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that OXT knockout mice consume larger quantities of sweet
and nonsweet carbohydrates than wild-type mice [74].
In the Prader—Willi syndrome, characterized by extreme
hyperphagia leading to morbid obesity in human, the number
of OXT-containing neurons is decreased in the PVN [75].

Some studies showed that nerve fibers contain-
ing the feeding-inhibitory peptides, such as cocaine-
and amphetamine-regulated transcript (CART) [76] and
prolactin-releasing peptide (PrRP) [77], have synaptic con-
tact with hypothalamic OXT neurons. OXT neurons are
activated by the administration of CART or PrRP [78]. It has
also been suggested that a-melanocyte stimulating hormone
(a-MSH), a feeding inhibition factor released by proopiome-
lanocortin (POMC) neurons, activates OXT neurons [79]. Itis
therefore possible that OXT contributes to feeding inhibition
by CART, PrRP and a-MSH.

OXT has a short-term feeding-inhibitory effect. How-
ever, when OXT is administered for a long period, it has
been reported that food intake becomes increased after an
initial decrease in feeding [80]. In addition, OTR antago-
nists also do not block feeding inhibition by «; receptor
agonists [81].

The site of OXT action upon the feeding inhibition is not
completely understood. OXT neurons in the PVN project to
the medullary dorsal nucleus of the vagus nerve, and microin-
jection of OXT into the dorsal nucleus of the vagus nerve
inhibits gastric motility, suggesting that OXT neurons of the
PVN projecting to the medulla oblongata may act to inhibit
feeding [82]. OXT neurons in the PVN also project to sym-
pathetic preganglionic neurons of intermediolateral nuclei
in the spinal columns. OXT has been suggested to excite
these sympathetic preganglionic neurons. Consequently, it
is possible that activation of the sympathetic nervous sys-
tem may cause inhibition of feeding. OXT reduces binding
affinity in the hypothalamus of a;NA receptor agonists that
have a feeding promotion effect [81]. Thus, modification of
NA receptors may also contribute to feeding inhibition by
OXT. In addition to feeding inhibition, OXT released in the
CNS after various stress stimuli has been proposed to mod-
ify neuroendocrine stress responses, such as ACTH secretion,
and to affect anxiety behaviors [83]. More recently, Maejima
et al. showed that peripheral OXT treatment reduced food
intake and visceral fat mass, and ameliorates obesity, fatty
liver and glucose intolerance [84]. Peripheral OXT treatment
provides a new therapeutic avenue for treating obesity and
hyperphagia.

In human, the overnight secretion of OXT in women with
anorexia nervosa is decreased compared with healthy women
[85]. In underweight anorexia nervosa patients, estrogen-
or insulin-induced hypoglycemia results in an impaired
response in plasma OXT level [86]. In recovered anorexia
nervosa patients, cerebrospinal fluid OXT level was normal
[87]. Although it is still unclear the pathophysiological mech-
anism of OXT in anorexic nervosa, OXT maybe have an
important role in hypopahagia, including anorexia nervosa
and cachexia.

3.4. Salt appetite

OXT appears to play an important role in salt appetite.
Icv administration of OXT inhibited hypovolemia-induced
salt appetite but had little effect on water intake [88]. Icv
administration of OXT also inhibited angiotensin-induced
salt appetite [89]. The salt intake was increased in the OXT
knockout mice [90]. Moreover, hypovolemia-induced saline
intake was increased in rats where OTR bearing neurons were
selectively ablated by the application of OXT conjugated
to the A chain of ricin [91]. In the OXT knockout mice,
the hypovolemia- and dehydrated-induced sodium intake
was increased [92,93]. By contrast, sodium intake did not
decrease in OXT knockout mice [94]. These studies sug-
gested that OXT pathways are not the only regulator of salt
intake, OXT may be more critical in controlling salt intake
over brief intervals when an animal is quickly compensating
for a dehydrating stimulus [94].

3.5. Social recognition

Social recognition is necessary for the development of all
social relationships and requires the appropriate processing
of social cues and the activation of processes related to learn-
ing and memory. OXT plays an important role in the neural
processing of social information and in social recognition.
Low doses of central administration of OXT facilitate social
recognition in rats, however, higher doses of OXT can be
amnestic [95]. Both male and female OXT knockout mice
had a profound disruption of social recognition [96,97]. OXT
facilitated social recognition through its actions on OTR in the
medial amygdala during memory formation. The administra-
tion of OXT into the medial amygdala, prior to but not after
the initial social exposure to a stimulus female, completely
rescues social recognition in OXT knockout mice [98]. In
female wild-type mice, infusion of OTR antisense DNA into
the medial amygdala decreases OTR protein and blocks social -
recognition [99].

