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Genome-wide Analysis of Myelodysplastic Syndromes

Masashi Sanada* and Seishi Ogawa

Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

Abstract: Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic neoplasms characterized by ineffective hematopoiesis
and a risk for progression to acute myeloid leukemia. A number of cytogenetic changes have been described that are characteristic to
MDS and of clinical relevance; the specific gene targets of these alterations were largely unknown. On the other hand, over the past dec-
ade, technologies have been dramatically improved to enable high-throughput analysis of entire MDS genomes, leading to identification
of frequent copy number neutral events and a number of novel gene targets implicated in the pathogenesis of MDS. In this review, we
briefly overview the recent progress in the genetics of MDS, focusing on the newly identified gene targets in MDS.

Keywords: Microarray, SNP array, CNN-LOH, somatic mutation, high-throughput parallel sequencing.

INTRODUCTION

Myelodysplastic syndromes (MDS) are intractable clonal disor-
ders of hematopoietic systems characterized by bone marrow dys-
plasia, peripheral blood cytopenia due to ineffective hematopoiesis,
and a high propensity to acute myeloid leukemia (AML) [1, 2]. One
of the prominent features of MDS is the high frequency of unbal-
anced chromosomal changes that accompany copy number altera-
tions of chromosomal segments. Gains and losses of one or more
chromosomal segments are found in approximately 50% of MDS
patients in conventional cytogenetics and represent major determi-
nants of the prognosis of MDS [3-5], indicating that these changes
could be closely related to the pathogenesis of MDS. Unfortunately,
however, most of the common changes typically involve large
chromosomal segments, and with the lack of specific positional
markers that pinpointed the critical genetic loci, the gene targets of
these chromosomal lesions have not been determined until recently.
This shows a stark contrast to de novo AML, where the breakpoints
of disease type-specific translocations provided reliable positional
markers to identify the major gene fusions that are relevant to mo-
lecular classification and characterization of AML [6,7]. The break-
through for this situation has been brought about over the past dec-
ade, during which there have been dramatic improvements in ge-
nome technologies that allowed high-throughput/ resolution analy-
sis of genomes [8], particularly with the development of single
nucleotide polymorphism (SNP) array-based technology for copy
number analysis.The SNP array-based copy number detection tech-
nologies enabled detection of copy-number (CN) alterations as well
as allelic imbalances or loss of heterozygosity (LOH) in cancer
genomes [9-13] and successfully applied to the analysis of MDS
genomes, leading to the identification of a number of novel gene
targets, frequently mutated in MDS as well as other myeloid can-
cers [14-18].Interestingly, many of the newly identified mutational
targets are those involved in epigenetic regulation, such as DNA
methylation and chromatin modifications, which is in accordance
with the clinical observation that demethylating agents (azacitidine
and decitabine) have been demonstrated to be effective in the
treatment of high-risk MDS patients [19-21]. Thus, the frequent
mutations of epigenesis-regulating genes support the possibility that
the epigenetic alterations in MDS could be at least partly explained
by the primary genetic alterations.

CYTOGENETICS IN MDS

Conventional cytogenetics provides an invaluable clue to the
management of MDS, since the types and numbers of chromosomal
lesions have been tightly linked to the prognosis of MDS cases.
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Cytogenetic findings are among the key parameters for the predic-
tion of prognosis in the International Prognostic Scoring System
(IPSS), and also adopted for the World Health Organization (WHO)
classification-based Prognostic Scoring System (WPSS) [22]. Hasse
et al. and other researchers also demonstrated that rare but recurrent
cytogenetic alterations and specific karyotypic combinations could-
be used as beneficial markers for determining the prognosis of
MDS [4, 23-25]. On the other hand, a potential caveat in conven-
tional cytogenetics is that it absolutely depends on viable cells to
obtain metaphases for analysis. Conventional cytogenetics fails to
detect any abnormalities in approximately half of the patients with
MDS. In fact, using interphase fluorescent in situ hybridization
(FISH) analysis with 4 FISH probes, Rigolin et al. reported occult
cytogenetic alterations in 17.8% of MDS patients with normal
karyotype, including deletions of 531, 7q31 and 17p13, as well as
trisomy8 [26]. Although providing a sensitive method for detecting
submicroscopic alterations of known targets that are present in a
small fraction of tumor samples without depending on cell divi-
sions, interphase FISH analysis cannot be applied to genome-wide
detection of genetic lesions.

