stem cell characteristics. Cancer stem cells were grown in a serum-,
free mammary epithelial basal medium (Clonetics division of
Cambrex BioScience, Walkerville, MD, USA) supplemented with

B27 (Invitrogen, Carlsbad, CA, USA), 20ngml™' EGF (BD

Biosciences, San Jose, CA, USA), antibiotic-antimycotic

(100Uml™" penicillin-G sodium, 100ugml™" streptomycin sul-

phate), 4 ugml™ gentamycin, 1ngml™' hydrocortisone, 5ugml™

insulin, and 100uM f-mercaptoethanol (Sigma-Aldrich) in a

humidified incubator (5% CQ,) at 37°C. ALDH /CD133™ cells and

un-separated cells were cultured in regular medium and replaced
with the stem cell medium above for 3 days before harvesting.

Western blot analysis

After treatment with GO-Y030 (5 uM or 10 uM) or DMSO for 24h,
ALDH*/CD133%, ALDH7/CD133~ and un-separated DLD-1,
HCT-116, SW480, and HT29 colorectal cancer cells were lysed in
cold RIPA lysis buffer containing protease inhibitors and subjected
to SDS-PAGE. Proteins were transferred to a PVDF membrane
and probed with antibodies (Cell Signaling Tech., Danvers, MA,
USA). Membranes were probed with a 1:1000 dilution of
antibodies (Cell Signaling Tech.) against phospho-specific STAT3
(Tyrosine 705), phospho-independent STAT3, phospho-specific
ERK1/2 (Threonine 202/Tyrosine 204, T202/Y204), cleaved cas-
pase-3, cleaved PARP, Phospho-Rb (Ser780), and GAPDH.
Membranes were analysed using enhanced chemiluminescence
Plus reagents and scanned with the Storm Scanner (Amersham
Pharmacia Biotech Inc., Piscataway, NJ, USA). The intensity of
bands was quantified and normalised to GAPDH. For interferon-y
(IFN-y), IL-4, and IL-6 stimulation experiments, HT29 colon
cancer cells were serum-starved for 24h and left untreated or
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pre-treated with GO-Y030 (2.5-10um) or DMSO for 2h. Then,
50ngml~" IFN-y, IL-4, or IL-6 were added and the cells were
harvested for western blot analysis 30 min later,

Reverse transcriptase-polymerase chain reaction

ALDH™/CD133* subpopulations of DLD-1, HCT-116, and SW480
colon cancer cells were treated with GO-Y030 (5 um) or DMSO for
24 h. RNA was then collected using RNeasy Kits (Qiagen, Valencia,
CA, USA). Primer sequences and source information of STAT3
downstream target genes can be found in Supplementary Table 1.

Annexin-V apoptosis assay

Apoptotic cell death induced by GO-Y030 was quantified by flow
cytometry with Annexin-V/propidium iodide (PI) double staining
(BD Pharmingen, San Jose, CA, USA). After treatment with GO-
Y030 or DMSO for 48h, ALDH/CD133* SW480 colon cancer
stem cells were collected and washed with cold PBS. The cell pellet
was then re-suspended in 1 x binding buffer. Annexin V-FITC and
PI (5ul per 1004l buffer) were added for 15min at room
temperature (RT) in darkness, and then analysed by flow
cytometry (Becton Dickinson, Franklin Lakes, NJ, USA) within 1h.

Tumoursphere culture

The ALDH'/CD133% and ALDH/CD133~ subpopulations of
DLD-1, HCT-116, SW480, and HT29 colorectal cancer cells were
plated as single cells in ultra-low attachment six-well plates (Corning,
Lowell, MA, USA) at a density of 250 to 50 000 viable cells per well in
duplicate. Cells were grown in a serum-free stem cell medium
described as above in a humidified incubator (5% CO,) at 37°C. On
the second day after seeding, the ALDH'/CD133 ™ cells were treated
with 2.5-5umM of GO-Y030, Tumourspheres were observed under

A CE
20
18
%16
3 14
B 12
o 10
I 8
3¢
<2
ol L L L L
HCT116 SW480 DLD-1  HT29
B DLD-1 HCT116

ALDH~/

ALDH+/

ALDH+/

ALDH-/
CD133+ CD133~ CD133+ CD133-
P-STAT3 1 0.35 1 0.34
STAT3 1 0.79 1 0.90
P-ERK1/2 1 0.60 1 131

Figure |

microscope 10 to 15 days later. For counting tumourspheres, the
content of all wells was collected, pooled, and transferred onto a
collagen-coated six-well dish in differentiating medium (DMEM
supplemented with 10% FBS). Tumourspheres adhered in these
conditions in approximately 24h, after which they were stained with

crystal violet and counted under low magnification.

Mouse xenograft tumour model

Animal studies were conducted in accordance with the principles
and standard procedures approved by IACUC at the Research
Institute at Nationwide Children’s Hospital. SW480 and HCT-116
ALDH*/CD133 ™ cells (1 x 10°) were injected subcutaneously into
the right flank area of 4- to 5-week-old female, non-obese diabetic/
severe combined immunodeficiency (NOD/SCID) mice, which
were purchased from Jackson Laboratory (Bar Harbor, ME, USA).
After 10 days, mice were divided into two treatment groups
consisting of six mice per group: Control vehicle (100% DMSO)
and 50 mgkg™" of GO-Y030. Tumour growth was determined by
measuring the length (L) and width (W) of the tumour every other
day with a caliper and tumour volume was calculated on the basis
of the following formula: volume = (m/6) LW

