Figure 6. Comparison of survival in patients with or without portal vein resection (PVR). The blocks represent the total numbers of known survivors at each time interval. Comparisons were drawn by pooling data from 23 studies that had outcome data for pancreatectomy with portal vein resection. Note that this is not a parallel comparison of pancreatectomy with PVR in patients with tumor involvement *versus* pancreatectomy without PVR with tumor involvement, and patients without PVR are likely to have had earlier stage disease (from [16]). Figure 7. Comparison of cumulative survival rates in patients with no portal vein resection (PV resection(-)), portal vein resection (PV resection(+)), combined resection of portal vein and artery (PVAR; PV resection(+), A resection(+)), and unresectable pancreatic head carcinoma (from [19]). **Figure 8.** Comparison of cumulative survival rates according to the angiographic type of portography in patients with carcinoma of the pancreatic head. Type A, normal; type B, unilateral narrowing; type C, bilateral narrowing; type D, marked stenosis or obstruction with collateral veins (from [19]). **Figure 9.** Comparison of cumulative survival rates in patients with and without histological invasion of a venous wall in the portal system (pPV) and invasion of the dissected peripancreatic tissue margin (pDPM) in patients with carcinoma of the pancreatic head (from [19]). # 5. Indications for Portal Vein Resection Indications for portal vein resection in pancreatic cancer and criteria for resectability of pancreatic cancer are shown in Table 1. Preoperative staging, including portal vein invasion, for pancreatic cancer is usually performed with dynamic-phase spiral computed tomography, and intraportal endovascular ultrasonography also provides important information during surgery [20,21]. The algorithm for the indications for portal vein resection for pancreatic cancer is shown in Figure 10. Portal vein resection is indicated when carcinoma-free surgical margins are obtained by portal vein resection. There is no indication for portal vein resection in patients in whom surgical margins would become cancer-positive if such an operation were done. The safe operative procedure without intraoperative or postoperative complications is essential, and postoperative quality of life and social activity must be guaranteed. Table 1. Criteria for resectability (from [19]). | Table it distributed for resectationing (from [15]). | |-----------------------------------------------------------------------------------------| | Resectable | | No distant metastases (liver, peritoneal, etc.) | | No superior mesenteric, celiac or hepatic artery encasement | | Normal portography | | Locally advanced resectable (Borderline resectable) | | Abnormal portography, but possibility of reconstruction | | Tumor abutment on celiac or superior mesenteric artery | | Invasion of stomach, colon or mesocolon | | Unresectable | | Distant metastases (liver, peritoneal, etc.) | | Superior mesenteric, celiac, or hepatic artery encasement | | Lymph–node metastases outside the dissection field | | Portal or superior mesenteric venous invasion with obstruction indicating impossibility | | of reconstruction | | Severe concomitant disease | Figure 10. Indications for portal vein resection for pancreatic carcinoma. Cancers 2010, 2 1998 # 6. Effect of Clinical Volume For PD, several studies have reported the effect of institutional volume on patient outcomes. In 1993, Edge et al. [22] assessed 223 PD procedures from 26 university hospitals in the United States. The operative mortality was 6% (13/223) and the rate of severe complications was 21%, but they found that the caseload did not correlate with mortality. However, surgeons who performed fewer than four resections per year had more complications than those who performed more than four. In 1995, Lieberman et al. [23] assessed 1972 pancreatectomies including total pancreatectomies in 184 institutions in New York State. High-volume centers with more than 40 cases per year had significantly less mortality than low-volume centers (4% vs. 12.3%). Several other studies have also reported decreased mortality, length of hospital stay, and overall cost at high-volume centers compared with low-volume centers [24-26]. The definition of high and low volume varied among all these studies. Birkmeyer et al. [27] have reported a marked difference in mortality rates of PD in very low-volume (0 or 1 per year) and low-volume (1 or 2 per year) hospitals compared with higher-volume hospitals (>5 per year). In-hospital mortality rates at very low- and low-volume hospitals were significantly higher than those at high-volume hospitals (16% and 12%, respectively, vs. 4%; p < 0.001). These data strongly suggest that pancreatic resections should be done at institutions that perform a large number of them annually. In pancreatectomy combined with portal vein resection, more skillful technique, abundant experience and special postoperative care are necessary compared with PD without portal vein resection. Therefore, these types of operations should be done at large-volume centers. Over the past 30 years, the operative mortality rate of pancreatectomy combined with portal vein resection has greatly decreased, and portal vein resection in pancreatic surgery has become a well-tolerated operative procedure in large-volume centers. The resectability rate of pancreatic cancer has increased