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Figure 3. Detection of aUPD in SNP-A karyotyping. (a) aUPD or CN-LOH refers to the allelic status caused by loss of one of
the two parental alleles and duplication of the remaining allele. (b) In SNP-A karyotyping, aUPD is detected by significant
dissociation of AsCNs (red arrows) or by the reduction of the number of heterozygous SNP calls (blue arrow). (c) Sensitive
detection of aUPD using AsCN analysis was evaluated using intentionally mixed tumor and normal cells at the indicated tumor
proportions. The reduction of heterozygous SNP calles (green bars) in the aUPD(+) region is obscured with less than 40% of
tumor content, whereas the dissociation of AsCNs (green and red lines) clearly indicates the presence of aUPD even with. 20%
of tumor content. (d) AsCN-based detection of aUPD (orange) outperforms that relying on the reduced heterozygous SNP calls
(blue) in sensitivity. The gray line indicates numbers of heterozygous SNP calls within the target region with aUPD. (e) aUPD
is generated as a result of somatic recombination between sister chromatids or deletion of a chromosome segment and
duplication of the remaining allele, rendering a mutated allele homozygous. (e) Disappearance of heterozygous SNP calls are
also caused by inheritance of identical IBD alleles from parents. Reflecting multiple meiotic recombinations within the parents’

gametes, they usually appear as multiple segments with loss of heterozygous SNP calis intervened with heterozygous diploid
segments.
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Homozygous deletions are less common than simple
deletions in cancer genomes, but they provide an im-
portant clue to the identification of tumor-suppressor
genes, since the typical size of homozygous deletions is
less than 1 Mb. Taking advantage of their high resolu-
tion of analysis, the SNP-A platforms enable genome-
wide detection of these lesions and have contributed to
the discovery of novel tumor-suppressor genes.?”30
While in primary tumor specimens, the presence of
normal cells frequently prevents detection of homozy-
gous deletions by polymerase chain reaction (PCR),
such deletions could be detected as a biallelic reduc-
tion in AsCNs in SNP-A karyotyping even with low
tumor contents (Figure 2d).

DETECTION OF CN-LOH OR UPD

The other target of SNP-A karyotyping is CN-LOH.
CN-LOH has been the focus of recent attention in
cancer genetics, especially hematopoietic neoplasms.
It represents an abnormal allelic status, in which both
of the two existing alleles have a single parental origin,
and thus it is also called “uniparental” disomy (UPD)
(Figure 3a). In SNP-A karyotyping, UPD is detected as a
significant dissociation in AsCN plots, where higher
and lower copy number plots indicate the duplicated
and missing alleles, respectively (Figure 3b). When the
proportion of UPD-positive tumor components exceed
70% in the specimen, the frequency of heterozygous
SNP calls is significantly reduced, indicating the pres-
ence of LOH. However, detection of LOH relying on
heterozygous SNP calls is much less sensitive compared
to the AsCN-based detection; with less than 70% of
UPD-positive tumor cells, no significant reduction of
heterozygous SNP calls is observed (Figure 3c). Al-
though the size of the dissociation in AsCN plots varies
depending on the proportion of the tumor components
having UPD within the specimen, as few as 20% of
UPD-positive components can be detected by SNP-A
karyotyping?® (Figure 3d).

UPD may occur as an inborn error in congenital
disorders, including Beckwith-Wiedemann syndrome
(UPD in 11p), and Angelman syndrome and Prader-
Willi syndrome (UPD in 15q), where the consequent
abnormal imprinting status of the involved chromo-
somes is implicated in their pathogenesis.?!-3 How-
ever, recent studies using SNP-A karyotyping indicate
that UPD is more commonly found in cancers as an
acquired abnormality (acquired UPD [aUPD]).34 Several
mechanisms have been implicated in the generation of
aUPD during the development of cancer (Figure 3e).
For example, mis-segregation of a chromosome with
total or partial deletion of the other allele is thought to
be a common mechanism of aUPD among cancers,
especially those showing hyperploidy, leading to aUPD
of whole chromosomes or aUPD plus trisomy of the
surrounding chromosomal segments. On the other