4. Peptides to stimulate oxytocin release
4.1. Adrenomedullin family

Adrenomedullin (AM) is a 52-amino acid neuropeptide
that was originally isolated from tissue extracts of human
pheochromocytoma and later found to be widely distributed
in peripheral organs and the CNS [100] (Fig. 2). A similar
47-amino acid neuropeptide, adrenomedullin 2 (AM2),
identical to intermedin, was first isolated from pufferfish
[101,102] and later from mammals [102,103] by the search
in the genomic databases [101,102] (Fig. 2). AM2 is identical
to intermedin, which was discovered by Roh et al. [102].
AM, AM2/intermedin, and amylin belong to the calcitonin
gene-related peptide (CGRP). Each member of AM family
has an N-terminal ring structure and an amidated carboxyl
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Structure of human adrenomedullin (AM) family

Adrenomedullin2 (AM2)

Fig. 2. Structure of adrenomedullin (AM) family. Each member of AM family has an N-terminal ring structure and an amidated carboxyl terminus.

terminus (Fig. 2). Both of these structures are critical for
receptor binding and subsequent signaling [104,105].

AM and AM2 are both considered potent vasodilators
because peripheral administration of either peptide decreases
arterial blood pressure, inhibits urine flow, decreases food
intake, and suppresses gastric activity [102,103,106-109].
By all accounts, the effects of the two peptides are qual-
itatively and quantitatively similar [102,103,106,107]. The
actions of AM or AM2 given centrally are quite different
from their actions when given peripherally. Central admin-
istration of AM2 inhibits food intake and drinking in rats in
much the same manner as it does when given peripherally,
but centrally administered AM2 elevates arterial blood pres-
sure and heart rate [110]. Icv administration of either AM2 or
AM caused hypertension and tachycardia [103,108,110]. We
showed that central administration of AM activated OXT neu-
rons [111,112] and caused an elevation of plasma OXT levels
inrats [111]. We also showed similar activation of OXT neu-
rons and circulating OXT levels after central administration
of AM2 [113] (Fig. 3). These effects of AM2 are similar to
those of AM [108,109,111,114-117] and may be mediated by
both AM and CGRP receptors [110]. Moreover, we showed
that centrally effects of AM2 were stronger than those of
AM in the expression of the c-fos gene in the SON and PVN,
plasma OXT level, and blood pressure in rats [118]. Inter-
estingly, combined AM and CGRP receptor blockade was
incomplete for central effects of AM2 [118]. These results
suggested that the more potent central effects of AM2 and
only partial blockade by AM/CGRP receptor antagonists may
result from its action on an additional, as yet unidentified,
specific receptor in the CNS.

More recently, in teleost fish, AM peptides were identi-
fied as five AMs (AM1-5), and they form an independent
subfamily [101]. Takei et al. searched the orthologs of the

AMs in the genome and established sequence tag databases
and identified AM2 and AM5 genes in mammals [103,119]
(Fig. 2). Since AM and AM2 have many effects on the CNS in
mammals, AMS, which is a newly discovered 50-amino acid
peptide identical to fish AMS5, may also have similar actions
on the CNS through the CLR/CTR-RAMPs complexes. We
showed that centrally administered AMS induced the expres-
sion of c-fos gene in the SON and the PVN, and this induction
was significantly reduced, incomplete, by pretreatment with
both the CGRP and AM receptor antagonists [120]. There-
fore, we presume that central AMS activates OXT-secreting
neurons in the SON and the PVN partly through the CGRP
and/or AM receptor. Further study is required to explore the
possibility that unknown specific receptors for AMS and/or
AM?2 may exist in the CNS.

What is the relationship between AM family and OXT?
We showed that coexistence of AM- and OXT-LI was iden-
tified in the SON and PVN in rats [121]. Although we
don’t know whether other AMs would be co-existed with
OXT, we suggested that AM family might play a role as
autocrine/paracrine functions. Further study is required to
explore the relationship between AM family and OXT func-
tions.

4.2. Apelin

Apelin, a 36-amino acid peptide, originally has been iso-
lated from bovine stomach tissue extracts as the éndogenous
ligand of the human orphan G protein-coupled receptor APJ
[122,123]. APJ is now therefore commonly referred to as the
apelin receptor [124]. Apelin and its receptor are widely dis-
tributed throughout the rat nervous system [125-132] and
are particularly strongly expressed in the SON and PVN
[126-129]. Both AVP and OXT neurons produce apelin
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Fig. 3. Central effects of adrenomedullin 2 (AM2) in the OXT release. A-D: Coexistence of Fos-like immunoreactivity (LI) and OXT-LI in the supraoptic
nucleus (SON; A and B) and the paraventricular nucleus (PVN; C and D) of rats 90 min after icv administration of AM?2 (2 nmol/rat). A and C: Coexistence
of Fos-LI (brown, in round structures) and OXT-LI (violet, in spindle-shaped structures). B and D: Enlargements from the boxed areas in A and C. Black
arrowheads indicate coexistence of nuclear Fos-LI and OXT-LI. White arrowheads indicate OXT-LI without Fos-LI. 3V, third ventricle; OX, optic chiasma.
Bars indicate 50 pum. E: Effects of icv administration of AM2 (0.2, 1, and 2 nmol/rat) or saline (vehicle) on plasma concentrations of oxytocin in conscious rats.
All rats were decapitated 30 min after icv administration of the AM2 (0.2, 1, and 2 nmol/rat) or vehicle. Data for plasma concentrations of OXT are expressed
as means £ SE (n= 6 rats). **P <0.01 compared with vehicle-administered rats. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)
Modified with permission from Figs. 1 and 2 in ref. [110].

receptor mRNA in the SON in rats [127,133]. In immuno-
histochemistry study, OXT neurons contain apelin in the
SON and PVN in male and virgin female rats [134]. APJ
immunoreactivity cell were also seen in the somata, den-
drites, axon fibers, the ventral glial lamina, and axon terminals
of magnocellular OXT and AVP neurons [135]. Apelin-13
increased the firing rates of AVP cells but had no effect on

the firing rate of OXT neurons in extracellular electrophysio-
logical recordings from the transpharyngeally exposed SON
of urethane-anaesthetized rats [135].