by aggressive surgery combined with portal vein resection; however, the five-year survival rate is still low. Portal vein resection has been done in locally advanced cases of pancreatic cancer; therefore, a high incidence of cancer-positive surgical margins has been observed. Some patients with portal invasion who survive for more than years after surgery have been observed, and they are restricted within the state of cancer-free surgical margins. These findings show that portal vein resection is indicated when carcinoma-free surgical margins are possible. Therefore, preoperative and intraoperative diagnosis of cancer development is very important to decide the indications for resection of pancreatic cancer. These types of operation must be performed at large-volume centers. # 7. Conclusions Portal vein resection will be performed more often, safely and aggressively over the next five years if a cancer-free margin is obtained by resection. In addition to radical surgery, adjuvant therapy combined with chemotherapy, chemoradiotherapy and molecular targeting therapy might serve to improve the prognosis of pancreatic cancer. Cancers 2010, 2 1999 # References 1. Whipple, A.O.; Parsons, W.B. Treatment of Carcinoma of the Ampulla of Vater. *Ann. Surg.* **1935**, *102*, 763–779. - 2. Child, C.G. Pancreaticojejunostomy and Other Problems Associated with the Surgical Management of Carcinoma Involving the Head of the Pancreas: Report of Five Additional Cases of Radical Pancreaticoduodenectomy. *Ann. Surg.* **1944**, *119*, 845–855. - 3. Cattell, R.B. A Technic for Pancreatoduodenal Resection. Surg. Clin. North Am. 1948, 28, 761–775. - 4. Child, C.G., 3rd.; Holswade, G.R.; McClure, R.D., Jr.; Gore, A.L.; O'Neill, E.A. Pancreaticoduodenectomy with Resection of the Portal Vein in the *Macaca mulatta* Monkey and in Man. *Surg. Gynecol. Obstet.* **1952**, *94*, 31–45. - 5. McDermott, W.V., Jr. A One-stage Pancreatoduodenectomy with Resection of the Portal Vein for Carcinoma of the Pancreas. *Ann. Surg.* **1952**, *136*, 1012–1018. - 6. Kikuchi, S. A Clinical and Experimental Study on the Management of Portal Vein During Pancreaticoduodenectomy. III. Clinical Cases with Operation on the Portal Vein During Pancreaticoduodenectomy. *Tohoku J. Exp. Med.* **1956**, *64*, 143–149. - 7. Asada, S.; Itaya, H.; Nakamura, K.; Isohashi, T.; Masuoka, S. Radical Pancreatoduodenectomy and Portal Vein Resection. Report of Two Successful Cases with Transplantation of Portal Vein. *Arch. Surg.* **1963**, *87*, 609–613. - 8. Sigel, B.; Bassett, J.G.; Cooper, D.R.; Dunn, M.R. Resection of the Superior Mesenteric Vein and Replacement with a Venous Autograft During Pancreaticoduodenectomy: Case Report. *Ann. Surg.* **1965**, *162*, 941–945. - 9. Moore, G.E.; Sako, Y.; Thomas, L.B. Radical Pancreatoduodenectomy with Resection and Reanastomosis of the Superior Mesenteric Vein. *Surgery* **1951**, *30*, 550–553. - 10. Longmire, W.P. Jr. The Technique of Pancreaticoduodenal Resection. Surgery 1966, 59, 344–352. - 11. Cassebaum, W.H. Resection of Superior Mesenteric Vessels in Pancreatectomy. N. Y. State J. Med. 1971, 71, 366–368. - 12. Norton, L.; Eiseman, B. Replacement of Portal Vein During Pancreatectomy for Carcinoma. Surgery 1975, 77, 280–284. - 13. Fortner, J.G. Regional Resection of Cancer of the Pancreas: A New Surgical Approach. *Surgery* **1973**, 73, 307–320. - 14. Nakao, A.; Nonami, T.; Harada, A.; Kasuga, T.; Takagi, H. Portal Vein Resection with a New Antithrombogenic Catheter. *Surgery* **1990**, *108*, 913–918. - 15. Nakao, A.; Takagi, H. Isolated Pancreatectomy for Pancreatic Head Carcinoma Using Catheter Bypass of the Portal Vein. *Hepatogastroenterology* **1993**, *40*, 426–429. - 16. Siriwardana, H.P.; Siriwardena, A.K. Systematic Review of Outcome of Synchronous Portal-superior Mesenteric Vein Resection During Pancreatectomy for Cancer. *Br. J. Surg.* **2006**, *93*, 662–673. - 17. Nakao, A.; Harada, A.; Nonami, T.; Kaneko, T.; Inoue, S.; Takagi, H. Clinical Significance of Portal Invasion by Pancreatic Head Carcinoma. *Surgery* **1995**, *117*, 50–55. Cancers 2010, 2 2000 18. Nakao, A.; Takeda, S.; Inoue, S.; Nomoto, S.; Kanazumi, N.; Sugimoto, H.; Fujii, T. Indications and Techniques of Extended Resection for Pancreatic Cancer. *World J. Surg.* **2006**, *30*, 976–982; discussion 983–984. - 19. Nakao, A. In *The Pancreas: An Integrated Textbook of Basic Science, Medicine, and Surgery*, 2nd Edition; Hans, G.B., Markus, B., Eds.; Wiley-Blackwell Publishing: Oxford, UK, 2008; pp. 689–695. - 20. Kaneko, T.; Nakao, A.; Inoue, S.; Harada, A.; Nonami, T.; Itoh, S.; Endo, T.; Takagi, H. Intraportal Endovascular Ultrasonography in the Diagnosis of Portal Vein Invasion by Pancreatobiliary Carcinoma. *Ann. Surg.* **1995**, *222*, 711–718. - 21. Nakao, A.; Kaneko, T. Intravascular Ultrasonography for Assessment of Portal Vein Invasion by Pancreatic Carcinoma. *World J. Surg.* **1999**, *23*, 892–895. - 22. Edge, S.B.; Schmieg, R.E., Jr; Rosenlof, L.K.; Wilhelm, M.C. Pancreas Cancer Resection Outcome in American University Centers in 1989–1990. *Cancer* 1993, 71, 3502–3508. - 23. Lieberman, M.D.; Kilburn, H.; Lindsey, M.; Brennan, M.F. Relation of Perioperative Deaths to Hospital Volume Among Patients Undergoing Pancreatic Resection for Malignancy. *Ann. Surg.* 1995, 222, 638–645. - Gordon, T.A.; Burleyson, G.P. The Effectiveness of Whipple Resection in Patients with Pancreatic Cancer at Veterans Affairs (VA) Hospitals. *Ann. Surg.