RESULTS

The phosphorylation of STAT3 in ALDH*/CD1337
subpopulation of colorectal cancer cells compared with the
ALDH™/CD133" subpopulation

To determine whether STATS3 is activated in colorectal cancer stem
cells, we separated ALDH'/CD133% and ALDH /CDI33™ sub-
populations from DLD-1, HCT-116, SW480, and HT29 colorectal
cancer cell lines by flow cytometry, as previously described
(Ginestier et al, 2007). The percentage of ALDH*/CD133%

SW480 HT29
P-STAT3
(v705)
STAT3
P-ERK1/2
: GAPDH
ALDH+/  ALDHY  ALDH+/  ALDH-/
CD133+ CD133-  CD183+  CD133-
1 016 1 005
1 057 1 084
1 159 1 1.04

STAT3 phosphorylation of ALDH™*/CD133" subpopulation of colon cancer cells is higher than un-separated and the ALDH™/CDI33~

subpopulations. (A) ALDH*/CD133* and ALDH™/CD |33~ subpopulations were separated from DLD-1, HCT-116, and SW480 colon cancer cells by
flow cytometer. The percentage of ALDH*/CD133* subpopulations was shown. (B) Phosphorylation of STAT3 (Y705), ERK 1/2 (T202/Y204), phospho-
independent STAT3 of ALDH*/CDI133*, and ALDH™/CD133~ subpopulations were detected by westemn blot, (€) Computer modelling of GO-Y030
binding to STAT3 SH2 domain, GO-Y030 is in Thick Stick-Ball (S-B) model and in grey colour. The native pTyr—Leu706 phospho-peptide binding of the
partnering SH2 in homo-dimerisation is in green colour. GO-Y030 occupied both pTyr705- and Leu706-binding sites, which very effectively displaced the
native pTyr705~Leu706 peptide with a stronger binding affinity than native peptide in the binding site of STAT3 SH2 domain. The colour reproduction of

this figure is available at the British journal of Cancer online.
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Table 1 ALDH*/CD133" cells generated more tumourspheres than
ALDH™/CDI337 cells
SW480 HCT-116 DLD-1 HT29

250cells per well

ALDH*/CD133" 2+ 1% 2+ 0% 19+ 3% 124 2%

ALDH™/CDI33™ 0 0 0 |1
500 cells per well

ALDH*/CDI33* T+|* g+2% 29+ 10* 21 £3%

ALDHT/CDI133~ 0 240 [+ 3+2
1000 cells per well

ALDH*/CDI133* 84 2% 1242% 4219 * 21 £2%

ALDH™/CDI33™ 31 2+ 141 541

ALDH*/CDI133* and ALDH™/CDI33™ subpopulations of colorectal cancer cells
were separated by flow cytometry and cultured in stem cell medium as described in
Materials and Methods. The numbers of tumoursphere generated per 250, 500, or
1000 cells were counted 2 weeks later. *P<00I.

subpopulations from HCT-116, DLD-1, SW480, and HT-29 colon
cancer cells were shown in Figure 1A. ALDH+/CD133+
subpopulations of colorectal cancer cells have been reported as
having an increased ability to generate tumour xenografts
compared with ALDHY/CD133~ or ALDH™ alone, and exhibits
properties of colorectal cancer stem cells in vitro and in vivo
(Huang et al, 2009). To confirm the cancer stem cell properties of
ALDH™/CD133% subpopulations, we first compared the tumour-
spere-forming ability between ALDH*/CD133% and ALDH™/
CD133™ subpopulations. As shown in Table 1 and Supplementary
Figure 2, ALDH*/CD133 ™ cells of SW480, HCT-116, DLD-1, and
HT29 all generated more tumoursperes than ALDH™/CD133™ cells.
We also tested the expression of other stem cell markers, such as
CD44, Oct-4, and Nestin in ALDH */CD133 " and ALDH/CD133~
cells (Supplementary Figure 3). CD44 expression of ALDH™/
CD133% was higher than ALDH7/CD133 cells. However, Oct-4
expression was lower and there was no difference in Nestin
expression between them. There are a few papers that reported
CD44 as well as ALDH and CDI133 are markers of colon cancer
stem cells (Dalerba et al, 2007; Du et al, 2008; Todaro et al, 2010).
To date, the experimental data to support Oct-4 and Nestin as
colon cancer stem cell markers are still lacking.

The level of STAT3 phosphorylation at Tyrosine residue 705
{(Y705) was then examined in ALDH™Y/CD133% and ALDH™/
CD133” cells. Interestingly, our results showed that the ALDH ™/
CD1337 subpopulations of SW480, HCT-116, DLD-1, and HT29
(Figure 1B) colorectal cancer cells expressed higher levels of
STAT3 phosphorylation (Y705) compared with the ALDH™/
CD133~ subpopulation cells. The phosphorylation of ERK
(Threonine 202/Tyrosine 204) in the ALDH " /CD133* subpopula-
tions was not higher than that of ALDH™/CD133~ subpopulations
in the all four cell lines. Here we demonstrated that colorectal
cancer stem cells (ALDH*/CD133 * cells) expressed higher phos-
phorylated or activated STAT3 compared with ALDH™/CD133~
cells. These results suggested that the STAT3 pathway has a more
important role in colorectal cancer stem cells.