ARRAY COMPARATIVE GENOMIC HYBRIDIZATION

Array-based comparative genomic hybridization (aCGH) en-
ables comprehensive genome-wide analysis of genetic aberrations
in cancers [8], in which differentially labeled DNAs from both tu-
mor and normal reference samples are comparatively hybridized to
a large number of probes on microarray. The ratio of the signal
intensity of the test to that of the reference DNA is then calculated
for the measurements of genomic copy numbers. The density of
probes on microarray has been increased up to 4.2 million (Nim-
bleGen), allowing for detection of smaller, more focal amplifica-
tions and deletions [27,28]. In the previous studies of MDS, a num-
ber of small, cryptic chromosomal abnormalities were identified
using a CGH that could otherwise escape conventional cytogenetic
analysis [29-32].

SNP ARRAY ANALYSIS

High density SNP arrays were originally developed for large-
scale genotyping that is required for genome-wide association stud-
ies (GWAS) [33, 34]. However, the quantitative nature of the
preparative whole~-genome amplification and array hybridization
thereafter allows for accurate estimation of genomic copy numbers
at high resolution [35-37]. Furthermore, SNP array analysis also
enables genome-wide LOH detection using genotyping data. With
these desirable features, SNP arrays are now widely used for ge-
nome-wide copy number and LOH analyses in cancer research and
the diagnosis of rare congenital disorders [10, 12-14,38,39]. Cur-
rently, two SNP array platforms are commercially available, Af-
fymetrixGeneChip SNP Genotyping array [33] and Illumina beads
array [40]. A number of software are developed for the analysis of

© 2012 Bentham Science Publishers
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genomic copy numbers [35, 37, 41, 42], among which CNAG/
AsCNAR software [36, 43], is one of the most widely used for this
purpose. CNAG/AsCNAR is implements with a series of data com-
pensation algorithms to accurately estimate copy numbers. In addi-
tion, by detecting subtle distortions in allele-specific signals caused
by allelic imbalance, CNAG/AsCNAR enables sensitive detection
of LOH with accurate determination of allele-specific copy num-
bers even in the face of up to 80% normal cell contamination [43].

Using AffymetrixGeneChip50k or 250k array, we analyzed a
total of 222 MDS and myelodysplastic/myeloproliferative neo-
plasms (MDS/MPN) specimens, 87 of the 137 MDS cases (63.5%)
had one or more regions showing allelic imbalances [14] Fig. (1). In
accordance with previous cytogenetic studies, MDS genomes
showed high frequencies of unbalanced genetic changes, including
-5/5q—, -7/7q—, +8, 9p+, 12p—, 17p—, 18q+, 19p+, 19q+, 20q—, and
21g+, which were detected with higher sensitivity using SNP ar-
rays. For example, hidden copy number alterations were success-
fully detected by SNP array-based copy number analysis in 14 out
of 55 cases of normal karyotype MDS in our series [14]. However,
the major advantage of SNP array analysis is the ability to detect
genome-wide copy-number neutral (CNN)-LOH, which is unde-
tectable by conventional cytogenetics, FISH or array CGH.

CNN-LOH IN MDS

CNN-LOH or uniparental disomy (UPD) is a common genetic
alteration in cancer genome, majority of LOH in cancer being due
to CNN-LOH rather than simple allelic deletion. Although CNN-
LOH has been considered to be a common mechanism of inactiva-
tion of tumor suppressor genes, the discovery of a gain-of-function
mutation of J4K2 kinase associated with 9pUPD in myeloprolifera-
tive neoplasms (MPN)lead to a concept that CNN-LOH could also

MDS (137)

Sanada and Ogawa

provide the genetic mechanism for clonal selection of a gain-of-
function mutation [44]. CNN-LOH has been documented in 10-
25% of MDS cases [14, 45, 46], 10-20% of de novo AML [47-52],
and over 35%of chronic myelomonocytic leukemia (CMML) cases
[14, 45].

