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glycoproteomics, is far from sufficient to identify glycosylation biomarkers for early
cancer diagnosis. Here we discuss about issues and resolutions in the use of lectins
by introducing methods for sample preparation prior to lectin chromatography. In
addition to lectin-based approaches which have been most frequently utilized in
glycomics, other sophisticated glyco-capturing technologies are reviewed. Because
- the concept required for biomarker discovery phase or preclinical validation phase is
fundamentally different, the adequate methodologies for each are separately

described.

2 Glycoproteomics for biomarker screening

2.1 Lectins or chemicals

Nowadays, state-of-the-art glycoproteomic technologies have been developed to
enrich glycoproteins or glycopeptides from crude serum samples. These
technologies are separated into lectin-based methods and chemical-based methods
in principle. Which is better for the purpose of carbohydrate-targeting tumor marker
discovery? If we intend to identify glycan structure changes as tumor markers, rather
than concentration of core proteins, lectin is the only enrichment tool recognizing
specific oligosaccharide linkages, excepting sialic acid specific chemistry Reverse
Glycoblotting [35, 36]. The chemical enrichment of glycopeptides, such as using
hydrazide chemistry [37-42], boronic acid [43-45], or hydrophilic interactions [46-48],
certainly exhibits rigid interaction with glycan moieties, whereas most of lectin-glycan

interactions are fragile [49]. However all of the chemical approaches above are

based on covalent or affinity bond with rich hydroxyl groups on oligosaccharides,
resulting in comprehensive and structure-unspecific capture of glycopeptides.

Therefore the chemical route is inadvisable for glycan structure-targeting biomarker
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discovery. From the view of such features, we would like to focus on lectin-based

glycopeptide enrichment methods in the following sections.

2.2 Using lectin column chromatography for glycoproteomics

Assuming that the eluate of lectin column chromatography would be analyzed in
LC/MS/MS, it must be a critical issue whether we load proteins or digested peptides
to lectin columns. When undigested serum proteins are purified with lectin column
chromatography and eluted by hapten sugars, targeted glycoproteins would be
eluted with a lot of nonspecific proteins and high concentration of hapten sugars,
which could not be appropriate for mass spectrometric analysis (Fig. 1 A). The large

amount of non-glycosylated protein elution is mainly caused by the limitation of

solvent used in lectin column chromatography, with which the use of detergents, high
salts, and organic solvents are not compatible. Furthermore, since most of serum
proteins form complexes, co-elution of intact binding proteins is inevitable. More
importantly, if enriched glycoproteins would have multiple glycosylation sites, it is
hardly distinguishable which glycosylation sites might be associated with state of
cancer.

On the other hand, when digested peptides are loaded to lectin columns, the
purification efficiency of glycopeptides is relatively high due to the elimination of
protein-protein interaction effect in the samples (Fig. 1 B). However elution of
glycopeptides using hapten sugars still results in significant contamination of 200 -

1000 mM sugars in the eluate, which is not adequate for direct injection to

LC/MS/MS. In addition to this fact, mass spectrometric analysis of eluted

glycopeptides is also inefficient for comprehensive studies because automated
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protein identification by database search is impossible for glycopeptides, for which
additional deglycosylation steps would be finally required.

These characteristics of lectins on glycoproteomics have led to recent
development of glycopeptidase elution technologies [46, 50]. After binding
glycopeptides on lectin columns, PNGase-F elution in volatile salt buffers allows
highly specific elution of only originally-glycosylated peptides. After lyophilizing
eluate, the final product consists of completely deglycosylated peptides with no
contaminant salts, which could be directly injected into LC/MS instruments and
subjected to usual database search analysis on Mascot or Sequest software. Using
this type of enzymatic elution procedure on click maltose HILIC beads, Zhu et al.
successfully identified 92, 178, and 221 unique N-glycosylation sites from 10 nL, 100
nL, and 1 pyL of human serum, respectively [46]. They effectively excluded desalting,
buffer exchanging, and lyophilization steps to finish all pre-analytical procedures by
spin columns within 1.5 hours,