Computational binding modelling of GO-Y030

GO-Y030 is a newly development curcumin analogue (Supplemen-
tary Figure 1; Shibata et al, 2009). It has been demonstrated to
inhibit colorectal carcinoma cells growth in vitro and in a mouse
model in vivo (Shibata et al, 2009). However, the mechanism of
GO-Y030 inhibition of colorectal carcinogenesis is still not very
clear. We previously reported that Curcumin analogue GO-Y030
inhibits STAT3 activity and cell growth in breast and pancreatic
carcinomas {Cen et al, 2009). Here, we used molecular docking
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program MLSD based on the AutoDock 4 to investigate that if
GO-Y030 binds to the STAT3 SH2 domain. In a major conforma-
tional cluster, GO-Y030 occupied both the pTyr705 and Leu706
binding sites in the STAT3 SH2 domian, which contributed a
binding energy of —8.2kcalmol™ (Figure 1C). GO-Y030 binding
to both pTyr705 and Leu706 binding sites could displace the native
pTyr705~Leu706 peptide more effectively than the binding of
Curcumin to pTyr705 and the side pocket (Figure 1C).

GO-Y030 inhibited the STAT3 phosphorylation in
colorectal cancer cells

To confirm the inhibition of phosphorylated or activated STAT3
by GO-Y030 in colon cancer cells, we examined STAT3 phosphor-
ylation (Y705) in three independent colon cancer cell lines (cells
were cultured in 10% FBS) using phospho-STAT3 (Tyrosine 705)
antibodies (Supplementary Figure 4). Phosphorylation at Y705 is
important in the activation of STAT3 (Kaptein et al, 1996; Schaefer
et al, 1997; Farugi et al, 2001). Our results indicated that GO-Y030
significantly inhibited STAT3 phosphorylation (Y705) in DLD-1,
HCT-116, and SW480 human colon cancer cell lines (Supplemen-
tary Figure 4). The inhibition of STAT3 phosphorylation by
GO-Y030 was consistent with the induction of apoptosis, as
evidenced by the cleavages of PARP and caspase-3 (Supplementary
Figure 4).

There are seven known mammalian STAT proteins (1-4, 5a, 5b,
and 6), which can be activated by certain cytokines or growth
factors (Turkson and Jove, 2002; Calo et al, 2003; Frank, 2007;
Germain and Frank, 2007). After activation, STAT1 regulates the
expression of genes that promote growth arrest and apoptosis, and
is considered as a putative tumour suppressor (Calo et al, 2003; Yu
et al, 2009). STAT3 and STAT6 are involved in inhibiting anti-
tumour immunity (Yu et al, 2009). To investigate the specific
inhibition of GO-Y030, we detected the phosphorylation of STAT3,
STAT1, or STAT6 induced by IL-6, IFN-y, or IL-4 in HT29 colon
cancer cell lines. GO-Y030 inhibited un-induced (Supplementary
Figure 4) and IL-6 (50ngml ')-induced phosphorylation of
STAT3 (Y705) (Supplementary Figure 5A). However, GO-Y030
did not inhibit phosphorylation of STAT1 or STAT6 induced by
50 ngml~" of IFN-y or IL-4 (Supplementary Figures 5B, 5C). This
indicated the selectivity of GO-Y030 on STAT3, but not STAT1 and
STATS. The inhibition of STAT3 phosphorylation by GO-Y030 is
unlikely through JAK2, as JAK2 phosphorylation is not reduced
(Supplementary Figure 5A).

GO-Y030 inhibited STAT3 phosphorylation and induced
apoptosis in ALDH*/CD133™" subpopulations of
colorectal cancer cells

To confirm the important role of STAT3 in colon cancer stem cells,
we next examined the effect of GO-Y030 in colorectal cancer stem
cells. We observed that GO-Y030 inhibited STAT3 phosphorylation
(Y705), but not ERK1/2 phosphorylation (T202/Y204) in the
ALDH*/CD133* subpopulation of SW480, HCT-116, DLD-1, and
HT29 (Figure 2A) colorectal cancer cell lines. Curcumin also
inhibited STAT3 phosphorylation (Y705) in the ALDH */CD133*
subpopulations of SW480 and HCT-116 colorectal cancer cell lines
(Figure 2B) at higher concentration (50uM). These results
indicated that GO-Y030 was a potent inhibitor of STAT3
phosphorylation in these colorectal cancer stem cells. GO-Y030
also reduced the percentage of ALDH */CD133 % cells in HCT-116
and SW480 colorectal cancer cell lines (Supplementary Figure 6).

The inhibition of STAT3 by GO-Y030 also downregulated the
expression of many known STAT3-regulated genes in colorectal
cancer stem cells related to cancer cell proliferation, survival, and
angiogenesis, such as Cyclin D1 (Bromberg et al, 1999), survivin
(Gritsko et al, 2006), Bcl-2, and Bcl-XL (Bromberg et al, 1999;
Figure 2C). Furthermore, GO-Y030 inhibited Notch-1 and Notch-3
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Figure 2 GO-Y030 inhibited STAT3 phosphorylation and downregulated STAT3-regulated genes expression in ALDH*/CD133 % cells. (A) ALDH™*/

sphorylation of STAT3 in DLD-1, HCT-[ 16, and SW480 colon cancer stem cells
with DMSO or 50 uM of curcumin for 24 h. (C) ALDH*/CDI133% cells were

treated with GO-Y030 (5 M) or DMSO for 24 h. Reverse transcriptase—polymerase chain reaction reveals decreased expression of STAT3 downstream

target genes in GO-Y030-treated cells as compared with DMSO control.

expression (Figure 2C) in ALDH'/CD133% cells, which have
recently been reported as a putative STAT3 downstream target
gene (Grivennikov and Karin, 2008). The Notch signalling pathway
is known to be essential for normal stem cell self-renewal and
differentiation in a variety of tissues, and is involved in human
cancer stem cells’ self-renewal capacity and tumourigenicity
(Dontu et al, 2004; Grivennikov and Karin, 2008).