hand, in many hematopoietic neoplasms aUPDs fre-
quently involve the telomere end of affected chro-
mosomal arms, suggesting that they are generated by
somatic recombinations between sister chromatids.
These aUPDs should be strictly discriminated from
identity-by-descent (IBD) alleles, which are not uni-
parental but inherited from both parents by varying
degrees of consanguinity between close kin. For ex-
ample, one sixteenth of the total genome is expected
to consist of IBD alleles in children born to marriage
between cousins. Thus, IBD alleles are more com-
mon in older individuals, reflecting higher frequen-
cies of consanguinity in the past. Usually, IBD alleles
tend to be found in the middle of diploid regions and
involve multiple chromosomal sites (Figure 3f).3536
Unfortunately, however, discrimination between
aUPD and IBD alleles is difficult in some cases, espe-
cially when they occur in mostly diploid genome and
involved chromosomal ends.

In cancer genetics, aUPD has been established as
one of the common mechanisms for biallelic inactiva-
tion of tumor-suppressor genes, by which the intact
allele is lost and replaced by the mutant allele.3” How-
ever, the precise incidence of aUPD among human
cancers has not been fully evaluated until recently,
when the genome-wide detection of this abnormality
has been enabled by the advent of the SNP-A karyotyp-
ing technology. aUPD has been shown to frequently
occur in human cancers, including hematopoietic neo-
plasms. aUPDs are found in 20% of acute myeloid
leukemia (AML), 30% of myelodysplastic syndromes
(MDS), and related disorders, and more than 80% of
malignant lymphomas.3%:3538-45 Ag expected, these
UPDs are shown to be tightly associated with homozy-
gous mutations of known tumor-suppressor genes,
including TET2 in 4q, CDKN2A/B in 9p, TP53 in 17p,
NF1in 17q, Rb in 13q, CEBPA in 19q, and RUNX1 in
21@?8:3537.40-42.44 (Rigure 4a). Moreover, recent evi-
dence suggests that aUPD may accompany not only
loss-of-function alleles of tumor-suppressor genes but
also gain-of-function alleles of oncogenes. This was
first demonstrated for 9pUPD causing homozygous
JAK2 V617F mutations in polycythemia vera (PV), as
well as other myeloproliferative neoplasms (MPN),
and to a lesser extent in MDS.%¢-48 Thereafter, the
association between aUPDs and oncogenic muta-
tions was further confirmed for oncogenes in a vari-
ety of hematopoietic neoplasms.3542-51 Common ex-
amples include homozygous mutations of ¢-MPL or
NRAS, ¢-CBL, and FLT3, which are caused by aUPDs
in 1p, 4q, 7q, 11q, and 13q, in a variety of myeloid
neoplasms, respectively (Figure 4b).

SENSITIVITY OF SNP-A KARYOTYPING

The sensitivity to detect particular genetic lesions in
SNP-A karyotyping depends on the size of genetic le-
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Figure 4. Recurrent aUPDs and their gene targets in
hematopoietic neoplasms. Recurrent aUPD found in hema-
topoietic neoplasms are frequently associated with loss-of-
function mutations of tumor-suppressor genes (a) or gain-
of-function oncogenic mutations (b).

sions and the tumor contents within the samples, and
also on the algorithm with which they are detected.
These computer-assisted algorithms, as well as other
bioinformatics tools for SNP-A karyotyping, are espe-
cially useful to detect complex genetic lesions objec-
tively and to summarize them for a large number of
specimens, facilitating identification of genetic targets.
A number of algorithms for computer-assisted detec-
tion/inference of genetic lesions in SNP-A karyotyping
have been developed, among which hidden Markov
model (HMM)-based algorithms and those using circu-
lar binary segmentation (CBS) are widely applied by
researchers.>>->¢ Regardless of algorithms, to detect
copy number changes the size of the measured copy
number changes (A) needs to be significantly larger
than the mean size of measurement errors, eg, standard
deviation of measured copy numbers in diploid ge-
nome (SDYP). Because the relative intensity of probe-
specific signals to the background signals is substan-
tially weaker in Affymetrix GeneChip than in CGH
arrays, the mean log2 ratio of haploid to diploid signals
remains approximately 0.5 (Nsp250K arrays) rather
than achieves the theoretically expected value (~1.0)
obtained in CGH arrays. In addition, SNP-A tends to
show significantly higher SDY values than array CGH
systems. As a result, SNP array-based copy number
detection is more prone to loss of sensitivity with low
tumor cell components than CGH-based copy number
analysis. In typical SNP-A analyses, approximately 20%
to 30% of tumor contents are required for detection of
abnormalities in large chromosomal segments. In con-
trast, similar genetic lesions could be successfully cap-
tured even with less than 10% of tumor contents in

metaphase karyotyping and typical CGH arrays (BAC
array and Agilent 224K), although metaphase karyotyp-
ing depends on viable cells capable of cell division for
analysis.