* **1996**, *223*, 446. - 25. Imperato, P.J.; Nenner, R.P.; Starr, H.A.; Will, T.O.; Rosenberg, C.R.; Dearie, M.B. The Effects of Regionalization on Clinical Outcomes for a High Risk Surgical Procedure: A Study of the Whipple Procedure in New York State. *Am. J. Med. Qual.* **1996**, *11*, 193–197. - 26. Gouma, D.J.; van Geenen, R.C.; van Gulik, T.M.; de Haan, R.J.; de Wit, L.T.; Busch, O.R.; Obertop, H. Rates of Complications and Death After Pancreaticoduodenectomy: Risk Factors and the Impact of Hospital Volume. *Ann. Surg.* **2000**, *232*, 786–795. - 27. Birkmeyer, J.D.; Finlayson, S.R.; Tosteson, A.N.; Sharp, S.M.; Warshaw, A.L.; Fisher, E.S. Effect of Hospital Volume on In-hospital Mortality with Pancreaticoduodenectomy. *Surgery* 1999, 125, 250–256. - © 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). TOPICS Organ-preserving resection for pancreatic neoplasms # Pancreatic head resection with segmental duodenectomy for pancreatic neoplasms Akimasa Nakao · Shin Takeda · Shuji Nomoto · Naohito Kanazumi · Hideki Kasuya · Hiroyuki Sugimoto · Tsutomu Fujii · Suguru Yamada Received: 1 August 2009/Accepted: 1 September 2009/Published online: 3 November 2009 © Japanese Society of Hepato-Biliary-Pancreatic Surgery and Springer 2009 #### Abstract Background/purpose We have experienced 67 cases of pancreatic head resection with segmental duodenectomy (PHRSD) for benign or low-grade malignant tumor of the pancreatic head region. Here we introduce our operative technique for these 67 cases. Methods Pancreatic head resection is performed with segmental duodenectomy including minor and major papilla. By conserving the right gastric artery and the gastroduodenal artery, 5–7 cm of the first portion of the duodenum is preserved with good arterial circulation. In addition, by conserving the anterior inferior pancreatoduodenal artery, the third portion and anal side or the second portion of the duodenum are preserved with good arterial circulation. Cholecystectomy is performed. The procedure is completed by resection of the pancreatic head with 3–4 cm of segmental duodenectomy including minor and major papilla. Reconstruction of the alimentary tract is performed with pancreatogastrostomy, end-to-end duodenoduodenostomy and end-to-side choledochoduodenostomy. Results In 67 cases with diseases of the pancreatic head region, chiefly intraductal papillary mucinous neoplasms, this procedure was successfully performed without operative or hospital death. Postoperative quality of life was quite satisfactory. Conclusion Total resection of the pancreatic head can be performed safely and effectively by this procedure. A. Nakao (⊠) · S. Takeda · S. Nomoto · N. Kanazumi · H. Kasuya · H. Sugimoto · T. Fujii · S. Yamada Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan e-mail: nakaoaki@med.nagoya-u.ac.jp **Keywords** Pancreatic head resection with segmental duodenectomy · Organ-preserving pancreatectomy · Pancreatogastrostomy · Intraductal papillary mucinous neoplasms of pancreatic head ## Introduction Organ-preserving pancreatic resections are reasonable surgical options for benign or low-grade malignant tumors of the pancreas. Pylorus-preserving pancreatoduodenectomy (PpPD) [1] has now been recognized as the ideal surgical method for treating benign, low-grade malignancy and malignant tumors of the pancreatic head region. Duodenum-preserving pancreatic head resection (DpPHR) [2] is also one of the options for organ-preserving pancreatic head resection. In the DpPHR, there are two types of operation: combined resection of the common bile duct and common bile duct preservation [2-4]. In DpPHR the arterial blood circulation of duodenum or common bile duct is a great problem. Ischemia of the duodenum, or common bile duct, causes necrosis of the duodenum or common bile duct and leads to perforation [3, 4]. The other major problem with DpPHR and partial resection of the pancreatic head is failure to complete extirpation of intraductal papillary mucinous neoplasms (IPMN), because IPMN tends to spread into the main or branch pancreatic ducts. To prevent these complications, we have been performing complete pancreatic head resection with segmental duodenectomy (PHRSD) [5-7], including the minor and major papilla, for mainly benign or low-grade malignant tumors of the pancreatic head region in 67 cases. Reconstruction of the alimentary tract after PHRSD has been performed with pancreatogastrostomy, end-to-end duodenoduodenostomy and end-to-side choledochoduodenostomy. We report here the operative procedure of PHRSD and postoperative results. ### Patients and methods From 1988 to 2008, 67 patients who underwent PHRSD had 47 IPMNs, 7 non-functional endocrine tumors of the pancreatic head region, 6 papilla of Vater cancers, 2 serous cytadenomas, 1 pancreas head cancer, 1 common bile duct cancer, 1 insulinoma, 1 annular pancreas and 1 anomalous engagement of the pancreatobiliary ductal system. Laparotomy is done by upper midline skin incision. The gastrocolic and duodenocolic ligaments are divided with preservation of the right gastroepiploic artery (RGEA) and vein to explore the front of the pancreas. The right gastroepiploic vein is ligated and divided at the root. The anterior-superior pancreatoduodenal artery (ASPDA), the posterior-superior pancreatoduodenal artery (PSPDA) and a few other branches running from the gastroduodenal artery (GDA) towards the pancreas are ligated and divided. By