Recently, Bodineau et al. showed that apelin modulated
the activity of magnocellular and parvocellular OXT neurons
in the lactating rat [136]. They revealed that the colocaliza-
tion of apelin with OXT in about 20% of the hypothalamic
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OXT neurons by double immunofluorescence study. They
also showed that icv administered apelin inhibited the activ-
ity of magnocellular and parvocellular OXT neurons by
immunohistochemistry for c-fos and electrophysiological
study. These central effects of apelin were correlated with
a decrease in the amount of milk ejected. Thus, apelin may
inhibit the activity of OXT neurons through a direct action on
apelin receptors expressed by these neurons in an autocrine
and paracrine manner. They suggested that the inhibitory role
of apelin as an autocrine/paracrine peptide acting on OXT
neurons during breastfeeding [136].

4.3. Cholecystokinin (CCK)

CCK is regarded as an important physiological satiety sig-
nal [137]. The pathway from CCK to OXT release has been
well investigated. Previous studies have shown that peripheral
administration of CCK-8 stimulated secretion of OXT but not
AVP and inhibited feeding [138-141]. Otsuka Long-Evans
Tokushima Fatty (OLETF) rats have been established as an
animal model of non-insulin dependent diabetes mellitus and
obesity [142,143], has a congenital defect in the expression
of the CCK-A receptor gene [144]. We showed that periph-
eral administration of CCK-8 does not activate hypothalamic
OXT neurons and the brainstem neurons in the nucleus of the
solitary tract (NTS) and the area postrema (AP) in OLETF
rats [145]. We suggested that systemic administration of
CCK-8 might selectively activate the hypothalamic OXT neu-
rons and brainstem neurons through CCK-A receptor in rats.
OXT release induced by peripheral administration of CCK-8
was abolished by subdiaphragmatic vagotomy and chemical
destruction of vagal afferents [146,147], and also by admin-
istration of the selective CCK-A receptor antagonist, but not
by the CCK-B receptor antagonist [148]. Moreover, systemic
administration of CCK stimulates gastric vagal afferents via
CCK-A receptor and activates noradrenergic neurons in the
NTS [149]. It is postulated that these noradrenergic inputs
activate magnocellular OXT neurons in the SON and the
PVN and cause secretion of OXT into the systemic circula-
tion inrats [150,151]. In addition, selective gastric vagotomy
eliminates the OXT response to CCK, and lesions of the
NTS abolish the behavioral effects of CCK-8 on food intake
[148,152]. Therefore, CCK-A receptors in the stomach are
stimulated, the abdominal vagus nerve is activated, NA neu-
rons in the A2 region of the NTS are excited, and NA is
released in the hypothalamus, which activates magnocellular
OXT neurons [153-155].

In addition to the A2 NA neurons [156], NA neurons in
the medullary ventrolateral Al region also play an important
role in OXT secretion after stressful stimuli such as noxious
stimuli [157]. It is unlikely that OXT in the peripheral blood
controls feeding directly. At the time when OXT release from
the posterior pituitary is promoted, OXT release within the
hypothalamus was increased, and OXT in the CNS induced
to inhibit feeding [82]. Icv administration of an OXT receptor
antagonist attenuates feeding reduction in response to LiCl

or CCK [158,159] and blocked feeding reduction in response
to CRH [160]. These studies suggest that intrinsic OXT may
play an important physiological role in inhibition of feeding
during satiety and stress.

4.4. Kisspeptin

Kisspeptin, a placental polypeptide secreted through-
out pregnancy, is suggested to play a role at parturition.
Kisspeptin is the product of the kiss/ gene and its receptor,
GPR54, which is the product of kiss/r. Kisspeptin stimu-
late the release of GnRH and gonadotrophin and advance
vaginal opening in rodents, sheep and primates [161-166].
Kisspeptin is found in both the periphery and the CNS. In the
periphery, kisspeptin has been identified in the testis, ovary,
anterior pituitary gonadotrophs, pancreas and small intes-
tine [167—169]. However, peripheral expression of kisspeptin
is highest in the placenta with maternal plasma levels of
kisspeptin in the third trimester of pregnancy rising to 7000-
fold greater than in the non-pregnant state [167,170,171].
In the CNS, both Kiss/ mRNA and kisspeptin protein
are particularly highly expressed in the Arc, anteroventral
periventricular nucleus (AVPV) and periventricular nucleus
[162] in the mice. In primates including humans, hypo-
thalamic KISSI mRNA is predominantly found within the
infundibular nucleus, which is the equivalent of the Arc in
this order of mammals [172].