The SDYP values or noises in SNP-A show substantial
variation depending on the experimental conditions
and the algorithms with which copy numbers are cal-
culated. In the Affymetrix platform, the genomic DNA
is digested with a proper restriction enzyme and the
adapterligated restriction fragments are subjected to
PCR amplification before hybridization. Because PCR
amplification assumes successful digestion of both ends
of the fragments, the difference in the mean length of
genomic DNA between test and reference DNA can
bias copy number calculation, especially at those SNP
sites on the longer DNA fragments. This causes a seri-
ous problem to analyze degraded DNA prepared from
formalin-fixed paraffin-embedded (FFPE) samples, al-
though the problem is partly circumvented at the cost
of resolution by eliminating SNPs on long restriction
fragments (>500 bp) from the analysis.>> The subse-
quent PCR reactions also produce biases, because rel-
ative amplification efficiency among different DNA
fragments could be easily affected by subtle differences
in PCR conditions, including types of polymerase and
thermal cyclers.25¢ Thus, in order to obtain the best
results, it is very important to perform experiments as
uniformly as possible between test and reference sam-
ples. For example, it is recommended that whenever
possible, array experiments should be performed with
a set of normal DNA included for reference, especially
in those centers with less experience in SNP-A analysis,
although this leads to increased costs and reduced
throughput. Using a set of array data from normal DNA
as a common reference can reduce costs and increase
throughput but generally results in increased SD¥P and
reduced resolution and sensitivity (Figure 5). SD¥ val-
ues in typical experiments are between 0.15 and 0.20,
while they can be controlled to less than 0.10 in well-
performed experiments.

COPY NUMBER VARIATIONS AND
THE USE OF GERMLINE CONTROL

Copy number variations (CNVs) are a type of poly-
morphism widely found in our genomes, where the
number of particular genomic segments shows varia-
tions.37-3 Most CNVs are less than 1 Mb in length, but
some CNVs span genomic segments of more than sev-
eral megabases in length. While CNVs could be poten-
tial targets of SNP-A karyotyping, they may complicate
the discrimination between somatic and germline
events in cancer specimens, because difference in
CNVs between test and references from different indi-
viduals could be erroneously detected as somatic copy
number changes. Although using a germline DNA as a

- reference could largely circumvent the false positive
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Figure 5. Effect of reference sets on detection of genetic
lesions. The same array data for a tumor sample was ana-
lyzed with a set of reference array data of simultaneously
processed normal diploid DNAs (a) or with a different array
data set of normal diploid DNAs generated from a different
set of experiments (b). The set of reference used for the
analysis substantially influenced the result. The analysis in a
shows a lower SDYP value than that in (b), enabling iden-
tification of a interstitial deletion (red arrows) that is not
clear in (b).

detection of CNVs as somatic copy number changes, it
does not completely avoid the problem. When a CNV is
located within a segment showing an allelic imbalance
and analyzed with a germline control, an apparent copy
number change may appear at that CNV locus, even
though it is not real (Figure 6).

CLINICAL APPLICATIONS

Until recently, application of SNP-A karyotyping has
been largely limited to exploratory research on cancer
genetics. However, given its excellent performance in
detecting genetic abnormalities in cancers, application
of SNP-A karyotyping to clinical hematology could be a
logical approach in an attempt to establish better man-
agement of cancer patients, although there remains a
number of issues to be answered before its use in
clinical settings. Clearly, SNP-A karyotyping does not
replace the conventional metaphase karyotyping or
other PCR-based detection of a variety of fusion genes,
because SNP-A karyotyping cannot detect balanced
translocations that are relevant to the management of a
variety of hematopoietic malignancies.