Similar to other allelic imbalances, CNN-LOH was not ran-
domly distributed throughout the MDS genomes, but tended to
involve particular chromosomal arms in a relatively mutually ex-
clusive manner, including 1p, 1q, 4q, 7q, 11p, 11q, 14q, 17p, and
21q Fig. (1). Among these, 7q, 17p, and 21q are also affected by
deletions, while LOH in other arms were largely caused by UPD. In
contrast, 5q and 20q are frequent targets of deletion in MDS cases,
but rarely show CNN-LOH. CNN-LOH in 11p, 13q, 17p and 21q
were also seen in de novo AML cases, whereasl1q CNN-LOH was
typically found in cases with MDS/MPN.A significant finding
about these recurrent CNN-LOH is that they are frequently associ-
ated with homozygous mutations of known gene targets of myeloid
neoplasms, including c—-MPL or N-RAS in 1pCNN-LOH [14, 53],
JAK2 in 9pCNN-LOH [43, 44], FLT3 in 13gCNN-LOH [54], TP53
in 17pCNN-LOH [14], and RUNXI in 21qgCNN-LOH [14, 54] (Ta-
ble 1). CNN-LOH could result in the duplication of mutated onco-
genes after the loss of the normal allele or by inducing deletion of
tumor suppressor genes.

MUTATED GENE TARGETS IN MDS (FIG. 2)
1) TET2

The long arm of chromosome 4 has not been reported as a
common target of chromosomal abnormalities in myeloid malig-
nancies in conventional cytogenetics [4], but recently turned out to
be a recurrent target of CNN-LOH in MDS and CMML in SNP
array analysis. Delhommeau ef al. and Langeimer ef al. identified

TN TS

CMML (85)

Fig. (1). The genome profile of 222 cases of MDS and related myeloid neoplasms detected by SNP array analysis.

The genetic alterations, including CN gains, losses and CNN-LOH, are color-coded, light gray, gray, and dark gray, respectively. These lesions are plotted
vertically in chromosomal order for each sample. Vertical positions of each lesion are proportional to the genetic length and thus the size of the color-coded
corresponds to the length of alterations. CNN-LOH, in particular chromosomal arms tends to be found in mutually exclusive cases, enabling clustering based
on the site of CNN-LOH, except for 17pLOH, which was frequently accompanied by loss of 5q, loss of chromosome 7 or 7q, and loss of 12p.Common genetic

alterations and their target genes are indicated.
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loss of function mutations of TET?2 as the target of 4qLOH[15,16],
and also mutated frequently in other cases without having 4qgLOH.
In fact, TET2is now shown to represent one of the most frequently
mutated genes in MDS (~20%) as well as other myeloid neoplasms
[55], including MPN with or without J4K2-V617F mutations
(~10%), CMML (30-50%), and part of AML(13%) [15, 16, 56, 57].
TET2 mutations frequently occur during progression of MPN or
MDS to secondary AML. The impact of TET2 mutations on clinical
outcomes is still controversial. Some reports demonstrated signifi-
cantly shorter overall survival in patients with 7ET2 mutations [56-
58], while others reported favorable or no prognostic impact of
TET2 mutations [16, 55, 59].

TET family proteins (Tetl, Tet2, and Tet3) catalyze the conver-
sion of 5-methyl-cytosine to 5-hydroxymethyl-cytosine (ShmC)
[60, 61]. In ES cells, TET1 plays a functional role in maintaining
the pluripotent state [61-63]. A recent study demonstrated that 5-
hmC generated by TET activity is an intermediate during the proc-
ess of DNA demethylation [64]. In addition, TET1 directly interacts
with Sin3A, a co-repressor protein essential for inhibiting the tran-
scription of a subset of genes [65]. Tet2 deficiency in mice lead to
the progressive enlargement of the hematopoietic stem and progeni-
tor compartment, and also results in abnormalities in mature mye-
loid and lymphoid cells, and leading to fatal hematopoietic malig-
nancies[66]. Quivoron ef al. also found that TET2 mutations were
not only seen in myeloid neoplasms but also in various types of B-
and T-cell lymphoid tumors in humans.