We further detected the effect of GO-Y030 on colon cancer stem
cell apoptosis and cell cycle. The results showed that GO-Y030
increased the expression of cleaved PARP and cleaved caspase-3,
which indicated cell apoptosis (Figure 3A). GO-Y030 also inhibited
RB phosphorylation (Ser780), which should arrest cell cycle
progression in Gl in HCT116 and SW480 colon cancer stem cells
(Figure 3A). The effects of GO-Y030 on colon cancer stem cell
apoptosis was also detected by flow cytometry after staining with
Annexin-V/PL. The results showed that GO-Y030 led to a dose-
dependent increase in apoptosis. The percentage of apoptosis cells
increased from 5.3+ 1.3 to 39.1 £ 4.6% (5 uM GO-Y030, P<0.05) and
52.4+0.8% (10 uM GO-Y030, P<0.05) in SW480 colon cancer stem
cells (Figures 3B and C). These results indicated that GO-Y030
induces apoptosis and cell cycle arrest in colon cancer stem cells.

GO-Y030 inhibited cell viability and tumoursphere-
forming capacity of ALDHT/CD133 ™ cells

We next examined the inhibitory effects of GO-Y030 and curcumin
on cell viability in colorectal cancer stem cells. Our results
observed that GO-Y030 and curcumin could inhibit cell viability of
the ALDH+/CD133+ subpopulation from SW480, HCT-116,
DLD-1, and HT29 (Figure 4A) colorectal cancer cells, further
supporting the idea that this subpopulation of colorectal cancer
stem cells is sensitive to GO-Y030. GO-Y030 was more potent than
curcumin in inhibiting cell viability of the ALDH+/CD133+
subpopulations from SW480, HCT-116, DLD-1, and HT29
(Figure 4A). We compared the ICs5, of colon cancer cells with
tumour stem cells after GO-Y030 treatment in Supplementary
Table 2. There is no significant difference between the ICs, values,
they are both sensitive to GO-Y030. Furthermore, we examined the
efficacy of GO-Y030 in inhibiting colorectal cancer stem cells to
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survive and proliferate in anchorage-independent conditions and
their ability to form tumourspheres. Our results indicated that
GO-Y030 and curcumin can inhibit tumoursphere-forming
capacity in the ALDH+4/CD133+4 subpopulation of SW480,
HCT-116, DLD-1, and HT29 (Figure 4B) colorectal cancer cells.
Again, we also found that GO-Y030 was more potent than
curcumin (Figure 4B). The GO-Y030-treated cells remaining in
the plates were not viable as verified by Trypan blue exclusion
assay (data not shown). Therefore, we demonstrated that colorectal
cancer stem cells in the ALDH'/CD133% cells expressed an
activated form of STAT3, and this is the first report that
demonstrates that these cancer stem cells are sensitive to GO-
Y030 inhibition. These results indicated that GO-Y030 was a good
drug candidate for targeting colorectal cancer stem cells for
inhibition of phosphorylated or activated STAT3.

GO-Y030 suppresses tumour growth of colon cancer
stem cells in the mouse tumour model

We have demonstrated that GO-Y030 inhibits STAT3 phospho-
rylation, cell viability, and tumoursphere growth in colorectal
cancer stem cells expressing elevated levels of STAT3 phospho-
rylation in vitro. To determine whether GO-Y030 may have
therapeutic potential for clinical colorectal carcinoma treatment,
we further tested GO-Y030 against ALDH ¥ /CD133 7 cells isolated
from the SW480 and HCT-116 colon cancer cells in NOD/SCID
mice xenograft models in vivo. SW480 and HCT-116 cancer stem
cells (1 x 10°cells per mouse) were injected subcutaneously into
nude mice in two groups, DMSO vehicle group with six mice and
GO-Y030 group with six mice. GO-Y030 (50mgkg™') was
administrated via intraperitoneal injection beginning on day 15
or day 19. Caliper measurements of the longest perpendicular
tumour diameters were performed every other day to estimate the
tumour volume, using the following formula: 4n/3 x (width/2)*
x (length/2), which represents the three-dimensional volume of
an ellipse. The results from the administration of GO-Y030 showed
that GO-Y030 significantly suppresses (P<0.01) the tumour
growth in SW480 (Figure 5A) and HCT-116 (Figure 6A), tumour
weight in SW480 (Figure SB) and HCT-116 (Figure 6B), and
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tumour mass in SW480 (Figure 5C) and HCT-116 (Figure 6C)
colon cancer stem cells. The average reduction in SW480 tumour
weight was 57.96% in GO-Y030-treated mice compared with the
DMSO vehicle in xenograft mouse model (Figure 5B). The average
reduction in HCT-116 tumour weight was 58.10% in GO-Y030-
treated mice compared with the DMSO vehicle in xenograft mouse
model (Figure 6B). However, the body weight of the mice treated
with GO-Y030 was not reduced at the end of the treatment
compared with mice treated with the DMSO vehicle (Figure 6D).
These results from two independent tumour models demonstrate
that GO-Y030 is potent in suppressing tumour growth from colon
cancer stem cells in vivo.