conserving the RGEA and GDA, 5-7 cm of the first portion of the duodenum is preserved with good arterial circulation. The pancreas is divided on the line of the portal vein. The extrapancreatic nerve plexus between the uncinate process and the superior mesenteric artery is preserved, so the inferior pancreatoduodenal artery (IPDA) is preserved. The anterior-inferior pancreatoduodenal artery (AIPDA) is preserved, and the posteriorinferior pancreatoduodenal artery (PIPDA) is ligated and divided. The AIPDA is ligated and divided near the major papilla (Figs. 1, 2). Cholecystectomy is performed. The common bile duct is divided at the upper border of the pancreas. A 2-3 cm ischemic area of the duodenum, including the major and minor papilla, is observed (Fig. 3). The oral side of the duodenum is divided 5-7 cm from the pyloric ring. The anal side of the duodenum is divided at the point of AIPDA ligation. Thus, PHRSD with preservation of GDA is completed. The length of the resected duodenum ranges from 3 to 5 cm (Fig. 2). Reconstruction of the alimentary tract is performed with pancreatogastrostomy (temporary pancreatic stent in the main pancreatic duct of the remnant pancreas and drained externally), end-to-end duodenoduodenostomy, and endto-side choledochoduodenostomy (temporary transhepatic biliary stenting) (Fig. 4). # Results No operative or hospital death was observed in the 67 cases. Minor leakage from the anastomosis portion of alimentary tract such as pancreatogastrostomy in 19.4%, Fig. 1 Divided lines of the pancreatoduodenal arteries in pancreatic head resection with segmental duodenectomy. PHA proper hepatic artery, RGA right gastric artery, CHA common hepatic artery, GDA gastroduodenal artery, RGEA right gastroepiploic artery, PSPDA posterior-superior pancreatoduodenal artery, ASPDA anterior-superior pancreatoduodenal artery, IPDA inferior pancreatoduodenal artery, PIPDA posterior-inferior pancreatoduodenal artery, AIPDA anterior-inferior pancreatoduodenal artery, SMA superior mesenteric artery Fig. 2 Resected portion in pancreatic head resection with segmental duodenectomy choledochoduonenostomy in 4.5% and duodenoduodenostomy in 1.5% were observed, but healed with conservative treatment. Intraabdominal bleeding was observed in two cases, but successfully treated by transarterial embolization. All patients discharged from the hospital showed extremely good postoperative quality of life (QOL). # Discussion Organ-preserving pancreatic resection for benign tumor of the pancreatic head or chronic pancreatitis such as PpPD [1] or DpPHR [2] has been recognized as the ideal surgical method. There are two types of DpPHR operation: combined resection of the common bile duct [3] and Fig. 3 Segmental duodenectomy completes the total pancreatic head resection. PH pancreatic head, PB pancreatic body, DF duodenal first portion, DS duodenal second portion, DT duodenal third portions, S stomach, PR pyloric ring, CBD common bile duct, GDA gastroduodenal artery, PSPDA posterior—superior pancreatoduodenal artery, ASPDA anterior—superior pancreatoduodenal artery, RGEA right gastroepiploic artery, SMV superior mesenteric vein Fig. 4 Schematic of alimentary tract reconstruction after pancreatic head resection with segmental duodenectomy preservation of the common bile duct [2, 4]. To preserve the duodenum and common bile duct, the preservation of the pancreatic head arcade of the arteries is very important. The anatomy of the arcade of the arteries of the pancreatic head has been studied [8, 9]. The branch of the PSPDA that runs along the right side of the common bile duct and toward the major papilla (Vater branch) is important to preserve the common bile duct and major papilla [8, 9], but this branch is difficult to visualize during operation. The preservation of the pancreatic parenchyma between the common bile duct and duodenum (groove area) is necessary to preserve this branch in DpPHR with the preservation of the common bile duct and sphincter function of major papilla [9]. The preservation of the anterior arcade of the arteries in the pancreatic head is technically difficult near the minor and major papilla. If these arteries cannot be preserved, postoperative ischemic necrosis or perforation of the common bile duct or duodenum may result [10, 11]. Successful complete resection of the pancreatic head with preservation of the common bile duct and duodenum has been reported [10, 11]. However, complete resection of the pancreatic head including the pancreatic parenchyma between the common bile duct and duodenum will cause ischemia of the common bile duct and major papilla. However, complete preservation of the arcade of the arteries of the pancreatic head with common bile duct preservation is technically difficult and impossible. DpPHR with incomplete resection of the pancreatic head cannot ensure complete extirpation of IPMN, because IPMN tends to spread into the main or branch ducts. High morbidity and mortality rates were observed in DpPHR [12]. We have already reported the advantage of PHRSD compared with PpPD in delayed gastric emptying, endocrine function, body weight decrease and postoperative enzyme substitution [7]. We recommend PHRSD for the above reasons. ### Conclusions PHRSD is a safe and reasonable technique appropriate for selected patients with benign or low-grade malignant tumor of the pancreatic head region, especially with benign or noninvasive IPMN. ## References - Traverso LW, Longmire WP. Preservation of the pylorus in pancreaticoduodenectomy. Surg Gynecol Obstet. 