2) IDH1/IDH2

Mutations of isocitrate dehydrogenase (IDH) 1 and IDH2 are
initially identified through comprehensive mutation studies in
glioblastoma as well as de novo AML in high frequencies [67, 68],
and also reported in other myeloid malignancies including secon-
dary AML, MDS and MPN [69-73]. IDH1 and 1DH2 are compo-
nents of TCA enzymes that catalyze isocitrate to o-ketoglutarate
conversion in cytoplasm and mitochondria, respectively. Mutations
of IDH1 and IDH2 exclusively involved in amino acid positions of
R132 in IDH1 and R140 and R172in IDH2, respectively, indicating
they represent gain-of-function, rather than loss of function muta-
tions. In fact, these mutations were shown to cause dramatic altera-
tion of substrate specificity. As a result, the mutated enzymes show
severely compromised activity of the intrinsic isocitrate to a-
ketoglutarate conversion, but in turn acquire a de novo activity to
catalyze a-ketoglutarate to 2 hydroxyglutarate (2HG) conversion.
The 2HG represents the first example of oncogenic metabolite in
human cancers. Intriguingly, 2HG competitively inhibits TET2
function, which absolutely depends on a-ketoglutarate as a sub-
strate [74]. In fact, the IDH1/2 mutations were always heterozygous
and tend to occur in a mutually exclusive manner with TET2 muta-
tions.

3) C-CBL
11qUPD is one of the most common targets of UPD found in
myelodysplasia, particularly in CMML with normal karyotypes. We
and other groups identified C-CBL mutations as the critical gene
affected by 11gCNN-LOH [14, 45,75, 76]. C-CBL is the cellular
_homolog of the v-Cb/ transforming gene of Cas NS-1 murine leu-
kemia virus, and is thought to negatively regulate tyrosine kinase
signaling, mainly through the down-regulation of activated tyrosine
kinases by E3 ubiquitin ligase activity [77].C-CBL mutations are
frequently seen in MDS/MPN cases with a tight association with
11g-CNN-LOH. C-CBL mutations and other RAS pathway muta-
tions (NRAS, KRAS, PTPNI11,and NF1)occur in a mutually exclu-
sive manner in CMML and juvenile myelomonocytic leukemia
(JMML) [76, 78, 79].Interestingly in this regard, similar to other
mutations of RAS pathway genes, heterozygous germ-line C-CBL
mutations may predispose the development of JMML with a
Noonan Syndrome-like phenotype [80, 81]. Most C-CBL mutations
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in myeloid malignancies are found in the linker and RING finger
domains, which are central to the E3 ubiquitin ligase activity[82].C-
CBL mutants show compromised E3 ubiquitin ligase activity, and
also inhibit wild type C-CBL and CBLB, leading to prolonged acti-
vation of tyrosine kinases following cytokine stimulation [14, 83,
84], leading to hypersensitivity to a wide spectrum of cytokines that
underlies the pathogenesis of the myeloproliferative phenotype
commonly found in CMML and JMML [82, 84].

4) EZH2

Loss of chromosomes 7 and 7q are one of the most frequent
genetic alterations in MDS and known as a reliable predictor of
adverse prognosis. Approximately 10% of the patients with MDS
carry an abnormality of chromosome 7, either alone or as part of a
complex karyotype. This frequency is higher in therapy-related
MDS associated with a prior history of treatment with alkylating
agents. SNP array analysis has revealed that not only copy number
loss but also CNN-LOH is the cause of 7qLOH in MDS and related
myeloid neoplasms. Recently, Ernst ef al. and Nikoloski ef al. have
shown that EZH2is mutated in some cases with7q-LOH [17,18],
indicating that EZH2is one of the gene targets in 7qLOH. EZH2
encodes a histone methyltransferase that is the catalytic component
of the polycomb repressive complex-2 (PRC2), a highly conserved
histone H3 at lysine-27 methyl transferase, which functions to initi-
ate epigenetic silencing of genes involved in cell fate decisions
[85]. Loss of PRC2 function increases hematopoietic stem cell ac-
tivity and expansion, which may explain how loss of function muta-
tions of EZH2 leads myeloid neoplasms [86]. On the other hand, at
least three common deleted regions (CDRs) on 7q (7922, 7q32-33,
and 7q35-36) have been identified in myeloid malignanicies [87-
891, and therefore, EZH2(7q36)does not seem to be the sole target
for the deletions of chromosome 7q.