Previous studies showed that intravenous (iv) adminis-
tered kisspeptine-10 increased plasma OXT level in female
rats [173], whereas icv administered kisspeptin-10 increased
plasma AVP level in male rats [174]. Recently, in vivo
extracellular single unit recording, peripheral administered
kisspeptin increased plasma OXT level and icv administered
kisspeptin-10 increases AVP levels [175]. Iv adminis-
tered kisspeptin-10 significantly increased the firing rate
of OXT neurons from 3.74+0.8 to 4.7 0.8 spikes/s, but
only a quarter of AVP neurons responded to iv adminis-
tered kisspeptin-10, showing a short (<3 s) high-frequency
(>15 spikes/s) burst of firing. By contrast, icv administered
kisspeptin-10 (2 and 40 p.g) did not alter OXT or AVP neuron
firing rate. This effect of peripheral administered kisspeptin-
10 in OXT neurons on firing rate blocked by pretreatment of
capsaicin which desensitize vagal afferents. Kisspeptin may
activate on magnocellular neuron via the vagus, and presum-
ably NTS during pregnancy and lactation, when circulating
kisspeptin levels are increased.

4.5. Nesfatin-1

Nesfatin-1 is a recently discovered, 82-amino acid
protein derived from the cleavage of a precursor,
NEFA/nucleobindin2 (NUCB2) [176]. Nesfatin-1 is pro-
duced in several hypothalamic nuclei, such as the SON, PVN,
arcuate nucleus (Arc), and lateral hypothalamic area (LHA)
[176], and in extra-hypothalamic areas as well, including the
raphe pallidus, the Edinger—Westphal nucleus, and the NTS
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[177]. Nesfatin-1 has been shown to colocalize with sev-
eral well-described peptides, including CART, CRH, OXT,
and AVP [178]. Double-labeling immunohistochemistry in
these areas has revealed that nesfatin-1 is colocalized with
feeding-related factors such as CRH, OXT, POMC and CART
[177-179]. Central administration of «-MSH increases
NUCB2 mRNA in the hypothalamus [180]. Anorectic effect
by icv administration of nesfatin-1 was mediated by OXT
in the PVN [181,182]. Icv administered nesfatin-1 decreased
food intake and inhibited gastroduodenal motility in mice
[183]. Nesfatin-1 and OXT both suppresses food intake in
fa/fa Zucker rats, and leptin-induced satiety is unaltered
by immunoneutralizing nesfatin-1 IgG [176,182]. These
results suggest that nesfatin-1 induces anorexia in a leptin-
independent and melanocortin-dependent manner [176,182].

4.6. Prolactin-releasing peptide (PrRP)

Prolactin-releasing peptide (PrRP) was isolated as an
endogenous ligand of an orphan G-protein-coupled receptor
(GPR10/hGR3) and belongs to the RFamide peptide [183].
Initial studies showed that PrRP could stimulate prolactin
release both in vitro [184] and in vivo [185,186], giving rise
to the name of this peptide. However, recent morphologi-
cal and physiological studies have shown that PrRP is not
a hypophysiotropic prolactin-releasing factor [187-189], but
have suggested rather that PrRP was involved in a wider range
of neuroendocrine and autonomic functions [190,191].

PrRP-synthesizing cells have been identified in the dor-
somedial hypothalamic nucleus (DMH), the Al region of
the ventrolateral medulla (VLM) and the A2 region of the
NTS in the medulla oblongata [192—196]. Icv administration
of PrRP significantly increased plasma OXT and AVP lev-
els [197] and to stimulate ACTH secretion via CRH from the
parvocellular cells in the PVN [198]. As stress activates med-
ullary and hypothalamic PrRP neurons, PrRP and NA may
both function cooperatively in neuroendocrine responses to
stress [180,199]. Icv administration of anti-PrRP antibodies
to rats attenuates OXT secretion in response to conditioned
fear [199]. Our previous study showed that central admin-
istration of PrRP induced the expression of c-fos gene in
the PVN and increased plasma corticosterone levels in con-
scious rats [200]. Moreover, we showed that the restraint
stress and acute inflammatory stress upregulated the expres-
sion of PrRP gene in the NTS and the VLM. The nociceptive
stimulus upregulated the expression of PrRP gene in the ven-
trolateral medulla. We also showed that pretreatment with
an anti-PrRP antibody significantly attenuated nociceptive
stimulus induced the expression of the c-fos gene in the PVN.
These results indicate that PrRP may be potent and important
mediator of stress responses.