1978;146:959–62. - Beger HG, Krautzberger W, Bittner R, Büchler M, Limmer J. Duodenum-preserving resection of the head of the pancreas in patients with severe chronic pancreatitis. Surgery. 1985;97: 467-73. - Imaizumi T, Hanyu F, Suzuki M, Nakasako T, Harada N, Hatori T. Clinical experience with duodenum-preserving total resection of the head of the pancreas with pancreaticocholedochoduodenostomy. J Hepatobiliary Pancreat Surg. 1995;2:38-44. - Ikenaga H, Katoh H, Motohara T, Okushiba S, Shimozawa E, Kanaya S, et al. Duodenum-preserving resection of the head of the pancreas-modified procedures and long-term results. Hepatogastroenterology. 1995;42:706–10. - Nakao A, Inoue S, Kajikawa M, Kaneko T, Harada A, Nonami T, et al. Pancreatic head resection with segmental duodenectomy (in Japanese). Shujutsu (Operation). 1994;48:635–8. - Nakao A. Pancreatic head resection with segmental duodenectomy and preservation of the gastroduodenal artery. Hepatogastroenterology. 1998;45:533-5. - Nakao A, Fernandez-Cruz L. Pancreatic head resection with segmental duodenectomy: safety and long-term results. Ann Surg. 2007;246:923–8. discussion 929–931. - Kimura W, Nagai H. Study of surgical anatomy for duodenumpreserving resection of the head of the pancreas. Ann Surg. 1995;221:359-63. - 9. Kimura W, Morikane K, Futakawa N, Shinkai H, Han I, Inoue T, et al. A new method of duodenum-preserving subtotal resection of the head of the pancreas based on the surgical anatomy. Hepatogastroenterology. 1996;43:463–72. - Takada T, Yasuda H, Uchiyama K, Hasegawa H. A new technique for complete excision of the head of the pancreas with preservation of biliary and alimentary integrity. Hepatogastroenterology. 1993;40:356-9. - Nagakawa T, Ohta T, Kayahara M, Ueno K. Total resection of the head of the pancreas preserving the duodenum, bile duct, and papilla with end-to-end anastomosis of the pancreatic duct. Am J Surg. 1997;173:210-2. - 12. Hirano S, Kondo S, Ambo Y, Tanaka E, Morikawa T, Okushiba S, et al. Outcome of duodenum-preserving resection of the head of the pancreas for intraductal papillary-mucinous neoplasm. Dig Surg. 2004;21(3):242–5. # Adenosquamous Carcinoma Arising in an Intraductal Papillary Mucinous Neoplasm of the Pancreas Yukiyasu Okamura, MD Hiroyuki Sugimoto, MD, PhD Tsutomu Fujii, MD, PhD Shuji Nomoto, MD, PhD Sin Takeda, MD, PhD Akimasa Nakao, MD, PhD # Adenosquamous Carcinoma Arising in an Intraductal Papillary Mucinous Neoplasm of the Pancreas To the Editor: A mong exocrine pancreatic tumors, adenosquamous carcinoma (ASC) is an unusual variant, with an incidence rate of 1% to 4% of all exocrine pancreatic tumors. ^{1,2} According to the current literature, the prognosis of ASC has been described as more deteriorated than that of common ductal cell adenocarcinoma of the pancreas. ^{2,3} Furthermore, intraductal papillary mucinous neoplasm (IPMN) has recently been recognized as epithelial exocrine neoplasia. In contrary to that of ASC, the prognosis of invasive adenocarcinoma derived from IPMN is more favorable than that for common ductal cell adenocarcinoma of the pancreas. ⁴ To our knowledge, no case has been reported where ASC has arisen in an IPMN. Although several reports have hypothesized its origin,5 a unified theory has not yet been determined. As mentioned previously, the prognosis for ASC is deteriorated; however, the patient in the current case study has experienced 28 months of disease-free survival. We propose that the origin of the tumor in the present case is different from that of stereotypical ASC, displaying coexisting IPMN. On the basis of the Classification of Pancreatic Carcinoma by the Japan Pancreas Society,⁶ the current patient's condition was diagnosed as stage 1, which is rare even in common ductal cell adenocarcinoma. Herein, we report a case of a patient exhibiting ASC arising in an IPMN. A 76-year-old Japanese man was admitted with epigastralgia and loss of appetite. Physical examination revealed no adverse findings, and laboratory test results were all found to be normal, with the exception of the serum amylase level (132 IU; normal range, 37-125 IU). Serum concentrations of carcinoembryonic antigen and carbohydrate antigen 19-9 were found to be within the reference range. Ultrasound and contrast-enhanced ultrasound examinations were performed and revealed a low-echoic lesion 15 mm in diameter at the head of the pancreas (Fig. 1A). The MPD was also distended by approximately 6 mm, and abdominal computed tomography discovered an irregular mass showing greater enhancement relative to nontumoral pancreatic parenchyma in the portal vein-dominant phase (90 seconds; Fig. 1B). Endoscopic retrograde pancreatography showed ste- nosis of the MPD at the head of the pancreas. The patient had a diagnosis of pancreatic cancer in April 2007 and underwent pancreaticoduodenectomy. The tumor filled the MPD, and small cystic lesions were identified around the cut surface of the tumor. Further examination found most of the tumor to be located in the MPD, and invasive lesions of pancreatic parenchyma were limited. The carcinomal component was found to comprise only squamous cells, with no adenocarcinomal component found (Fig. 1C). Although IPMN was detected from the MPD to the pancreatic duct branch (Fig. 1D), the stump of the MPD was found to be normal. The stage of tumor pathogenesis was