Regarding peptide sequencing of enzymatically deglycosylated peptides on
database search analysis, N-glycosylation sites are recognized as aspartic acid
residues converted from asparagine residues by PNGase-F (Fig. 1 C). However
chemically identical conversion may artificially occur on asparagine residues known
as deamidation of asparagine. To eliminate the false positive identification of N-
glycosylation sites by deamidation, we can utilize the PNGase-F reaction in heavy
water (H,'®0) [50-57]. The incorporation of 0 into glycosylated asparagine residues

by PNGase-F induces generation of 3 Da-increased asparagine residues, providing

N-glycosylation site-specific stable isotope tags on peptides (Fig. 1C). Our team
recently integrated on-column PNGase-F elution with the "0 stable isotope labeling

method and reported as an effective glycoproteomic biomarker screening technology,
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named isotopic glycosidase elution and labeling on lectin-column chromatography
(IGEL) [50].

Hence issues on biochemical properties of lectins for glycoproteomics can be
overcome by employing both protease digestion before lectin column purification and

on-column glycopeptidase elution of peptides.

2.3 Pre-enrichment of glycopeptides prior to lectin purification

Lectin columns are convenient and widely-used enrichment tools for
glycoproteins or glycopeptides. As contrasted with the benefits, enrichment ratio
itself is not necessarily high enough. When we purified tryptic digest of crude serum

by various types of 9 different lectin columns according to IGEL method described

above, the enrichment efficiency (number of glycopeptide identification / total peptide
identification x 100) was only 20 - 45%. Such insufficient enrichment efficiency was
mainly caused by weak lectin-oligosaccharide affinities and the fact that abundance
of non—glycoéylated peptides in tryptic digest of crude serum samples was absolutely
higher than that of glycosylated peptides. This aspect emphasizes the importance of
adequate pre;enrichment techniques for pan-glycosylated peptides, such as
cellulose column [58-60], graphite carbon column [61-65], and other hydrophilic
affinity resins. Sergei et al. constructed Cqs-cellulose mix mode column
chromatography and achieved high-yield exiraction of N- and O-glycosylated
peptides from mixture of 10 standard proteins [59]. Lam et al. applied an online

combination of reversed-phase/reversed-phase (RP-RP) and porous graphite carbon

(PGC) liquid chromatography to the comprehensive analysis of ConA lectin-purified
human serum samples and identified 134 N-glycosylated serum proteins, 151

possible N-glycosylation sites, and more than 40 possible N-glycan structures [65].
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The CL-4B Sepharose-based hydrophilic extraction of glycopeptides is also one of
the most popular techniques in glycoproteomics. Selman et al. loaded 5 ul of CL-4B
Sepharose beads into 96-well format plate and enriched human IgG-derived
glycopeptides for matrix-assisted laser desorption ionization Fourier transform ion
cyclotron resonance mass spectrometry (MALDI-FTICR-MS) [66]. This type of
multiplexed purification system is especially suitable for large scale biomarker
screening assays. Actually we also applied CL-4B Sepharose beads pre-enrichment
procedure before lectin column purification and obtained finally around 90%
glycopeptide enrichment ratio [50]. Thus pre-enrichment of total glycopeptides from
complex peptide mixtures can drastically improve the glycopeptide focusing

efficiency by subsequent lectin column chromatography.

2.4 Selection of lectins for glycoproteomics

So far hundreds of lectins have been isolated from plants, microbes, or animals
and most of them are commercially available. The selection of lectins is a critical
step for precise and comprehensive profiling of cancerous glycan disorders. In the
glycoproteomic studies, both high specificity for glycan structures and high affinity to
capture glycopeptides are needed. The glycopeptide enrichment ratio acquired from
IGEL purification experiments using human serum and 9 distinct lectins (LCA, SNA-I,
SNA-II, UEA-I, WGA, LPA, ConA, and SSA) was shown in Table 1. Concerning
specificity of lectins, LCA, SNA-l, ConA and SSA demonstrated over 80%

glycopeptide enrichment rate, suggesting that ligand specificity of these 4 lectins

would be sufficient. Meanwhile when looking into numbers of glycopeptide
identification which indirectly reflected the lectin-glycan affinity of each lectin, LCA