5) Ribosomal Protein

Deletion of chromosome 5q is also a common cytogenetic al-
teration in MDS, and isolated 5q- is associated with a favorable
prognosis and a favorable response to lenalidomide [90, 91]. Many
studies attempted to narrow the region of recurrent somatic deletion
to identify the critical gene in this region, but no somatic mutations
have been identified among genes located within the CDR of 5q
[92, 93]. SNP array analysis did not contribute to narrow the
5qCDR, which is rarely affected by CNN-LOH in MDS. It has been
suggested that haplo-insufficiency in one or more genes may ex-
plain 5q- pathogenesis, instead of bi-allelic inactivation of a tumor
suppressor gene. Ebert et al. performed an RNA interference screen
against all 40 genes located within the 5qCDR and implicated
haplo-insufficiency of the RPSI4 gene as a major contributor to the
hematologic manifestations of 5q-[94]. Barlow ef al. generated
deletions of portions of syntenic lesion(containingRPS!4) with the
human 5q region in mouse, haplo-insufficiency of this loci caused
macrocytic anemia, increased apoptosis and the morphologic ab-
normalities found in the erythroid compartment [95].Loss-of-
function mutations involving other ribosomal components (e.g.,
RPS19 and RPS24) have also been implicated in rare congenital
bone marrow failure syndromes, Diamond-Blackfan anemia [96,
97]. Nevertheless, haploinsufficiency of RPS14does not seem to
explain several other features of the 5g-syndrome, which also
shows thrombocytosis associated with megakaryocytic dysplasia,
neutropenia, and clonal dominance [98, 99]. Interestingly, a recent
study has demonstrated that haplo-insufficiency of two micro
RNAs within CDR, miR-145 and miR-146, could also contribute to
the pathogenesis of 5g- syndrome, supporting a model of haploin-
sufficiency of multiple gene targets in this syndrome [100].

CLINICAL APPLICATION

Given that cytogenetic information provides a valuable clue to
the management of MDS as prognostic makers, a more accurate
prognosis could be established based on SNP array or other CGH
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Table1. Recurrent Gene Mutations in Myeloid Malignancies
Mutated Gene |Diseases frequency in MDS | frequency in de novo AML |Associated chromosomal alterations |pathway
TET2 MDS, CMML, MPN 20.0% 13.2% 4qUPD epigenetic modification
EZH2 MDS, CMML 6.0% rare 7qUPD epigenetic modification
ASXL1 AML,MDS,CMML 10-15% 10.8% epigenetic modification
DNMT3A AML,MDS 8.0% 22.1% epigenetic modification
IDH1 AML,MDS rare-5.2% 6.6-8.5% normal cytogenetics epigenetic modification
IDH2 AML,MDS,CMML 4.2% 11-15.4% epigenetic modification
TP53 AML, MDS 5-10% <10% 17ploss/UPD, complex karyotype cell cycle, apoptosis
Nras MDS, AML, MDS/MPN 3.6-6.3% 10-15% 1pUPD signal transduction
Kras MDS, AML rare 5.0% signal transduction
cMPL MPN, RARSt rare-5% rare 1pUPD signal transduction
JAK2 MPN, RARSt rare-50% rare 9pUPD signal transduction
c-CBL CMML, JMML rare rare 11qUPD signal transduction
FLT3 AML rare 28-33%(ITD), 5-10% 13qUPD signal transduction
NF1 JMML rare rare 17qUPD signal transduction
PTPN11 JMML rare rare signal transduction
c-KIT AML rare 6-10% signal transduction
RUNX1 AML, MDS 15-20% 8.6% 21qgloss/UPD transcriptional factor
wT1 AML rare 10.0% 11pUPD transcriptional factor
CEBPA AML rare 4-9% 19pUPD transcriptional factor
UZAF35 MDS 11.6% rare RNA splicing
SRSF2 MDS, CMML 11.6% rare RNA splicing
SF3B1 RARS, MDS 6.5-75.3% rare RNA splicing
ZRSR2 MDS 7.7% rare RNA splicing
NPM1 AML rare 25-35% normal cytogenetics other