DISCUSSION

Currently, the main effort to target constitutive STAT3 signalling is
only focused on the bulk of cancer cells. No report has been
published to target STAT3 in colon cancer-initiating cells or colon
stem cells. Both CD133 and ALDH have been used to isolate
colorectal cancer stem cells (O’Brien et al, 2007; Ricci-Vitiani et al,
2007; Boman ‘and Huang, 2008). When using ALDH and CD133
together to form tumour xenografts, ALDH¥/CDI133% cells
showed an increased ability to generate tumour xenografts
compared with ALDH/CD133~ or ALDH™ alone (Huang et al,
2009). ALDHF/CD133 7 cells tended to elicit larger tumours and
elicited them more rapidly than ALDH*/CD133" cells. Taken
together, the data suggest that using both ALDH and CD133
appears to be better at enriching colorectal cancer stem cells than
using ALDH or CD133. This study extends previous research by
using both ALDH and CD133 together as markers for colorectal
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stem cells from colon cancer cell lines and examines STAT3
phosphorylation in these cancer stem cells. Our data showed that
ALDH*/CD133% cells generated more tumourspheres than
ALDH™/CD133™ cells, suggesting that ALDH™'/CD1337% cells
possess cancer stem cell properties. Our results also indicated
that colorectal cancer-initiating cells or colon stem cells, char-
acterised by the ALDH*/CD133% subpopulations of colorectal
cancer cells, expressed higher levels of STAT3 phosphorylation
than the un-separated and ALDH™/CD133~ subpopulations. These
results suggest that STAT3 is a novel therapeutic target in
colorectal cancer stem cells.

To explore the inhibition of STAT3 in colon cancer stem cells,
we examined the inhibitory effects of a newly developed curcumin
analogue, GO-Y030. Curcumin is one of the most widely
characterised phytochemicals and is the active ingredient of the
rhizome of the plant turmeric, which has both antioxidant and
anti-inflammatory properties (Aggarwal and Shishodia, 2006).
From published literature, curcumin has showed inhibitory effects
in colon cancer cells (Hanif et al, 1997; Chauhan, 2002). Curcumin
also has a chemopreventive potential in the context of colon cancer
as seen in a mouse model and in human clinical trials (Kawamori
et al, 1999; Johnson and Mukhtar, 2007). Curcumin has alsc been
shown to inhibit STAT3 but with higher doses (Bharti et al, 2003;
Aggarwal and Shishodia, 2006; Ohori et al, 2006). These results
suggest that curcumin might be an ideal agent to target STAT3 in
colon cancer. However, the growth suppressive activity and
bioavailability of curcumin in human may still not be sufficient
as an effective preventive or therapeutic agent for cancer.
Therefore, more potent analogues of curcumin that can inhibit
the STAT3 pathway with lower doses are needed as a more efficient
form of treatments for colorectal cancer. We examined the
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inhibitory effects of GO-Y030 in the inhibition of STAT3 in colon
cancer stem cells. GO-Y030 is one of the most potent curcumin
analogues in the growth suppression of cancer cells (Ohori et al,
2006). Our results presented here show for the first time that
GO-Y030 could efficiently inhibit STAT3 phosphorylation and cell
viability, tumoursphere-forming capacity, and induce apoptosis in
colorectal cancer stem cells. GO-Y030 can also downregulate
putative IL-6/STAT3 downstream target genes that are involved in
stem cell growth and survival such as Notch 1 (Grivennikov and
Karin, 2008) as well as known STAT3 downstream target genes,
such as Cyclin D1 (Bromberg et al, 1999), survivin (Diaz et al,
2006; Gritsko ef al, 2006), Bcl-2 (Catlett-Falcone et al, 1999; Real
et al, 2002), and Bcl-XL (Bromberg ef al, 1999), that are involved in
proliferation and survival. This provides possible molecular
mechanisms of GO-Y030-mediated inhibition of STAT3 in
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colorectal cancer stem cells. Furthermore, our results show that
GO-Y030 exhibits growth suppressive activity on the tumour
growth of SW480 colon cancer stem cells.

These results suggested that constitutive active STAT3 in these
cancer stem cells enhances proliferation and survival, as well as
tumour growth in mice, whereas STAT3 blockade by GO-Y030
suppressed tumour stem cell growth in vitro and in vivo. The
in vivo results are consistent with the in vitro cancer stem cell data,
indicating that GO-Y030 is a potent inhibitor for the STAT3
pathway to suppress tumour growth of colon cancer stem cells in
mouse models in vivo. In summary, this study is the first report to
demonstrate that STAT3 is activated in colorectal cancer stem
cells. Targeting STAT3 may be able to deplete the colorectal cancer
stem cells and provide a promising approach to treat advanced
colorectal cancer. Our study also demonstrated that GO-Y030 is a
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potent inhibiting STAT3 for cancer stem cells and is a good drug
candidate to target constitutive STAT3 signalling in colorectal
cancer stem cells or cancer-initiating cells.
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Abstract. Mutations at codons 12 and 13 of the KRAS gene
have been identified as level I predictive biomarkers against the
treatment of advanced colorectal cancer with anti-epidermal
growth factor receptor (EGFR) monoclonal antibodies. It is
thought that the genetic analysis of KRAS mutations associated
with metastatic colorectal cancer can be routinely conducted
using DNA obtained on one occasion from one organ, from
the primary or a metastatic site, whichever is preferentially
available. However, the issue of tumor heterogeneity resulting
from acquired/intratumoral mutations remains. Recently, the
possibility of acquired/intratumoral mutations in the KRAS
gene has been reported by two research groups and has ranged
from 7.4 to 15.4%. Specimens were collected from advanced
colorectal cancer patients with resected primary, and at least
one metastatic, site. Direct sequence analysis was performed
for KRAS, BRAF and PIK3CA, and immunohistochemistry for
glutathione S-transferase II (GSTP) and EGFR. In the current
study, we identified an acquired mutation rate of approximately
11.1% in the KRAS gene (1/9). This figure is not negligible. Our
observation indicates, particularly in the case of metastatic
recurrence after a long interval, that there may be considerable
tumor heterogeneity resulting from acquired or intratumoral
mutations of the KRAS gene.