Give their primary use for GWAS studies, processing
a large number of specimens is an important pre-req-
uisite for the development of SNP-A platforms. With
simplified experimental protocols and semi-automa-
ted procedures, both SNP-A platforms achieve high-
throughput sample processing, in which dozens of
specimens can be analyzed within a few days in a single
set of SNP array systems. This is in contrast to conven-
tional metaphase karyotyping. Obtaining high-quality
metaphases may not always be possible and, as pre-
viously mentioned, absolutely requires cell culture
before analysis, precluding the analysis of archived
samples. Production of a large enough number of
karyograms for analysis is also time-consuming and
their interpretation requires some discipline.

On the other hand, metaphase karyotyping may re-
veal the presence of several tumor subpopulations with
different genomic profiles, as typically found in some
MDS or AML M6 patients with poor prognosis, where
individual metaphases show different karyotypes. DNA-
based analyses including SNP-A and CGH array measure
mean copy numbers among different subclones. They
could infer such complexities in some cases, but gen-
erally would fail to fully dissect such complex abnor-
malities within each tumor subpopulation, suggesting
the importance of combined used of metaphase karyo-
typing and array-based karyotyping technologies. Fea-
tures of different platforms for detection of genetic
alterations are summarized in Table 1. Apparently,
what is important is the judicious use of the appropri-
ate platforms according to the types of target genetic
lesions to be detected.

As long as the target genetic abnormalities are un-
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Figure 6. False detection of copy number abnormality. In
most cases, CNVs are successfully discriminated from so-
matic changes using a germline control. However, in some
cases, the use of a germline control may lead to false
detection of CNVs as somatic changes. This occurs when
two parental alleles have different CNVs and that CNV site
is located in a segment showing copy number gain or loss.
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balanced changes shared by the main tumor popula-
tion, SNP-A karyotyping would be a good alternative to
conventional karyotyping or could even outperform
the latter, especially when no metaphases are obtained
in conventional karyotyping. SNP-A karyotyping reveals
comprehensive registries of genetic lesions, including
copy number gains and losses, as well as UPD, in
hematologic neoplasms (Figure 7). In hematopoietic
neoplasms, aUPDs are found in varying frequencies
depending on tumor types, ranging from approxi-
mately 20% in AML to nearly 80% in diffuse large B-cell
lymphoma. While some aUPDs are closely related to
particular gene mutations, the clinical significance of
other aUPDs remains to be elucidated.

AML AND ACUTE LYMPHOBLASTIC LEUKEMIA

In leukemias and lymphomas, a number of novel
genetic targets have been identified through SNP-A
karyotyping of acute lymphoblastic leukemia (ALL).
SNP-A karyotyping identified recurrent deletions/trans-
locations involving EBFI and PAXS5 in childhood
ALL,?%2728 and frequent deletion of Ikaros in lymphoid
blastic crisis of CML, as well as Ph1* ALL.?® Meanwhile,
the clinically relevant disease-specific translocations
are out of the scope of SNP-A karyotyping, which are
among common targets in metaphase karyotyping and
could be more sensitively detected by targeted ap-
proach, including interphase fluroesence in situ hybrid-
ization (FISH) and reverse transcriptase-PCR. This is a
major drawback of SNP-A karyotyping. However, the
excellent performance of SNP-A karyotyping in ge-
nome-wide detection of complex unbalanced lesions as
well as aUPD could compensate the drawback, and add
unique values to this platform in clinical setting.