rare, mutations present in <3% of patients

MDS, myelodysplastic syndrome; RARS, refractory anemia with ringed sideroblats; RARSt,RARS and thrombocytosis
MPN, myeloproliferative neoplasm; AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; JMML, juvenile myelomonocytic leukemia
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Fig. (2). Molecular pathways of genes affected in MDS.
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Mutations of multiple pathways have been indicated in the pathogenesis of MDS. The mutated components areindicated by arrows.

based genomic analysis of MDS. Array-based genome-wide copy
number analysis can provide much information on genetic altera-
tions, especially on CNN-LOH, although array-based analysis can-
not detect the balanced translocations that are relevant to the man-
agement of a large number of hematopoietic malignancies.

Some studies showed that the presence of newly detected al-
terations by microarray were useful as novel predictors of prognosis
[101]. Heinrichs et al. and Godek et al. showed that 7q-CNN-LOH
is a possible marker for poor prognosis [45, 46], although the evi-

dence for the value of each alteration identified with SNP array or
aCGH has so far been still incomplete. Clearly, further studies are
required to establish the clinical values of array-based karyotyping
technologies in MDS. Recently, Bejar ef al. examined whether the
mutation profile of known target genes was associated with the
clinical phenotype, and found that mutations in TP53, EZH2, ETV6,
RUNXI and ASXLI are independent predictors of poor prognosis
[55]. However, most reported mutations occur infrequently in MDS
cases and are also found in the case of AML and other myeloid
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neoplasms (Table 1, Fig. (2)). These mutations may explain the
limited aspect of pathogenesis of MDS.

CONCLUSION AND RECENT PROGRESS

One of the best targets of SNP-array based genome-wide allele-
karyotyping would be MDS and related disorders in which CNN-
LOH and unbalanced genetic changes are predominant. Using SNP
array, several novel gene mutations, C-CBL, TET2, and EZH2, have
been identified in MDS and related myeloid neoplasms. However,
as many as 20-30% of primary MDS cases do not show any genetic
changes even with SNP array karyotyping or mutation analysis of
previously known targets. More problematic is that no gene muta-
tions are specific to MDS but also found in other myeloid cancers,
indicating that we still have incomplete knowledge about the mo-
lecular pathogenesis of MDS. In this regard, the development of
high-throughput parallel sequencing technologies has provided an
opportunity to characterize genetic changes across the genome-wide
sequences at single nucleotide level [102], and is expected to be
successfully applied to the genetic analysis of MDS to reveal more
aspects of their pathogenesis in near future. In fact, our recent study
using whole exome sequencing has revealed high frequencies
(45~85% depending on subtypes of MDS) of pathway mutations
involving multiple components of the splicing machinery that are
highly specific to myeloid neoplasms showing features of myelo-
dysplasia [103], although more studies are required to elucidate
their roles in the pathogenesis of MDS.
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ABSTRACT

Recent advances in high-throughput sequencing
technologies have enabled a comprehensive dis-
section of the cancer genome clarifying a large
number of somatic mutations in a wide variety of
cancer types. A number of methods have been
proposed for mutation calling based on a large
amount of sequencing data, which is accomplished
in most cases by statistically evaluating the differ-
ence in the observed allele frequencies of possible
single nucleotide variants between tumours and
paired normal samples. However, an accurate de-
tection of mutations remains a challenge under
low sequencing depths or tumour contents. To
overcome this problem, we propose a novel
method, Empirical Bayesian mutation Calling
(https://github.com/friend1ws/EBCall), for detecting
somatic mutations. Unlike previous methods, the
proposed method discriminates somatic mutations
from sequencing errors based on an empirical
Bayesian framework, where the model parameters
are estimated using sequencing data from multiple
non-paired normal samples. Using 13 whole-exome
sequencing data with 87.5-206.3 mean sequencing
depths, we demonstrate that our method not only
outperforms several existing methods in the calling
of mutations with moderate allele frequencies but
also enables accurate calling of mutations with

low allele frequencies (<10%) harboured within a
minor tumour subpopulation, thus allowing for the
deciphering of fine substructures within a tumour
specimen.