Introduction

In the last decade, two anti-epidermal growth factor receptor
monoclonal antibodies (EGFR mAbs), cetuximab and pani-
tumumab, were approved for the treatment of EGFR-positive
colorectal cancer (CRC) (1.,2). EGFR signals are trans-
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duced by KRAS and follow two signaling pathways, the
RAS-RAF-MEK-ERK and RAS-PI3 kinase-AKT/PKB path-
ways. Mutations at codons 12 and 13 of the KRAS gene have
been identified as a level I predictive biomarker against the
treatment of advanced CRC with anti-EGFR mAbs according
to the College of American Pathologists (CAP) level of evidence
classification; that is, these mutations have been definitively
proven as biomarkers based on evidence from multiple,
statistically robust, published trials, and they are generally
used in patient management (3). BRAF is a serine-threonine
kinase located downstream of KRAS, which is a component
of the RAS-RAF-MEK-ERK signaling pathway (4). A valine
to glutamate substitution mutation at codon 600 (V600E)
of the BRAF gene is a hot spot and is observed in 5-22% of
CRCs (4). BRAF has a level I1A CAP predictive value, which
means that extensive biological and clinical studies have
repeatedly shown it to have predictive value for therapy;
however, this remains to be validated in statistically robust
studies (3). Phosphatidylinositol 3 kinase (PI3K) is composed
of a regulatory and a catalytic subunit (5). The latter is encoded
by the PIK3CA gene. Mutations in PIK3CA are observed in
15% of CRCs (6); approximately 70% of PIK3CA mutations
are located at exon 9 [a glutamic acid to lysine substitution at
codons 542 (E542K) and 545 (E545K)] and 20% at exon 20 [a
histidine to arginine substitution at codon 1047 (H1047R)] (7).
PIK3CA has a level IIB CAP predictive value, indicating that it
has shown promise in multiple studies; however, sufficient data
for its inclusion in categories I or 1IA are lacking (3). Although
EGFR is a direct target of EGFR mAbs, the EGFR expression
level does not have any predictive value in a clinical setting (3).
Glutathione S-transferase I1 (GSTP) is involved in detoxifica-
tion and may be used as a cancer marker (8). Overexpression of
GSTP has been reported to be closely correlated with KRAS
mutations; the GSTP expression level is higher in CRCs with
KRAS mutations compared to wild-type KRAS (9). Expression
of mutant KRAS activates GSTP at a transcriptional level. If
this observation is reproducible in a clinical setting, the pres-
ence of a KRAS mutation may be distinguishable by GSTP
immunohistochemistry (IHC).

One report, analyzing 233 genes, indicated that there may
be differences in as few as 3% of genes between primary and
metastatic sites (10). Moreover, mutations in the KRAS, BRAF
and PIK3CA genes occur around the adenoma stage (10). In
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these situations, it is thought that the routine performance of
one genetic test for KRAS mutations associated with meta-
static CRC using DNA obtained from one organ, either from
the primary or a metastatic site, whichever is preferentially
available, is sufficient. However, the possibility of considerable
tumor heterogeneity remains an issue. Recently, the possibility
of acquired or intratumoral mutations of the KRAS gene was
reported (11,12). Although the number of cases surveyed was
small, the frequency of acquired mutations identified was not
negligible. In our study, we identified 9 cases in which synchro-
nous or metachronous metastasis was resectable, together with
the primary CRC, and determined the status of target genes,
including KRAS, BRAF, PIK3CA, EGFR and GSTP at each of
these sites to determine the incidence of acquired mutations
that may affect treatment with EGFR mAbs.

Materials and methods

Patient selection. Samples were collected from the primary site,
and from at least one site of distant synchronous or metachro-
nous metastasis, from 9 patients with colorectal adenocarcinoma
whose tumors were resected at Akita University Hospital
(Japan). This study was approved by the institutional ethics
committee for clinical studies at Akita University, Graduate
School of Medicine, on July 20th, 2010, and each of the patients
gave their informed consent to the procedure.

Direct sequencing. Direct sequencing of codons 12 and 13 of
KRAS, codon 600 of BRAF, and exons 9 and 20 of PIK3CA
was outsourced to SRL Inc. (Tokyo, Japan) or Falco Biosystems
Ltd. (Kyoto, Japan). Briefly, the tumor cell-rich area of a hema-
toxylin and eosin-stained section was identified by microscopy.
Tissue was then removed from the same area of a deparaf-
finized, unstained section. DNA from sections of that tissue
sample was then isolated using the QlAamp FFPE Tissue kit
(QIAGEN K .K.; Tokyo, Japan) and exon 1 of the KRAS gene,
exon 15 of the BRAF gene, and exons 9 and 20 of the PIK3CA
gene were amplified by polymerase chain reaction (PCR). The
PCR products were visualized using agarose gel electropho-
resis with ethidium bromide staining. PCR DNA fragments
were directly sequenced using an ABI 3130 Genetic Analyzer
(Applied Biosystems; Foster City, CA, USA) according to the
manufacturer's instructions.