MDS AND RELATED MYELOID NEOPLASMS

MDS, MDS/MPN, and secondary AML are among the
best targets of SNP-A karyotyping, in which the unbal-
anced genetic changes are predominant,’*! and these
changes are directly incorporated into their prognostic
scores.%2% Tt was demonstrated that SNP-A karyotyping
showed a higher performance compared to metaphase
karyotyping.354 In our series consisting of 222 cases with
MDS and related myeloid neoplasms, SNP-A karyotyping
captured all the genetic lesions found in metaphase karyo-
typing except for four balanced translocations. Moreover,
41 of the 91 cases with normal karyotypes by metaphase
cytogenetics showed one or more genetic lesions by
SNP-A karyotyping. Overall, SNP-A karyotyping revealed
approximately 1.5 times more genetic lesions, including
-7/7q- and complex karyotypes indicating poor progno-
sis?>% (Figure 8). Assuming that the masked lesions in
metaphase karyotyping are also valid in evaluating the
International Prognostic Scoring System (IPSS) score,
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Figure 7. Genomic profiles of different hematopoietic neoplasms in SNP-A karyotyping. Genomic profiles revealed by SNP-A
karyotyping are shown for different hematopoietic neoplasms, including AML (N = 36), MDS (N = 294), MPN (N = 57), CML
(N = 51), B-precursor ALL (N = 507), T-cell ALL (N = 84), non-Hodgkin lymphoma (NHL) (N = 238), and CLL (N = 131).
Frequencies of copy number gains and losses, as well as aUPDs, across the genome are color-coded in each neoplasm type as
indicated. Each neoplasm type has a characteristic genomic profile of its own.

SNP-A karyotyping would be a more appropriate tool for
the management of MDS and related neoplasms.

In these myeloid neoplasms, aUPDs are found in about
one fourth to one third of the patients and, in some cases,
represent the only genetic lesions found by SNP-A karyo-
typing.3>% These aUPDs are preferentially involved in
particular chromosomal arms, such as 1p, 1q, 4q, 7q, 9p,
11p, 11q, 13q, 14q, 17p, and 21q. Importantly, recent

studies demonstrated that many of these aUPDs are tightly
associated with mutations of tumor-suppressor genes or
oncogenes (Table 2).3540,43,46,50,64.65

MALIGNANT LYMPHOMAS

Malignant lymphomas consist of a diversity of differ-
ent histology types. This wide heterogeneity of lym-
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Figure 8. Numbers of genetic lesions in MDS and related myeloid neoplasms detected by SNP-A and metaphase karyotyping.
The numbers of genetic lesions detected in a cohort of MDS, MDS/MPN, and sAML were compared between SNP-A (red bars)
and metaphase karyotyping (blue bars) in each chromosome. The comparison was made among the 173 cases, in which

successful metaphase karyotype data had been obtained.
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Table 2. aUPDs and Their Gene Targets in Hematologic Neoplasms

Chromosome Disease(s) Gene Target(s) References
1p13.1 MDS Nras Mutations 35,50
1p34 MPN, RARSt cMPL Mutations 49,64,72
4924 MDS, MPN TET2 Mutations 44
6923 MALT, DLBCL A20 Mutation or deletion 30
7935 MDS, MDS/MPN EZH2 Mutations 65
9p21 ALL CDKN2A Deletion 29
9p24 MPN JAK2 Mutations 25,46
11p13 AML WT1 Mutations 51
11923.3 MDS/MPN c-CBL Mutations 35,50
13912 AML FLT3 ITD 51
13q14.3 CLL : miR-15a, miR-16-1 Deletion 69
17p13.1 AML, MDS TP53 Mutations 35,73
17g11.2 JMML ‘ NF1 Mutations 74
19913.1 AML ~ CEBPA Mutations : 51
21922.3 AML, MDS RUNXT Mutations 35,51

Abbreviations: MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; RARSt, refractory anemia with ring sideroblasts and
thrombocytosis; MALT, mucosa-associated lymphoid tissue-derived lymphoma; DLBCL, diffuse large B-cell lymphoma; ALL, acute
lymphocytic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; JMML, juvenile myelomonocytic leukemia.

phomas has been confirmed by SNP-A karyotyping, in
terms of the distribution of their genetic abnormalities,
including copy number gains and losses, as well as
aUPD, conferring unique genomic profiles to each lym-
phoma subtype.® For example, gains of both chromo-
somes 3 and 18, as well as focal deletions at the A20
locus, are a common feature of mucosa-associated lym-
phoid tissue (MALT)-derived lymphoma, while mantle
cell lymphomas show recurrent deletions in the seg-
ments of 1p, 10p, and 11q, and gains of 3q, 8q, and
18q.%° On the other hand, diffuse large B-cell lympho-
mas and follicular lymphoma show largely similar
genomic profiles, including gains/amplifications involv-
ing the c-rel locus, and gains of 1q and chromosomes 3,
7, 12, and 18, indicating a common genetic back-
ground in both subtypes. aUPD is found in about 80%
of follicular center-derived lymohomas and less fre-
quently found in MALT and mantle cell lympho-
mas.3%456 In follicular center-derived lymphomas,
common targets of aUPD include 1p, 1q, 6p, 9p, 12q,
and 17q, whereas 6qUPD is characteristic to MALT-type
lymphoma.3%-4566 Similar to aUPD in myeloid cancers,
discrete gene targets have been clarified for some
aUPDs in lymphomas, including HLA associated with
6pUPD, A20 with 6qUPD, and CDKN2 with 9pUPD,
although the genetic targets of common aUPDs in 1p,
12q, and 17q have not been elucidated.?°