INTRODUCTION

Cancer is caused by genetic alterations in which acquired
or somatic gene mutations, together with germline factors,
play definitive roles in cancer development. As such, com-
prehensive knowledge regarding somatic mutations in the
cancer genome is indispensable for the ultimate under-
standing of cancer pathogenesis. In this regard, the
recent advances in massively parallel sequencing
technologies have provided an unprecedented opportunity
to decipher a full registry of somatic events in the cancer
genome at a single nucleotide resolution (1). However,
accurate detection of somatic mutations from high-
throughput sequencing data may not always be a straight-
forward task because ambiguities in short read alignment
and sequencing errors are inevitably introduced during
sample preparation and signal processing, making it
difficult to discriminate true somatic mutations from
sequencing errors, especially for those mutations with
low sequencing depths or allele frequencies. The detection
of low allele frequency mutations is not only required for
specimens with low tumour contents but is also important
for capturing minor tumour subclones to understand the
heterogeneity of cancer (2-5) and the underlying causes of
tumour recurrence and therapeutic resistance.
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For calling somatic mutations, each candidate has to be
discriminated from germline variants and artifacts appear-
ing from sequencing errors. Although germline variants
can be effectively detected by relying on the base calls in
paired normal samples, the elimination of sequencing
errors may be a more complex task because of uncertain
allele frequencies and tumour contents. Most existing
approaches have adopted variants whose allele frequencies
in tumour samples are significantly higher than those in
normal samples, excluding variants whose allele
frequencies are high enough to indicate that they are
putative germline variants. Sequencing errors can be
eliminated to some extent by testing the differences in
allele frequencies, as they are expected to occur with
equal probability between tumour and normal samples.
To measure the significance of the difference in allele
frequencies, SomaticSniper (6) and jointSNVmix (7)
estimate the Bayesian posterior probability that tumour
and normal samples have different genotypes, whereas
our previous approach (8) and VarScan 2 (9) both rely
on the P-values from Fisher’s exact test.

Although a direct comparison between tumour and
normal samples has achieved a measure of success, a
more efficient approach to discriminate between seq-
uencing errors and genuine somatic mutations is possible
when prior information on sequencing errors is given. In
fact, the susceptibility to sequencing errors in each
genomic position is not uniform, but there are many
common sequencing error-prone sites across different ex-
periments, as shown by several previous studies (10-12) as
well as our current study. This implies that, by inferring
the susceptibility to sequencing errors at each genomic
site, we can achieve greater sensitivity in the detection of
somatic mutations at sites with no sequencing errors while
efficiently filtering false positives at sequencing error-
prone sites (Figure 1).

In this article, we propose a novel statistical approach
for the detection of somatic mutations, which explicitly
takes into account prior information of sequencing
errors. By introducing a Bayesian statistical model, we
propose a framework for empirically estimating the
distribution of sequencing errors by using a set of
non-paired normal samples. Using this approach, we can
directly evaluate the discrepancy between the observed
allele frequencies and the expected scope of sequencing
errors. The proposed approach, which we call Empirical
Bayesian mutation Calling (£BCall), is superior to several
existing methods in calling somatic mutations with
moderate allele frequencies. In addition, we demonstrate
that EBCuall can effectively detect a series of somatic
mutations that have allele frequencies of <10% with a
high degree of accuracy, thereby identifying sub-
clonal structures of cancer cells that cannot otherwise be
found.

MATERIALS AND METHODS
Patient samples and sequencing procedures

After receiving informed consent, paired tumour-normal
samples were obtained from 20 patients with clear cell
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renal cell carcinoma (ccRCC) by sampling their specimens
during surgical operations. Of the samples obtained, 13
paired tumour-normal samples were used for a perform-
ance evaluation of the mutation detection, and all 20 of
the normal samples were used for estimating the
sequencing errors as non-paired normal reference
samples. In addition, to compare the choice of normal
reference samples, 20 normal samples collected from
patients with paediatric acute myeloid leukemia
(ped-AML) were also used; the informed consent for
these sample collections were obtained from the patients’
parents. This study was approved by the ethics committees
of the University of Tokyo and Gunma Children’s
Medical Center.