and SNA-I lectins showed much less glycopeptide recovery rate compared to ConA
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or SSA. Additionally the remaining 5 lectins (Lotus, SNA-II, UEA-I, WGA, and LPA)
were scarcely able to capture peptides. At least in our binding condition [100 mM
ammonium bicarbonate, 5% acetonitrile, 1 mM calcium chloride, 1 mM manganese
chloride], ConA and SSA lectin columns could be considered as appropriate
materials to be used for specific and comprehensive profiling of human serum
glycoproteome. Individual optimization would be required when analyzing other
biological samples or using different condition of binding buffers. In order to cover a
larger number of glycan structure changes, it is fundamental to increase options of
lectins along with optimum purification protocols.

In recent studies, multi-lectin affinity chromatography (M-LAC) approaches were
developed to enhance glycopeptide recovery rate and expand the
comprehensiveness of targeted glycan structures. Zeng et al. combined high
abundance protein depletion, ConA-Jacalin-WGA M-LAC, IEF separation, and LC-
MS analysis and identified breast cancer associated proteins such as
thrombospondin-1 and 5, alpha-1B-glycoprotein, serum amyloid P-component, and
tenascin-X, which had potentially abnormal glycans [67]. The same group rigorously
evaluated the identical lectin mixture in several glycoproteome profiling studies [68-
72]. Qiu et al. integrated serial lectin purification by ConA and SNA with d0- or d3-N-
acetoxysuccinamide stable isotope labeling on a-amino groups. By use of this
methodology, they enabled effective enrichment of sialylated glycopeptides and also

differential analysis of those [73].

2.5 Quantitative assessment of glycan structure changes
To identify cancer-associated alterations of glycosylation on multiple proteins,

establishment of rigorous quantification strategies should be essential, which could
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stoichiometrically evaluate the changing rate of each glycoform. Comparative
quantification results of only enriched glycopeptides are affected by not only glycan
structure changes but also concentration of original core proteins itself, indicating
that it is hard to determine whether the identified candidates might be glycosylation-
targeting biomarkers or protein concentration biomarkers. Therefore subtraction of
protein concentration effects from quantification results of lectin-enriched
glycopeptides is necessary (Fig. 2). Recently we demonstrated a practical example
of this concept for the identification of carbohydrate-targeting lung cancer biomarker
discovery [50]. Here we acquired relative quantification profiles from both lectin-
purified glycopeptides and pre-enriched non-glycosylated peptides by LC/MS/MS
analysis individually. Finally the site-specific glycoform changes were determined by
subtracting core protein concentrations calculated by non-glycosylated peptides from
quantification results of each glycopeptide. This approach can illuminate the glycan

structure changes on diverse glycosylation sites individually.

2.6 Quantitative glycoproteomic approaches for O-glycans

Although tools for comprehensive analysis of O-glycosylation are still limited
compared with the N-glycomics, recent development of sophisticated chemistries
have potential to be breakthrough technologies for O-glycan biomarker discovery.
Hang et al. developed a metabolic labeling approach which utilized incorporation of
tetra-aceylated-N-azidoacetylgalactosamine (GalNAz) into the reducing terminus of

O-glycosylation sites [74, 75]. Following cell culture in the presence of GalNAz for

several days, O-glycosylated proteins can be specifically collected by alkyne-
activated resins (click chemistry) (Fig. 3). Using this technology, Slade et al.

identified 267 potentially O-glycosylated proteins from the secretome of CHO cells
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[76]. Furthermore the Bertozzi's group succeeded to apply GalNAz chemistry to
rapid profiling of O-linked glycoproteins in living mice [77] and also in vivo imaging of
membrane-associated glycans in zebrafish [78]. The other group expanded this
technology by using GalNAz, ManNAz, and GIcNAz to discover cell surface
differentiation markers on human mesenchymal stem cells (hMSCs) [79]. Integration
of such metabolic labeling methods for O-glycans with mass spectrometric structural
analysis may facilitate comprehensive screening of fine O-glycan structure

alterations in the future.