PrRP neurons in the brainstem were activated by CCK
[77] and PrRP mediates CCK-induced satiety [201]. Icv or
microinjection of PrRP inhibits feeding [180,202] but does
not induce nausea [203]. Icv co-administration of PrRP and
leptin resulted in additive reduction in food intake and body

weight gain, and that PrRP mRNA levels were reduced in
Zucker (fa/fa) rats with mutated leptin receptor and in fasted
rats [78]. Thus, PrRP is regulated by leptin. PrRP promotes
release of the feeding inhibition factors, a-MSH and neu-
rotensin [203]. It is possible that a«-MSH and neurotensin
contribute to the inhibitory effect of PrRP. Icv administration
of PrRP also increased the core temperature and oxygen con-
sumption in male rats [204]. These results indicate that PrRP
may affect energy homeostasis by the reduction of food intake
and the increase in energy expenditure. Icv administration of
PrRP activated OXT neurons at the PVN in mice, which was
significantly reduced in GPR10 knockout mice, which is the
phenotype of PrRP knockout mice [199]. The roles of PrRP
on energy homeostasis were supported by studies on GPR10
knockout mice, which became hyperphagic and obese [205].
More recent study showed icv administration of RFamide-
related peptides (RFRP-1 and RFRP-3), which are belong to
RFamide peptide such as PrRP, increased the plasma OXT
level and activated the OXT neurons [206]. RFamide peptide,
including PrRP and RFRP, may play a role in the control of
energy metabolism.

4.7. Secretin

Secretin is best known for its role as a duodenal hormone
released in response to acidification of the intestinal lumen
[207]. Secretin, however, can also activate vagal sensory
nerves [208,209]. Secretin is synthesized within the brain
and can activate hypothalamic neurons [210-213]. Peripheral
administration of secretin induced Fos expression in the SON
[209.214]. Icv administration of secretin also increases Fos
expression in SON neurons and increases secretion of OXT
and AVP, and secretin receptors are found in the SON and the

-magnocellular area of the PVN [215]. Secretin also activates

vagal primary afferent neurons [210]. Furthermore, lacking
secretin receptors mice exhibit defects in social and cogni-
tive behaviors [216]. Although the treatment of secretin was
beneficial in autism and associated gastrointestinal abnor-
malities [217], its efficacy was not confirmed in subsequent
clinical trials [218]. Moreover, these studies have suggested
on the existence of a specific relationship between autism
and inflammatory bowel disease [218]. Recently, the com-
bined administration of secretin and OXT inhibited chronic
colitis in rats [219]. These results suggested that the admin-
istration of both secretin and OXT would develop a novel
treatment of inflammation-associated intestinal disorder.

5. Perspective

Although OXT was discovered over 60 years ago, the pri-
mary role of OXT has not been known yet. In this review,
we know that OXT has relationship with various physio-
logical and pathophysiological functions. OXT works as a
hormone in the periphery and as a neurotransmitter in the
CNS. The importance of OXT in milk ejection and uterine
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contraction is well known. Recently, we showed the central
effects of some neuropeptides, such as adrenomedullin fam-
ily and other peptides in OXT release in rats. OXT is also
involved in lots of physiological and pathological functions
such as appetite, anxiety, antinociception, social recognition
and stress, with many neuropeptides. In each function, the
relationship between OXT and neuropeptides is not fully
understood. OXT may be an important key in some disease
and develop a novel treatment for them. We anticipate that
further studies can clarify the relationship with between OXT
and neuropeptides.
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A novel splice site mutation of the MEN1 gene identified in a
patient with primary hyperparathyroidism
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Abstract.

Heterozygous germline mutation of the tumor suppressor gene MEN] is responsible for multiple endocrine

neoplasia type 1 (MENI), a familial cancer syndrome characterized by pituitary, parathyroid and enteropancreatic tumors.
Various mutations have been identified throughout the entire gene region in patients with MEN1 and its incomplete forms
often manifested as familial isolated hyperparathyroidism and apparently sporadic parathyroid tumor. Mutation analysis
of the MENT gene is a powerful tool for the early diagnosis of MENI; however, the clinical significance of the identified
mutations is not always obvious. In this study, a previously unreported missense MEN] mutation, ¢.824G>T was identified
in a patient with primary hyperparathyroidism and evaluated for its pathogenicity. This mutation was predicted to generate
a putative missense menin protein, R275M. A stability test of the menin protein demonstrated that the stability of R275M
mutant was reduced only slightly as compared with wild type menin, and therefore could not preclude the possibility that
it was a rare benign polymorphism. However, further analysis of leukocyte mRNA and minigene experiments indicated
that the mutant ¢.824G>T allele gives rise to abnormally spliced menin mRNA, and thereby confirmed that ¢.824G>T

mutation is causative for MENI.
mutation of the MENT gene.

Key words: MEN1, Menin, Splicing, Minigene, Stability

Thus. leukocyte mRNA analysis has been demonstrated useful to identify a splicing

MULTIPLE ENDOCRINE NEOPLASIA TYPE 1
(MENT1) is a relatively rare autosomal dominantly
inherited condition characterized by hyperplastic and
neoplastic disorder of endocrine organs such as the
parathyroid, anterior pituitary and gastroenteropancre-
atic endocrine tissues [1]. Primary hyperparathyroid-
ism (PHPT) is the most common disorder, and is usu-
ally the initial manifestation in MEN1. Its prevalence
in MENI patients during lifetime is nearly 100%, and
the average age of onset is during the third decade of
life, which is much earlier than that of sporadic pri-
mary hyperparathyroidism {2, 3]. Anterior pituitary
tumors are seen in 40-60% of MEN1 patients. Among
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those, prolactinomas are the most common followed by
nonfunctioning tumors and growth hormone produc-
ing tumors. Gastroenteropancreatic tumors develop in
about 60% of the patients and gastrinoma is the most
frequent functioning tumor followed by insulinoma.
Other manifestations include adrenal cortex adenomas,
which are mostly nonfunctioning, foregut carcinoid
tumors and cutaneous tumors.