CHRONIC LYMPHOCYTIC
LEUKEMIA AND MULTIPLE MYELOMA

Chronic lymphocytic leukemia (CLL) and multiple
myeloma (MM) are also among good indications for

SNP-A karyotyping, because difficulty in obtaining
metaphases frequently prevents successful conven-
tional karyotyping. SNP-A analysis can sensitively de-
tect genetic lesions in more than 80% of CLL cases,
including frequent homozygous deletions involving the
miR15a/miR16-1 locus, as well as gains of chromo-
some 12 associated with poor prognosis.¢”-% Other
common genetic lesions in CLL detected by SNP-A
karyotyping include recurrent deletions in 5q, 6q, 11q,
and 17p, where the common deletion in 6q and 11q
contains AIM1 and ATM, respectively. Because of a
high median age of CLL cases, aUPD should be carefully
discriminated from IBD alleles. After excluding sus-
pected IBD alleles, aUPD was relatively uncommon,
being found in four of 56 cases, which involved 11q,
13q, and 17p.%8

SNP-A karyotyping also can be applied to MM, but
frequent low tumor contents in myeloma specimens
may compromise the sensitivity of detecting genetic
lesions. To keep the sensitivity of SNP-A karyotyping,
enrichment of myeloma cells has been performed by
sorting CD138" fractions.”® As for the copy number
changes, comparative results were obtained between
array CGH and SNP-A Kkaryotyping. Common genetic
changes detected by SNP-A karyotyping include gains
of 1q, 6p, and 11q and whole chromosomes 3, 5, 7, 9,
15, and 19, typically associated with hyperploidy, and
deletions in 1p, 8p, and 16q and whole chromosomes
13 and X.707t SNP-A karyotyping showed concordant
results with those from FISH experiments in most
cases, except for rare tetraploid samples, which were
erroneously analyzed as diploid in SNP-A karyotyping.
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aUPD is also common in MM with the median number
of regions showing aUPD being three.”

CONCLUSION

SNP-A karyotyping represents one of the recent
technological advances in the field of cancer genomics.
It has enabled high-throughput analysis of genetic le-
sions in human cancers in terms of copy number alter-
ations and allelic imbalances, unveiling a number of
novel genetic targets and mechanisms that are involved
in cancer development. Given such high performance
of SNP-A karyotyping, it could be potentially applicable
to bedside diagnosis and the clinical management of
patients. While there exist accumulating observations
that suggest diagnostic and/or prognostic values of
SNP-A karyotyping, they need to be confirmed through
more controlled studies. For example, when evaluating
those abnormalities whose clinical values have been
well established, SNP-A karyotyping would comple-
ment and even outperform metaphase karyotyping. On
the other hand, SNP-A karyotyping will identify large
numbers of novel genetic lesions whose clinical signif-
icance needs to be clarified before their clinical use,
which might not always feasible with realistic numbers
of cases due to higher heterogeneity these lesions
could reveal. Clearly, more works should be required
to establish the clinical values of SNP-A karyotyping
technologies.
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Abstract