3 Glycoproteomics for High-throughput Biomarker

Validation

For clinical application of biomarkers, pre-clinical validation experiments are
usually required using independent larger sample set and high throughput
quan'tiﬁcation methods. In general, most of protein biomarkers are quantitatively
measured by immunoassays in the validation phase, which include sandwich ELISA,
AlphalISA [80-84], and Luminex technology [85-89]. However it is often extremely
difficult to make specific antibodies against both detailed glycan structures and
glycosylation sites mainly because of the low immunogenicity of oligosaccharides
and structural hindrance of amino acid epitopes by glycans. Thus alternative
glycoproteomic technologies must be established for the replication assays using

hundreds of clinical samples, which could detect site-specific glycan structure

changes quantitatively with high throughput manner from complex protein mixtures,
such as crude serum/plasma. Here we introduce a couple of technologies used in

the glycosylation biomarker validation area.
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3.1 Lectin-antibody sandwich ELISA

A sandwich-type enzyme-linked immunosorbent assay (ELISA) using lectin and
analyte specific antibody was originally developed by Drouin et al. in 1988 [90]. They
intended to establish high throughput diagnostic assay for Bernard Soulier syndrome
(BSS) which was a rare autosomal recessive coagulopathy leading to a deficiency of
glycoprotein Ib (Gplb), an important clotting regulator as the receptor for von
Willebrand factor. In that study they immobilized wheat germ agglutinin (WGA) lectin
on 96 well plates to capture Gplb in prepared human platelet proteins and eventually
succeeded to detect Gplb by specific monoclonal antibody AN51 quantitatively. They
mentioned that this approach was simple, inexpensive and sensitive way to
quantitate glycoproteins for which specific lectins and monoclonal antibodies were
available. Tojo et al. applied the same concept of assay utilizing ConA-immobilized
ELISA plates and specific polyclonal antibody to quantitate D-mannans of Candida
albicans [91]. Since ConA lectin possessed a high binding specificity for the D-
mannopyranose unif, the sensitivity and specificity of D-mannan detection were
significantly improved compared to previous antibody-antibody ELISA or quantitative
precipitin reaction (QPR), they reported.

In cancer diagnostic studies, Parker reported the application of lectin/antibody
sandwich ELISA assay to the serological diagnosis of pancreatic cancer [92]. His
team captured glycoproteins possessing N-acetylglucosamie and sialic acid moieties
by WGA lectin and detected by CAM17.1 monoclonal antibody specific to a part of

mucins. They provided diagnostic assay results from not only retrospective study

showing a sensitivity of 78% for pancreatic cancer with a specificity of 76% [93], but
also prospective study showing even better sensitivity and specificities (84 and 92%,

respectively), suggesting that the assay probably performed better on fresh samples.
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They also circumstantially summarized the usefulness of CAM 17.1/WGA test for
pancreatic cancer diagnosis in Lancet journal [94]. Very recently Miyoshi's group
found that fucosylated haptoglobin had a great potential for the detection of
pancreatic cancer and prognosis of postoperative colorectal cancer [95, 96]. They
coated 96 well plates with anti-haptoglobin Fab antibody because 1gG had
fucosylated oligosaccharides in its Fc portion, and detected fucosylated haptoglobin
by biotinylated AAL lectin [95-98]. They measured serum samples from 397
individuals and concluded that the sensitivity and specificity for the diagnosis of

pancreatic cancer patients from normal controls was 50% and 91%, respectively [98].

3.2 Energy resolved oxonium ion monitoring (Erexim) technology

For the purpose of first high-throughput site-specific quantification of glycan
structure variations, we recently developed energy resolved oxonium ion monitoring
(Erexim) technology [99]. The oxonium ions are defined as any oxygen cations with
three bonds in chemistry, while they are used synonymously with sugar oxonium
ions in glycoproteomics, which are produced as oligosaccharide fragment ions in
collision cells of mass spectrometers during collision induced dissociation (CID) of
glycopeptides [100]. Typical oxonium ions (m/z) and the corresponding
oligosaccharide components are shown in the right side of Fig. 4. The detection of
particular set of oxonium ions in MS/MS spectra of glycopeptides not only represents
the existence of glycan modifications but also provides signature of original glycan