Germline mutations of the causative gene, MEN],
which is localized to human chromosome 11q13 and
encodes a 610-amino acid nuclear protein, menin, can
be identified in most of the affected subjects [4, 5]. To
date, more than 500 different germline MEN! muta-
tions have been identified in patients with MEN1. The
majority of mutations identified in affected subjects are
nonsense and frameshift mutations, which predict pre-
mature protein truncations. Splice mutations and large
deletions of the MEN/ gene have also been reported in
several families.
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Menin shows no significant homology to other
known proteins, and its physiological function is not
yet fully understood. Moreover, despite its widespread
expression, the molecular basis of its role in tissue-spe-
cific tumorigenesis remains elusive [6-10]. Generally,
when a missense mutation is identified in an affected
subject, examination of the physiological function of
the encoded mutant protein is necessary to determine
whether the mutation is indeed pathogenic. For menin,
however, there are no established parameters that can
adequately represent its diverse physiological func-
tions. In the event that no functional assays are avail-
able, a linkage study within the affected family may
be informative. However, in order to draw a reliable
conclusion, it requires a number of affected subjects
within the family [11-13], and such analysis is rarely
performed in practice. There was a report of a muta-
tion, which was initially considered pathogenic but
later turned out to be a rare benign polymorphism [14].
Conversely, a missense mutation initially thought to be
a rare polymorphism may be characterized later as a
pathogenic mutation with low penetrance.

As is the case for the majority of other hereditary
cancer-related genes, MENI is categorized as a tumor
suppressor gene. Tumor occurrence by mutation of the
MENI gene can be explained by Knudson’s two-hit
theory [3]. In cells containing a heterozygous MEN]
mutation, the function of one allele has already been
lost through a germline mutation and cells acquire a
tumor phenotype when the function of the remaining
wild-type allele is lost somatically during cell divi-
sion. Indeed, in tumors from MEN! patients, the wild-
type allele is usually deleted and identified as loss of
heterozygosity [15-17].  As a result, there should be
no functioning menin protein in tumor cells arising in
patients with MENT mutations.

Genetic analysis of a patient with PHPT revealed a
previously unknown single nucleotide substitution in
the MENI gene, ¢.824G>T, which can be interpreted
as a missense mutation causing an amino acid substitu-
tion of arginine by methionine at codon 275. To deter-
mine whetherthe mutation is pathogenic, we examined
the characteristics of mRNAs and protein encoded by
the mutated MEN] gene.

Case Presentation

A 33 year-old woman at the 24th week of gestation
was referred to our department due to severe hyper-
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calcemia (Ca 17.5 mg/dL). Based on a markedly ele-
vated level of plasma intact PTH (1425 pg/mL, normal
range; 10-65 pg/mL), a diagnosis of PHPT was made.
Cervical ultrasonography and MRI revealed a large
parathyroid nodule with cystic change. An enlarged
parathyroid gland and right lobe of thyroid gland were
surgically removed. Thé removed parathyroid tumor
was 5.5 x 2.5 x 2.5 c¢m in size, and microscopically,
chief cells were massively proliferated. After surgery,
her serum calcium level normalized and intact PTH
decreased to 19.2 pg/mL. Imaging studies for pitu-
itary and enteropancreas performed after parathyroi-
dectomy revealed no abnormal findings. Results of
biochemical studies are summarized in Table 1. Based
on the young age of onset of PHPT, genetic testing for
the MENI mutation was proposed [18, 19]. Written
informed consent was obtained from the patient before
genetic testing. The full sequence of the coding
region of the MEN] gene showed a heterozygous sin-
gle nucleotide substitution, ¢.824G>T (Fig. 1A). This
nucleotide substitution occurred at the last nucleotide
of exon 5, and if it does not affect splicing, this muta-
tion was predicted to substitute amino acid codon 275
of menin from arginine (AGG) to methionine (ATG).
Screening of family members revealed that her father,
68 years old, had hypercalcemia (10.9 mg/dL) and an
increase in intact PTH level (125.3 pg/mL). Imaging
studies revealed an enlarged parathyroid nodule, but
he declined any treatment beyond regular screening.
He refused genetic testing.