The molecular pathogenesis of myelodysplastic syndrome (MDS) and its progression to secondary acute myeloid
leukemia (sAML) remain to be explored. Somatic C-CBL mutations were recently described in MDS. Our study
aimed to determine the role of C-CBL mutations in the progression of MDS to sAML and sought to correlate with
clinicohematological features and outcome. Bone marrow samples from 51 patients with high-risk MDS (13 with
refractory cytopenia with multilineage dysplasia, 19 with refractory anemia with excess blast 1, and 19 with refractory
anemia with excess blast 2) were analyzed for C-CBL mutations at both diagnosis and sAML in the same individuals.
Mutational analysis was performed for exons 7 to 9 of C-CBL gene. Of the 51 paired samples, C-CBL mutations were
identified in 6 patients at the sSAML phase. One patient retained the identical C-CBL mutation (G415S) at sAML
evolution and exhibited clonal expansion. The other five patients acquired C-CBL mutations (Y371S, F418S,
370 Y371 ins L, L399V, and C416W) during sAML evolution. Three of the six patients harboring C-CBL mutations
at SAML had additional gene mutations including JAK2V®"F, PTPN77, or N-RAS. There was no significant difference in
clinicohematological features and overall survival with respect to C-CBL mutation status. Our results show that C-CBL
mutation is very rare (0.6%) in MDS, but acquisition and/or expansion of C-CBL mutant clones occur in 11.8% of
patients during SAML transformation. The findings suggest that C-CBL mutations play a role at least in part in a subset
of MDS patients during sAML transformation.

Neoplasia (2071) 13, 1035-1042

Introduction

Myelodysplastic syndromes (MDSs) are hematological malignancies
characterized by ineffective hematopoiesis and a high-risk transfor-
mation to secondary acute myeloid leukemia (sAML) [1]. MDSs are
clonal hemopathies associated with acquired genetic aberrations. We
and others have shown that genetic or epigenetic abnormalities might
arise during MDS evolution or its progression to SAML [2,3]. Efforts
have been made to determine the molecular pathogenesis of the pro-
gression of MDS to sSAML as well as their clinical impact.

Human C-CBL gene locates on chromosome 11q23.3 and encodes a
protein that contains several functional domains, including a tyrosine
kinase (TK)-binding domain, a RING finger (RF) domain, a con-
served Linker region between the TK-binding domain and RF in the
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N-terminal portion, and a C-terminal domain with ubiquitin ligase ac-
tivity [4]. The C-CBL protein has E3 ubiquitin ligase activity and is
responsible for the negative regulation of activated TKs [5,6]. The im-
portance of C-CBL gene in hematopoiesis has been demonstrated by
knockout mice that showed prolonged activation of TKs, enhanced
sensitivity to hematopoietic growth factors, expanded hematopoietic
stem cell pool, and myeloproliferative features [7-10].

Loss of heterozygosity could arise either by uniparental disomy
(UPD), which represent the coexistence of duplication of an entire
or partial chromosome from single parent and loss of the other allele,
or by hemizygous deletion. Application of single-nucleotide polymor-
phism (SNP) microarrays has facilitated the identifications of novel mu-
tated tumor suppressor genes or oncogenes with loss of normal alleles
[11,12]. Recently, the detection of 11q acquired UPD (aUPD) has led
to the identification of C-CBL mutations in various myeloproliferative
neoplasm or MDS subtypes [9,13—16], particulatly in chronic myelo-
monocytic leukemia (CMML) with a frequency of 5% to 25%
[9,13,17-19]. We have further demonstrated that C-CBL mutations
result in a gain-of-function mutation if a tumor suppressor associated
with 11q aUPD, which is a novel leukemogenic mechanism in a subset
of CMML [9]. Of the previous studies, C-CBL mutations were mostly
analyzed on samples either at initial diagnosis or at the time of sSAML
transformation. Two studies had examined paired MDS and sAML
samples; however, only one case each were included in their studies
[14,15). The impact of C-CBL mutations on outcome of patients with
MDS and their role in the progression to SAML remain to be defined.
In this study, we analyzed a large cohort of matched paired bone mar-
row (BM) samples from 51 padents with de novo high-risk MDS and
its corresponding SAML to determine the frequency and characters of
C-CBL mutations at both phases of disease. The mutation status of the
C-CBL gene at either the diagnosis of MDS or sAML was correlated
with the clinicohematological features and outcome to determine its
clinical and prognostic relevance.