structures [101]. Furthermore we found that monitoring the yields of oxonium ions

over a wide range of collision energy by use of multiple reaction monitoring (MRM
[102-104]) on quadrupole mass spectrometer exhibited a highly glycan structure-

unique fragmentation patterns. Indeed the Erexim curves allowed us to clearly
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distinguish even structural isomers (same mass with distinct glycan linkage) and
separately quantify their contents (Fig. 4). This technology was then applied to the
N-glycan profiing of three model therapeutic antibody drugs, Herceptin
(trastuzumab), Avastin (bevacizumab), and Erbitux (cetuximab). In the lot-to-lot
glycan structure variation test for Herceptin or Avastin, around 30 glycan structures
on Fc region of antibody drugs were relatively quantified in 30 minutes analysis,
revealing that at most 10% increase or decrease of several glycoforms were
observed in both drugs (n = 4 for each of 4 lots). In the case of Avastin glycan
profiling, glycans on both Fab and Fc regions were simultaneously quantified in a
single Erexim analysis. The result showed that most of glycans on Fab region were
non-human type glycan structures possessing N-glycolylneuraminic acids (Neu5Gc)
or Gal (a1-3) Gal structures, whereas Fc region had conserved non-immunogenic
glycan structures. The limit of detection and dynamic range of this technology were
30 attomole and more than 4 orders, respectively. Since the required sample
preparation prior to mass spectrometric analysis was only usual trypsin digestion, the
Erexim procedure would be appropriate for automated high-throughput analysis.
Thus this technology has enough potential to be applied to routine evaluation of drug
quality, safety, and potency, for which extremely high reproducibility, quantitative
capability, and throughput. Meanwhile our Erexim profiling technique is promising
technology allowing rapid and site-specific validation of extracted glycan structure-

targeted tumor marker candidates using multiple crude specimens.

4 Toward Industrialization and Approval of

Carbohydrate-targeting Biomarkers
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Biomarkers developed for commercial use and regulatory approval must be
required to present data supporting validity and clinical utility. According to the FDA
Guidance for industry: Pharmacogenomic data submissions 2005, a valid biomarker
is a biomarker that is measured in an analytical test system with “well-established
performance characteristics” and for which there is an “established scientific
framework or body of evidence that elucidates the clinical significance of test
results.” In case of carbohydrate-targeting biomarkers for cancer early detection or
prognosis, the developed devices need to be approved as in vitro diagnostics.

Toward that purpose, a couple of key requirements have to be fulfilled. Firstly
development of high-throughput, easy-to-use, reproducible, and not so expensive
diagnostic devices would be required, which are suitable for widespread clinical use.
As described in Section 3.1, lectin-antibody sandwich ELISA system could be the
first choice satisfying all of these criteria. However, in some cases it would be difficult
to achieve sensitive detection for low abundant serum glycoproteins because of
insufficient specificity and affinity of lectins for the glycan epitopes. The Erexim
technology (Section 3.2) can provide extremely high sensitivity, specificity, and
reproducibility for the quantitative assessment of site-specific glycan structure
disorders, whereas the high-spec mass spectrometer and proficient skills of
LC/MS/MS operation are required.

The other requirement toward the approval of diagnostics is biological evidence
explaining how and why the targeted glycan structure alterations would occur on a

particular serum glycoprotein in cancer patients. It is often complicated to figure out

the origin of biomarker glycoproteins and biochemical mechanisms of abnormal
oligosaccharide generation, especially when investigating for glycoproteins identified

from serum shotgun proteomics-driven biomarker screening. To present scientifically
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strong evidences for carbohydrate-targeting biomarker candidates, further basic and
detailed glycobiological studies will be necessary, including analysis of cellular
glycan biosynthesis pathways, comprehensive expression analysis of
glycosyltransferases, or confirmation of glycoform changes in cancer tissues. Future
development of more sensitive, high-throughput, and site-specific glycan structure
profiling technologies are also fundamental to facilitate clinical application of
numerous carbohydrate-targeting biomarker candidates reported previously on

papers.
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