Materials and Methods

Stability analysis of variant menin

The intracellular stability of missense menin variants
was evaluated using a quantitative fluorescent immuno-
histochemical method as described previously [20,21].
Briefly, WI38VA13 cells were transfected with a bicis-

Table 1 Results of biochemical studies

Reference range

GH (ng/mL) - 0.7 <1.0
IGF-1 (ng/mL) 264 121-436
PRL (ng/mL) 10.8 1.4-10.8
Insulin (fasting)  (pU/mL) 5.0 <10
Glucose (fasting) (mg/dL) 88 <110
Gastrin (pg/mL) 35 37-172
Glucagon (pg/ml) 68 23-197

GH, Growth Hormone; IGF-1, Insulin-like Growth Factor-1;
PRL, Prolactin
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Fig. 1 Stability of menin missense mutant

Genomic DNA was isolated from whole blood of the patient for genetic testing. Sequencing analysis of MEN] gene identified
¢.824G>T mutation (A). This nucleotide substitution is predicted to generate putative missense menin protein, R275M. Mutant
menin protein was coexpressed with wild type menin in culture cells by transfection of a bicistronic plasmid vector expressing
either FLAG-tagged wild type and Myc-tagged mutant menin (B) or FLAG-tagged mutant and Myc-tagged wild type menin (C).
The relative expression levels of mutant to wild type menin were compared with those of control plasmid expressing FLAG-
tagged and Myc-tagged wild type menin proteins (WT). The thin bars represent standard error of the mean of three independent
transfection experiments. NS. not statistically significant (P>0.05)

tronic plasmid expressing N-terminal FLAG-tagged
and Myc-tagged proteins: one protein was wild type
menin, which served as an internal control for transfec-
tion efficiency, and the other was the variant menin to
be tested. 48 hours after transfection, expressed pro-
teins were stained with FITC-labeled anti-FLAG anti-
body and Cy3-labeled anti-c-myc antibody, and quan-
tified by fluorescence microscopic digital photography
and an image analysis software. The ratios of the mean
numerical value of fluorescence intensity for mutant
menin to that for wild type menin in each nucleus was
calculated, and normalized by the ratio obtained from

the control plasmid expressing both FLAG- and Myc-
tagged wild-type menin. As a known unstable con-
trol, L22R variant expression plasmids were used. The
mean of analyzed nuclei number was 24 per transfec-
tion and the minimum was 9 per transfection. Mutant
menin was located mainly in the nucleus although the
cytoplasm was also faintly stained in some cells. Only
nuclear staining was analyzed.

Analysis of menin mRNA in blood cells
RNA was isolated from whole blood with the
LeukoLOCK™ total RNA isolation system (Ambion,
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Austin, TX, USA), and treated with RNase-Free DNase
set (QIAGEN, Hilden, Germany). c¢DNA was syn-
thesized with oligo dT primer using SuperScript 111
(Invitrogen, Carlsbad, CA, USA). The cDNA was
amplified by PCR with primers 3-3 (5’-acctggcacg-
gcaagggcaacga-3’) and 7-3 (5°-gtagccagecaggtacat-
gtagg-3’), which were designed on the basis of the
sequences of exon 3 and exon 7 of the MEN/ gene,
respectively. The PCR products were separated by aga-
rose gel electrophoresis and visualized by ethidium bro-
mide staining. The DNA fragments were excised from
the gel and purified with UltraClean 15 DNA purification
kit (MO BIO Laboratories, Carlsbad, CA, USA), then
sequenced directly, or cloned into pCR2.1-TOPO TA
vector (Invitrogen, Carlsbad, CA, USA) and sequenced
with a BigDye terminators v1.1 cycle sequencing kit
(Applied biosystems, Foster City, CA, USA).

Sequencing analysis of tumor DNA

Tumor DNA was extracted with DEXPAT™
(TAKARA BIO, Shiga, Japan) and amplified by
PCR with primers 56-1 (5’-aaggacccgttctecteectgt-
tcc-3’) and 56-2 (5’-ggcccctgecteagecactgttag-37),
which were designed on the basis of intron sequences
upstream of exon 5 and downstream of exon 6, respec-
tively. The PCR product was sequenced directly as
described above.

Minigene analysis of ¢.824G>T mutant

DNA fragment containing the sequence between the
5% end of exon 3 and 3’ end of exon 7 of the MEN/
gene was amplified by PCR with primers containing
EcoRI or Sall recognition sites (5°-gaattcgcaccaaattg-
gacagetceggtgtge-3” and 5’-gtcgactcctggatgacagtgge-
cgtgtectee-37), using human genomic DNA (Clontech,
Mountain View, CA, USA) as a template. The PCR
products were cloned into pCR-Blunt 1I-TOPO vec-
tor (Invitrogen) prior to confirmation by nucleotide
sequencing that the insert sequence was identical to the
published MENI gene sequence (GenBank accession
No. U93237), then excised and transferred to the mam-
malian expression vector, pPCMV-Tag2 (Stratagene, La
Jolla, CA, USA). A c.824G>T mutant minigene was
constructed by introducing the mutation into the wild-
type minigene using the QuikChange Site-Directed
Mutagenesis kit (Stratagene).