Design and Methods

Patients and Materials

Between 1991 and 2010, 167 patients with the diagnosis of high-
risk de novo MDS, including refractory cytopenia with multilineage
dysplasia (RCMD), refractory anemia with excess blast 1 (RAEB-1),
and refractory anemia with excess blast 2 (RAEB-2) were followed up
to observe the evolution of sSAML. The morphologic subtypes of
MDS were classified according to the World Health Organization’s
classification [20]. Patients with CMML, refractory cytopenias with
unilineage dysplasia, refractory anemia with ring sideroblasts, MDS-
unclassified, MDS associated with isolated del(5q), and therapy-related
MDS were excluded. The cytogenetic findings according to the Interna-
tional Prognostic Scoring System (IPSS) were available in 138 patents
and were divided into three groups: 1) good = normal, -Y, del(5q),
del(20q); 2) poor = complex or chromosome 7 abnormalities; and 3)
intermediate = other abnormalities [21]. Eighty-six of 167 patients pro-
gressed to SAML, of which 51 patients (13 RCMD, 19 RAEB-1, and
19 RAEB-2) had matched paired BM samples at both MDS and sAML
phases available for comparative analysis. They formed the basis of this
study. Forty-two patients (82.4%) in MDS phase received supportive
care only, five were treated with oral chemotherapy (hydroxyurea or
melphalan), one with low-dose cytarabine, and three with standard
AML protocol. Of the 51 patients at SAML phase, 15 were treated with
AML protocol, 2 proceeded to allogeneic hematopoietic stem cell trans-

plantation, 12 received low-dose cytarabine, 9 received oral chemo-
therapy, and 15 had supportive care only. The study was approved
by the institutional review boards of Chang Gung Memorial Hospital,
Taiwan, and the University of Tokyo, Japan.

Cell Fractionation

The mononuclear cells were obtained from BM samples by Ficoll-
Hypaque density gradient centrifugation (1.077 g/ml; Amersham
Pharmacia, Buckinghamshire, United Kingdom). The BM mono-
nuclear cells were cryopreserved in medium containing 10% dimethyl-
sulfoxide and 20% fetal bovine serum at -70°C or in liquid nitrogen
until test.

DNA, RNA Extraction, and Complementary
DNA Preparation

Genomic DNA (gDNA) and RNA were extracted from frozen BM
mononuclear cells. RNA was reversely transcribed to complementary
DNA (cDNA) with the SuperScript II RNase H2 Reverse Transcriptase
Kit (Invitrogen Corporation, Carlsbad, CA) as described previously [22].

C-CBL Mutation Analysis

cDNA polymerase chain reaction (PCR) assay was performed as
described previously [23]. For patients with available RNA samples,
the cDNA PCR products were either subjected to direct sequencing
and/or screened by denaturing high-performance liquid chromatog-
raphy (DHPLC; WAVE Transgenomic, Omaha, NE) system [24].
In the DHPLC assay system, we always ran a control of the patient’s
sample mixed with 50% wild-type DNA to distinguish homozygous
mutations from wild-type. The abnormal DHPLC profiles that sug-
gested the presence of mutations were then sequenced. For patients
without RNA samples available, mutations at exon 8 were all examined
by direct sequencing of gDNA PCR products, whereas mutations at
exons 7 and 9 were analyzed by either direct sequencing as previously
described [9] or with DHPLC system followed by sequencing for ab-
normal profiles obtained. The primer sequences for cDNA PCR and
DHPLC analysis are listed in Tables W1 and W2. All the mutations
detected were confirmed by using alternative samples and/or primers
and subjected to PCR assays with sequencing again.

Detection of Additional Gene Mutations

Mutational analysis of FL73-ITD, FLT3-TKD, codons 12, 13, and
61 of N-RAS and K-RAS, C-KIT, and C-FMS (CSFIR) genes were per-
formed as described previously [3,25-271. JAK2"®'"" and PTPNI11
were analyzed according to the methods described by Baxter et al.
[28] and Tartaglia et al. [29], respectively.

SNP Microarray Analysis

High-density SNP array combined with CNAG (Copy Number
Analyzed for Affymetrix GeneChip Mapping)/AsCNAR (allele-specific
copy number analysis using anonymous references) software analysis
was performed using Affymetrix GeneChip 50K Xbal, HindIll, or
250K Nspl as described before [9], in four patients at SAML phase in
which C-CBL mutations were detected.

Statistical Analysis
Fisher exact test, x° analysis, and Wilcoxon rank sum test were used
whenever appropriate to make comparisons between groups. Estimates