Genomic DNA and total RNA were extracted from the
samples using QIlAamp DNA Investigator kit (Qiagen)
and the RNAeasy Total RNA kit (Qiagen) with DNase
treatment, respectively, according to the manufacturers’
protocols. For whole-exome sequencing, SureSelect-
enriched exon fragments were subjected to sequencing
using HiSeq 2000, as previously described (8). The
ccRCC samples were sequenced from October 2011 to
February 2012, whereas the ped-AML samples were
sequenced from April 2012 to June 2012. For 10 ccRCC
samples, whole-genome sequencing and RNA sequencing
were performed using HiSeq 2000, according to standard
protocols recommended by Illumina. The mean
sequencing depth for each sample was 65.9-223.0
(Supplementary Table S1 and S2).

Outline of the mutation calling method

The outline of EBCall is shown in Figure 2. The key
concept in EBCall is that sequencing data of multiple
non-paired normal samples are used to estimate possible
sequencing errors at each genomic site. For this purpose,
we modelled the sequencing errors that follow a Beta-
binomial distribution, the parameters of which were
estimated using the sequencing data from multiple
non-paired normal samples (Figure 3). The allele
frequencies of the observed variants in the tumour DNA
were then compared with the inferred sequencing error
distribution at the corresponding genomic positions to
exclude sequencing errors. Germline Single Nucleotide
Polymorphism (SNPs) were eliminated using sequencing
data from the paired normal DNA.

Alignment of sequencing data

The sequencing reads were aligned to NCBI Human
Reference Genome Build 37 using Burrows-Wheeler
Aligner, version 0.5.8 (13) with the default parameter
settings. Polymerase chain reaction (PCR) duplications
were eliminated using Picard (http://picard.sourceforge.
net/). Low-quality reads showing >5 mismatches with
the reference genome or those whose mapping quality
was <30 were excluded from further analysis as we did
in (8).

For RNA sequencing data, a two-step alignment
strategy adopted in Genomon-fusion (under submission)
was used, in which all sequence reads were first aligned
to the known transcript sequences (UCSC known genes)
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Figure 1. Examples of mismatch ratios of other normal samples for mutation candidates with moderate P-values. In both cases, although the
mismatch ratios of the target tumour sample were relatively high, the numbers of corresponding supporting variant reads were small. For the
candidate on the left, the frequencies of non-reference alleles for other normal samples were consistently zero. Therefore, this supports the prediction
that the observed variant reads in the target tumour sample came from a true somatic mutation and not from sequencing errors. On the other hand,
for the candidate on the right, we often observed high frequencies of non-reference alleles for several different normal samples. Therefore, the
observed variant reads in the target tumour sample likely came from sequencing errors, and it was just by chance that there was no variant read in

the target normal sample.
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Figure 2. An illustrative description of the proposed method. For each genomic site, the distribution of sequencing errors is estimated using
non-paired normal samples from patients other than the target. The mismatch ratio of the target tumour sample is then compared with
the distribution. If the mismatch ratio deviates significantly from the distribution, the corresponding variant is then extracted as a somatic
mutation candidate. The target normal sample is used for filtering germline mutations.

using bowtie (14), and the non-aligned reads were then
aligned to the genome sequences using blat (15). For the
whole-genome sequencing data, all reads were aligned
using blat.

Definition of variables

Let ) be an entire set of possible nucleotide variations
consisting of combinations of genomic positions and

types of nucleotide changes (e.g. chrl:5, C > A or
chr20:10000, A > AAG). Because sequencing errors are
often biased to one strand (6,9,16), the number of total
(d) and variant reads (x) for a given variant, v € {), were
enumerated for each strand separately to distinguish
between short reads aligned with the positive (x,, +,
d,,+) and negative (x,,_, d,,.) strands, respectively,
where a denotes the type of sample, which is either
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