Immunohistochemistry. Almost all of the procedures were
performed using a BenchMark XT IHC/ISH Staining Module
(Roche Diagnostics K.K; Tokyo, Japan). Deparaffinized 4-um
specimens were used for IHC along with anti-human EGFR
mouse monoclonal antibody (clone 2-18C9, Dako Japan;
Tokyo, Japan), anti-human KRAS mouse monoclonal antibody
(clone ab55391, Abcam Japan; Tokyo, Japan), and polyclonal
rabbit anti-human GSTP (311-H, Medical and Biological
Laboratories Co., Ltd.; Nagoya, Japan). Immunopositivity for
EGFR was judged as positive if there were >0.1% positive
cells. Immunoreactivities for KRAS and GSTP were graded as
negative (0 to <10% positive cells), + (=10 to <30% positive
cells), ++ (>30 to <70% positive cells) and +++ (>70% positive
cells). The percentage of immunopositive cells was calculated
by counting at least 400 cancer cells in contiguous fields with
the greatest immunopositivity.

Results

Patient characteristics. A total of 9 patients (3 females and
6 males) were included in this observational study. The median
age was 67 years (range, 56-75). The patients were diagnosed
as having CRC adenocarcinomas (2 rectal and 7 colon cancers).
Three synchronous and 5 metachronous liver metastases,
2 synchronous and 5 metachronous lung metastases, and
1 synchronous ovarian metastasis were included. Resection
of the primary region and at least one metastasis site was
conducted either simultaneously or independently (Table I).

Sequence analyses of the KRAS, BRAF and PIK3CA genes.
Regarding KRAS mutations, a glycine to aspartic acid muta-
tion at codon 12 (G12D) was observed in the primary region
of case 5, and a glycine to aspartic acid mutation at codon 13
(G13D) was observed in the primary region of case 1. In the
remaining cases, no mutations were observed in the primary
regions (Table 1, Fig. 1A). The KRAS mutation frequency
in the primary region was thus estimated to be 22.2% (2/9).
At the metastatic sites, a G12D mutation was observed in
both the lung and liver metastatic sites of case 5,and a G13D
mutation was observed in the liver metastatic site of case 1.
In case 8, a KRAS mutation involving a glycine to valine
substitution at codon 12 (G12V) was observed in the liver
metastatic site (Fig. 1B). In the remaining cases, no muta-
tions were observed in the metastatic regions. The mutation
frequency of KRAS at each metastatic site was thus estimated
to be 27.3% (3/11).

No BRAF mutations were observed at exon 15 in the primary
regions of all cases other than for case 7 (Fig. 1C). In case 7, a
leucine to arginine mutation was observed at codon 597 (L597R)
(Fig. 1D). This L597R mutation was also observed at the site of
lung metastasis in case 7. No other mutations were observed at
any of the remaining metastatic sites. According to the genomic
information found in the Catalogue of Somatic Mutations of
Cancer (COSMIC), released by the Sanger Institute, L597R
was confirmed as a somatic variant (http:/www.sanger.ac.uk/
perl/genetics/CGP/cosmic?action=sample&id=749760).

As for PIK3CA, no mutations were observed at exons 9 and
20 in the primary region of all cases with the exception of
case 4 (Fig. 1E). In case 4, a glutamine to glutamic acid muta-
tion was observed at codon 546 (Q546E) at exon 9 (Fig. 1F).
This Q546E mutation was also observed at the site of liver
metastasis in case 4. No mutations were observed at the
remaining metastatic sites. Q546E was confirmed as a somatic
variant by COSMIC (http://www.sanger.ac.uk/perl/genetics/
CGP/cosmic?action=mut_summary&id=6147).

Immunohistochemical analyses of EGFR, KRAS and GSTP.
Immunopositivity for EGFR was observed at the primary site
in 4 out of the 9 cases (cases 2, 3,4 and 9) (Table I). A corre-
sponding immunopositivity was observed at the metastatic
sites in these 4 cases. However, a different immunopositivity
was observed for cases 7 and 8, where the immunoreacitivity
for EGFR was negative at the primary site but positive at the
metastatic site (Fig. 2A and B). No immunopositivity was
observed at the primary or metastatic sites in the remaining
cases.
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Table I. Clinical profiling of 9 mCRC patients and their biomarker status.

Characteristic Case 1 Case 2 Case 3 Case4 Case5 Case 6 Case 7 Case 8 Case 9
Age 72 66 65 67 75 71 72 57
Gender M M M M F M M F
Primary R A R A A A T S
Hist Wel-mod Mod Mod>wel Mod Mod Wel Mod Wel Wel>mod
Meta Liver Liver Liver Liver Liver Liver Lung Liver Ovary
Lung Lung LN
Occurence S S M S M M M S
M S M
Interval (D) - - 483 - 382 1652 2321 -
1435 - 2321
KRAS GI3D Wild wild Wild GI2D wild Wild Wild Wild
G13D Wwild Wild Wild G12D Wild Wild G12V Wild
Wild G12D G12V
BRAF Wwild Wild wild Wwild Wild Wild L597R Wild Wild
Wwild wild Wwild Wild Wild Wild L597R Wild Wwild
Wild Wild ND
PIK3CA Wwild Wild Wild Q546E Wwild wild Wwild Wild Wild
Wwild Wwild Wild Q546E wild Wild wild Wwild Wild
Wild Wild ND
EGFR Q] +) +) +) G O] ) Q) +)
Q) ) +) +) - ) +) + (€3]
-+ O] ND
GSTP (+++) (+++) (++4) (+++4) ++) ) (+) ) ¢-)
(++) (++) (++) (+++) () Q) ND - O]
ND ND ND

S, synchronous metastasis; M, metachronous metastasis; Wel, well-differentiated; Mod, moderately differentiated; ND, non-defined. Interval
indicates days between primary and metastatic lesion resection. CRC, colorectal cancer; LN, lymph node; GSTP, glutathione S-transferase II;
EGFR, epidermal growth factor receptor; R, rectal; A, ascending; T, transverse; S, sigmoid.