determined to be stage 1, using the Classification of Pancreatic Carcinoma (fifth edition) published by the Japan Pancreas Society. The patient's postoperative course was uneventful, and he has remained disease-free for 28 months. ## **DISCUSSION** Adenosquamous carcinoma of the pancreas is a rare and aggressive subtype of pancreatic adenocarcinoma. The exact proportion of squamous cell differentiation required to diagnose ASC is variable; however, it is required that at least 30% of the tumor tissues comprise squamous cells to diagnose ASC. Madura et al¹ composed a review of 134 ASC cases, in which most patients were at least 60 years old and predominantly male. In these patients, the tumor was typically located in the head of the pancreas, consistent with the current case study. Although reports of ASC of the pancreas have recently increased, accurate preoperative diagnosis remains difficult; however, with the development of new imaging techniques, some useful descriptions for differentiating ASC from other carcinomas have been reported. For example, Nabae et al⁷ described the presence of centralized necrosis in a large infiltrative pancreatic tumor that was suggestive of ASC of the pancreas. However, the tumor size in the present study was too small to detect necrosis; therefore, an exact preoperative diagnosis was not possible. The prognosis for patients with ASC of the pancreas is less favorable than that for patients with common ductal cell carcinoma of the pancreas. The mean survival time after diagnosis of ASC is reportedly 5.7 months, with only 5 of 72 patients surviving longer than 1 year. The reasons underlying the significantly poorer prognosis and severely diminished life span in patients with ASC are proposed to be that the interphase of squamous cell carcinoma is approximately eighty days, which is half FIGURE 1. A, Abdominal ultrasound examination displays a low-echoic lesion, 15 mm in diameter, at the head of the pancreas and dilation by approximately 6 mm of the main pancreatic duct (MPD). B, Coronal imaging of abdominal computed tomography revealed the irregular mass (arrows), enhanced relative to nontumoral pancreatic parenchyma in the portal vein–dominant phase. C, The tumor was identified in the MPD and consisted of unicellular squamous cells (HE \times 40). D, IPMN was identified from the MPD to the branch pancreatic duct (HE \times 200). of that of adenocarcinoma. Furthermore, growth of ASC is very rapid and analogous to that of anaplastic carcinoma, with a previous study reporting squamous cell carcinomas to grow at twice the speed of adenocarcinomas. The patient in the present case study has currently lived disease-free for 28 months, suggesting that the development of the tumor may differ from that of other cases reported to date. The underlying origin and mechanisms of ASC development remain unclear; several theories have been reported, but none have been well proven. The first theory suggests that ASC develops owing to malignant differentiation of pluripotential duct cells into 2 histologically distinct cell types.4 The second theory states that ASC occurs as a result of malignant changes of an adenocarcinoma.⁵ Third, ASC is hypothesized to be derived from ectopic squamous epithelium. The final theory is that ASC is a derivative from squamous metaplasia of the pancreatic ductal epithelium. Currently, the first and second theories are, in general, recognized as describing the most likely origin of ASC. However, some reported cases of ASC have not applied the aforementioned theories owing to the presence of pancreatic tumors with a unicellular squamous appearance but without the glandular component, similarly described in the present case. ¹⁰ Because of this morpho- logical variance, we suggest that the final theory mentioned previously best describes the most likely origin of ASC in the current study. Squamous metaplasia of the pancreatic ductal epithelium is known to occur most often in the setting of chronic pancreatitis or pancreatic obstruction. Although the patient in the present case has no medical history of pancreatitis, the existence of latent pancreatitis was suspected owing to the patient's main physical complaints. In summary, we believe the squamous metaplasia discovered in the present case occurred owing to the obstruction of the MPD, filled with mucus secreted from the IPMN. The current study reports a case of stage 1 pancreatic carcinoma, which, though rare, provides valuable insight into elucidating the development of pancreatic carcinoma from an early stage. Yukiyasu Okamura, MD Hiroyuki Sugimoto, MD, PhD Tsutomu Fujii, MD, PhD Shuji Nomoto, MD, PhD Sin Takeda, MD, PhD Akimasa Nakao, MD, PhD Department of Surgery II Nagoya University Graduate School of Medicine Nagoya, Japan yukiyasu@med.nagoya-u.ac.jp ## **REFERENCES** - Madura JA, Jarman BT, Doherty MG, et al. Adenosquamous carcinoma of the pancreas. Arch Surg. 1999;134:599–603. - Socia E, Capella C, Kloppel G. Adenosquamous carcinoma. In: Socia E, Capella C, Kloppel G, eds. Tumors of the Pancreas. Atlas of Tumor Pathology. Series 3 Fascicle 20. Washington, DC: Armed Forces Institute of Pathology; 1995:90–91. - Kardon DE, Thompson L, Przygodzki RM, et al. Adenosquamous carcinoma of the pancreas: a clinicopathologic series of 25 cases. Mod Pathol. 2001;14:443–451. - Experience with 208 resections for intraductal papillary mucinous neoplasm of the pancreas. *Arch Surg.* 2008;143: 639–646. - Jamieson JD, Ingber DE, Mureson V, et al. Cell surface properties of normal, differentiating, and neoplastic pancreatic acinar cells. *Cancer.* 1981;47:1516–1525. - Japan Pancreas Society. The Classification of Pancreatic Carcinoma. 5th ed. Tokyo, Japan: Kanehara Shuppan; 2002. - Nabae T, Yamaguchi K, Takahashi S, et al. Adenosquamous carcinoma of the pancreas: report of two cases. Am J Gastroenterol. 1998;93:1167–1170. - Charbit A, Malaise EP, Tubiana M. Relation between the pathological nature and the growth rate of human tumors. *Eur J Cancer*. 1971:7:307–315. - O'Connor JK, Sause WT, Hazard LJ, et al. Survival after attempted surgical resection and intraoperative radiation therapy for pancreatic and periampullary adenocarcinoma. *Int J Radiat Oncol Biol Phys.* 2005;63:1060–1066. Brown HA, Dotto J, Robert M, et al. Squamous cell carcinoma of the pancreas. J Clin Gastroenterol. 2005;39:915–919. # 厚生労働科学研究費補助金がん臨床研究事業 # 膵がん切除例に対する補助療法の向上を目指した 多施設共同研究 平成 22 年度~平成 24 年度 総合研究報告書 (2/2) 研究代表者 上 野 秀 樹 (小菅智男・阪本良弘) 平成 25 (2013) 年 5 月 # 厚生労働科学研究費補助金がん臨床研究事業 # 膵がん切除例に対する補助療法の向上を目指した 多施設共同研究 平成 22 年度~平成 24 年度 総合研究報告書 (2/2) 研究代表者 上 野 秀 樹 (小菅智男・阪本良弘) 平成 25 (2013) 年 5 月 # 研究成果の刊行物・別刷 # Utility of 2-[¹⁸F] fluoro-2-deoxy-D-glucose positron emission tomography in differential diagnosis of benign and malignant intraductal papillary-mucinous neoplasm of the pancreas YOSHITO TOMIMARU 1 , YUTAKA TAKEDA 1 , MITSUAKI TATSUMI 2 , TONSOK KIM 2 , SHOGO KOBAYASHI 1 , SHIGERU MARUBASHI 1 , HIDETOSHI EGUCHI 1 , MASAHIRO TANEMURA 1 , TORU KITAGAWA 1 , HIROAKI NAGANO 1 , KOJI UMESHITA 3 , KENICHI WAKASA 4 YUICHIRO DOKI 1 and MASAKI MORI 1 Departments of ¹Surgery, ²Radiology, and ³Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka; ⁴Department of Pathology, Osaka City University Hospital, Osaka, Japan Received April 1, 2010; Accepted May 7, 2010 DOI: 10.3892/or_00000899 **Abstract.** Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas presents in various histopathological stages from benign to malignant lesions. The differentiation between benign and malignant IPMN is important in order to determine the treatment of the patients. However, preoperative differentiation remains difficult. The aim of this study was to assess the utility of 2-[18F] fluoro-2-deoxy-Dglucose positron emission tomography (FDG-PET) in preoperative differentiation of benign and malignant IPMN of the pancreas. In the present study we prospectively investigated 29 patients who underwent CT, FDG-PET, and surgery for IPMNs, followed by histopathological examination. The maximum standardized uptake value (SUVmax) was determined on FDG-PET, and differentiation of benign from malignant IPMN was tested using various SUVmax cut-off levels and various parameters derived from the CT. SUVmax was found to be significantly higher in malignant IPMNs (4.7 ± 3.0) than that in benign IPMNs $(1.8\pm0.3,$ P=0.0011). SUVmax values correlated with the histopathological types of IPMN (adenoma/borderline lesion/carcinoma in situ/invasive carcinoma) (Spearman rank correlation 0.865, P<0.0001). The specificity, sensitivity and accuracy values were best for SUVmax of 2.5 (100, 93, and 96%, respectively). The combination of mural nodule, detected on CT, and SUVmax of 2.5 offered the best diagnosis of malignant IPMN. These results suggest that FDG-PET is useful for differentiation of malignant IPMN of the pancreas, Correspondence to: Dr Yutaka Takeda, Department of Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka 565-0871 Japan E-mail: ytakeda@gesurg.med.osaka-u.ac.jp Key words: intraductal papillary-mucinous neoplasm, pancreas, positron emission tomography, standardized uptake value and that it should be performed in combination with other conventional imaging modalities. ### Introduction Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas, which was first reported by Ohashi et al in 1982, originates from epithelial cells of the main pancreatic duct or its side branches and produces large amounts of mucin (1-4). IPMN presents at various histopathological stages from benign to malignant lesions, as classified by the WHO, including adenoma, borderline, carcinoma in situ (CIS), and invasive carcinoma (5,6). While patients with benign IPMNs can be monitored without the need for surgery, malignant IPMNs should be resected surgically according to the grade of malignancy. Moreover, the postoperative prognosis of patients with invasive IPMNs is significantly poor and similar to that of patients with pancreatic ductal adenocarcinoma (5,7,8). Therefore, preoperative differentiation between benign IPMN and malignant IPMN is important in order to determine the management of patients. To date, various features of malignant IPMN tumors using imaging techniques have been proposed, such as large lesion size, dilatation of the main pancreatic duct (MPD), and presence of mural nodules (5,9-16). However, some of these features are controversial, and their accuracy depends on the imaging modalities used. Therefore, differentiation between benign and malignant IPMN is still difficult. 