Immunoreactivity for KRAS is apparently not dependent
on the mutational status of KRAS (Table I, Fig. 2C and D).
Moreover, a correlation between the immunoreactivities
or mutational status was not observed between KRAS and
GSTP in this study (Fig. 2E-G). Therefore, we were unable
to diagnose the mutational status of KRAS by GSTP IHC in
a clinical setting.

Case presentation. In this observational study, a difference
in the KRAS gene status between the primary and metastatic
sites was observed in 1 (case 8) out of 9 cases (11.1%). This was
independently confirmed by a separate analysis. Furthermore,
the same KRAS mutation was detected in the resected medi-
astinal lymph node in case 8. Differences in immunopositivity
for EGFR were observed in 2 (cases 7 and 8) out of 9 cases
(22.2%). Case 7 was a 71-year-old male with ascending colon
cancer. Following the primary resection,a5-fluorouracil (5-FU)
regimen (RPMI regimen) was administered for 6 months as
adjuvant chemotherapy but 1,652 days following resection
of the primary site, metastasis was evident in one lung and
the site was resected (13). Modified leucovorin, fluorouracil

and oxaliplatin (mFOLFOX6) was then administered as
adjuvant chemotherapy for 180 days following resection until
completion (April, 2011). Case 8 was a 72-year-old male with
transverse colon cancer. Following primary resection, adju-
vant chemotherapy was similarly administered for 6 months.
However, 2,321 days after the primary resection, metastasis
was detected at one site in the liver and in one mediastinal
lymph node. The two sites were resected and mFOLFOX6
initiated as adjuvant chemotherapy (14). However, on day
159, mFOLFOX6 was terminated due to lung and abdominal
lymph node metastases. A folinic acid-fluorouracil-irinotecan
(FOLFIRI) regimen was then initiated and continued for
232 days up to the time of writing (15).

Discussion

In this study, we identified a possibility that acquired or intra-
tumoral mutations may occur in the EGFR signaling pathway
during CRC progression. Regarding KRAS, mutations in
codons 12 and 13 were observed in 2 out of 9 cases at the primary
site, and an acquired mutation was found in 1 case at a distal
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Figure 1. Sequence analyses of KRAS, BRAF and PIK3CA. The representative sequence analysis is shown for each case. Heterozygous mutations are shown

by perpendicular lines.

Figure 2. Immunohistochemical analyses of EGFR, KRAS and GSTP. (A) Negative immunoreactivity for EGFR at the primary lesion and (B) positive
immunoreactivity at the site of lung metastasis in case 7, (C) negative immunoreactivity for KRAS (G12D) at the primary lesion and (D) positive immuno-
reactivity for KRAS (G12D) at the site of lung metastasis in case 5, (E) immunoreactivity for GSTP is denoted by (++) at the primary lesion, (F) (+++) at the
site of liver metastasis, and (G) (-) at the site of lung metastasis in case 5; all sites had the same KRAS G12D mutation. EGFR, epidermal growth factor receptor;
GSTP, glutathione S-transferase II; G12D, glycine to aspartic acid mutation at codon 12.

metastatic site. In previous reports, the mutation frequency of
KRAS at codons 12 and 13 has ranged from 27 to 53% in CRC,
which is similar to our finding (30%). The mutation frequencies
of BRAF (V600E) and PIK3CA (exons 9 and 12) have been
reported as 5-22% and 15%, respectively, in CRC. In our study,
no oncogenic mutations of BRAF or PIK3CA were observed at
either the primary or the metastatic sites. Differences in EGFR
immunoreactivity were observed between the primary and
metastatic sites in two instances, cases 7 and 8. In these two
cases, the duration between the date of resection of the primary

site and the date of metastatic recurrence was much longer
(1,652 and 2,321 days, respectively) than that for the other cases
(7 synchronous and 7 metachronous metastatic sites). In the
remaining cases, the duration between the date of resection of
the primary site and the date of onset of metastatic recurrence
ranged from 217 to 952 days (median, 395). Since protein is
casily degraded, the IHC analysis of EGFR may be affected by
long-term storage. Therefore, the failure to detect immunoreac-
tivity at the primary sites in cases 7 and 8§ may be due to protein
degradation during long-term storage. However, the direct
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sequencing of KRAS was successfully performed using DNA
obtained from the archived specimens of the primary sites
for these cases (Fig. 1). DNA is more stable than protein over
longer periods; therefore, the quality of DNA in this study was
sufficient for direct sequencing. In case 8, the possibility of an
acquired or intratumoral mutation was suspected. The overall
incidence of acquired or intratumoral mutations of KRAS was
approximately 10% in this study, which is nearly identical to that
of previous reports. Bouchahda et al reported acquired KRAS
mutations (G12D and G13D) in 2 out of 13 cases (15.4%) (11).
Richman et al reported intratumoral KRAS mutations at codons
12 and 13 in 5 out of 68 cases (7.4%) and an intratumoral BRAF
mutation (V600E) in 2 cases (2.9%). Thus, in total, mutations in
the EGFR pathway were identified in 7 out of 68 cases (10.3%)
in their study (12). Although only 9 cases were analyzed in our
study, each case had at least one resectable metastatic site and
the total number of sites (combining primary and metastatic
sites) was 18. Thus, it may be better to report an acquired muta-
tion rate of approximately 11.1% (2/18). In conclusion, when
metastatic recurrence occurs after a long interval, it is likely
that acquired KRAS mutations may be identified.
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