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is a sensitive and specific imaging protocol for the diagnosis and staging of several types of malignancies (17-20). To date, there have been few reports of FDG-PET in patients with IPMNs (21-25). Sperti *et al* (25) reported 47 cases with IPMNs confirmed histologically or cytologically, and concluded that FDG-PET was more accurate than conventional imaging techniques such as computed tomography (CT) and magnetic resonance imaging in distinguishing benign from malignant IPMN. In their report, however, the sensitivity, specificity, and accuracy of Figure 1. Distribution of the 72 patients with IPMN according to the histopathological examination. IPMN, intraductal papillary-mucinous neoplasm. FDG-PET were evaluated only when the cut-off value of the maximum standardized uptake value (SUVmax) was set at 2.5. Moreover, although these figures were compared to those of whole CT findings, they were not compared to those of other radiological features reported to be associated with malignancy. In the present study, by using the results of prospectively performed FDG-PET in patients with IPMN of the pancreas, we examined the correlation between the findings of FDG-PET and the histopathological type of IPMN. Furthermore, we assessed usefulness of FDG-PET in differentiation between benign and malignant IPMN using several cut-off levels of SUVmax, and the utility of FDG-PET was compared to certain CT parameters and their combinations, in the diagnosis of malignant IPMN. ## Materials and methods Patients. Between January 2006 and June 2008, FDG-PET was prospectively performed in 72 patients with IPMN at Osaka University Hospital. In 29 patients out of the 72 patients, the tumor was resected surgically and then examined histopathologically. The surgically-resected 29 patients with histopathological confirmation of the IPMN were enrolled in the present study. The remaining 43 patients were decided to be followed up without surgical resection. The distribution of IPMN patients are shown in Fig. 1. In principle, surgical resection of IPMN was scheduled for treatment only when the clinical features suggested malignancy. The features of tumors judged to be likely malignant on CT examination were IPMN with mural nodule, main duct type and combined type IPMN with ≥7 mm dilated MPD, combined type and branch type IPMN with ≥3-cm cystic lesion, and histopathologically and/or cytologically-confirmed malignant IPMN. Among the 29 patients, 2 patients underwent surgery without fulfilling the above criterion; their clinical features were not suggestive of malignancy; one patient fervently desired resection of the IPMN and the other underwent IPMN resection at the same time as pancreatectomy for coexisting pancreatic ductal adeno-carcinoma. The type of selected surgical procedure performed was based on the location of IPMN. Pancreatico-duodenectomy was performed in 14 patients, distal pancreatectomy in 14, and central pancreatectomy in the remaining one patient. In the 43 patients without surgical resection, 6 patients, who had clinical features suggested malignancy, did not undergo surgery for the following reasons; poor risk at surgery in three patients, refusal to surgery in two patients, and concomitant liver metastasis in one patient. The remaining 37 patients without features suggested malignancy were followed up. For all the patients, gender, age, clinical symptoms, tumor markers including carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), tumor multiplicity, tumor location, IPMN type, diameter of cystic lesion, MPD dilatation, mural nodule, cytological diagnosis, histopathological diagnosis, and SUVmax of FDG-PET were prospectively investigated. Endoscopic retrograde cholangio-pancreatography (ERCP) was performed for pancreatic duct lavage cytology and/or pancreatic juice cytology in 49 patients. FDG-PET. Whole-body FDG-PET imaging was performed as described previously (26-28). Briefly, each patient fasted for at least 4 h before intravenous administration of ~370 MBq FDG. Serum glucose levels were determined just before FDG injection. Among the 72 patients, 70 patients were normoglycemic (blood glucose <150 mg/dl), and 2 patients were hyperglycemic (blood glucose >220 mg/ml). Simultaneous emission and transmission PET scans were acquired 1 h after FDG injection. Imaging was performed with a dedicated PET scanner (Headtome/Set 2400W; Shimadzu Co., Kyoto, Japan). Fusion images combined with PET images and CT images were composed using our previously described method (28). Since April 2007, FDG-PET/CT has been introduced to clinical practice in our hospital (FDG-PET and CT performed separately; n=30, FDG-PET/CT; n=42). For semi-quantitative analysis, regions of interest were selected semi-automatically at the most intense area of FDG accumulation in the primary tumor on the PET image, and the SUVmax was calculated using the following formula: SUVmax=PET count at most intense point x calibration factor (MBq/kg)/injection dose (MBq)/body weight (kg). In the absence of a visible FDG uptake, on the basis of the fusion images, regions of interest were drawn exactly on the area corresponding to the primary tumor, and the SUVmax was calculated. The afore-mentioned 2 patients who were hyperglycemic at the PET examination contained one patient in the group of the patients with surgical resection, and one in the group of the patients without surgical resection. Since the SUVmax could not be calculated in these patients for the hyperglycemic state, they were excluded from the examination related to the SUVmax in this study. CT. CT was performed either with a LightSpeed Qxi scanner (GE Medical Systems, Wis), a LightSpeed VCT scanner (GE Medical Systems) or an Aquilion 64 scanner (Toshiba Medical Systems, Japan) scanner using a tube voltage of