Minigene was introduced into WI38VA13 cells
with FUGENEG6 (Roche Diagnostics, Indianapolis, IN,
USA). Total RNA was extracted 24 hr after transfection

with QlAshredder and RNeasy Mini kit (QIAGEN),
treated with DNase, and subjected to cDNA synthe-
sis as described above. The cDNAs were amplified
by PCR with primers (5’-gattacaagcatgacgacgataag-3°
and 5’-ggcgaattgggtacacttacctgg-3’) designed to anneal
to the 5° and 3 minigene-specific regions of the tran-
scripts. The PCR products were separated on a 3% aga-
rose gel, visualized by ethidium bromide staining, and
excised and directly sequenced as described above.

These studies were approved by the Institutional
Review Board of both the National Cancer Center
Research Institute and Shinshu University School of
Medicine.

Results

Stability of variant menin R275M

The intracellular stability of the putative products
of the ¢.824G>T mutation, R275M was examined by
comparing the relative expression levels of mutant
vs. wild-type menin protein expressed from a bicis-
tronic plasmid. The L22R mutant, a disease-causing
mutation associated with typical MENI1, was used as
a positive control for unstable menin. Two plasmids
were constructed, one expressing FLAG-tagged wild
type menin and Myc-tagged mutant menin, the other
expressing FLAG-tagged mutant menin and Myc-
tagged wild type menin. Using either construct, the
stability test showed that the stability of the R275M
mutant was not significantly different from that of wild
type menin (Fig. 1 B, C). The stability of the R275M
mutant suggests that the ¢.824G>T mutation may not
cause MEN1 if its primary effect was the amino acid
substitution [21].

Menin mRNA in blood cells of the patient with
¢.824G>T mutation

Given that the ¢.824G>T mutation occurred at an
exon-intron junction, this mutation could act as a splic-
ing mutation rather than a simple missense mutation.
The meninmRNA of the patient was therefore examined
for evidence of abnormal mRNA splicing. PCR ampli-
fication with primers on exons 3 and 7 of the patient’s
blood cell cDNA generated several fragments in addi-
tion to the predicted wild type 400-bp cDNA (Fig. 2A).
Direct sequencing of the normal-sized fragment with
a primer on exon 5 showed only normal sequence and
the mutation identified in the germline was not detected
(Fig. 2B). The three additional fragments of 360 bp,
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Fig. 2 MEN] mRNA in the patients with c. 824G>T mutation

A. The patient’s blood cell cDNA was amplified with primers on MEN1 exons 3 and 7, and separated on agarose gel (Case) along
with that from a normal subject (N). The PCR product of the normal size (open triangle) and abnormal PCR products (solid
triangles) were excised and subjected to either direct sequencing (normal fragment) or sequencing after cloning (690-bp. 480-bp
and 360-bp abnormal fragments). M: size marker. B. Direct sequencing of the normal-sized cDNA fragment analyzed with a
sequencing primer on exon 5. The mutated sequence at the 3" end of exon 5 was not detectable. C. Structures of normal-sized,
690-, 480- and 360-bp cDNAs. Open boxes and closed boxes indicate exons and unspliced introns, respectively. V-shaped lines
below each diagram indicate the splicing events that give rise to each mRNA. Normal-sized cDNA contained only the wild type
sequence (AG) at the exon-intron junction while the 690- and 480-bp ¢cDNAs contained only the mutant sequence (AT). The
positions of the PCR primers used are shown above as arrows. D. mRNA from the wild type (WT) and ¢.824G>T mutant (Mut)
minigenes. The structures of PCR products a, b, ¢ and d identified on agarose gel (left) were analyzed by sequencing and shown in
the right. The wild type and mutant sequences at the 3 end of exon 5 is shown as AG and AT. respectively. Thick lines represent
minigene-specific regions of the transcripts where PCR primers anneal (F and R. shown by arrows).
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480 bp and 690 bp were cloned and sequenced (Fig.
2A, C). The 360-bp fragment lacked exon 5; the 480-bp
fragment contained an unspliced 80-bp intron sequence
following the mutated exon 5; and the 690-bp fragment
contained a 210-bp intron sequence following exon 3 as
well as the previously observed 80-bp intron sequence
following the mutated exon 5. Similar intron retention
between exons 3 and 4 in menin mRNA induced by a
distant splicing mutation has been reported previously
[22]. These findings suggest that the ¢.824G>T muta-
tion causes aberrant mRNA splicing, and that all detect-
able menin mRNA splicing variations potentially cause
protein truncation by frame-shift or a cryptic stop codon
within unspliced intron sequence.

Minigene analysis of ¢.824G>T mutation

The effect of the ¢.824G>T mutation on mRNA
splicing was examined by minigene experiments (Fig.
2D). The wild type minigene construct generated a
normally spliced transcript containing all of exons
3-7 and a splicing variant which lacked exon 6. The
mutant construct generated a transcript lacking exon 5
and its variant which lacked both exons 5 and 6, and
failed to generate a normally spliced transcript. The
deletion of exon 6 in the transcripts of both constructs
may be a consequence of artificial gene structure and
experimental conditions. These findings strongly sug-
gest that normally spliced mRNA is not generated from
the ¢.824G>T mutant allele of the patient.

Loss of wild type allele of the MENI gene in para-
thyroid tissue obtained from a patient with ¢.824G>T

mutation
We next examined whether the wild type allele is

lost by a second hit in the tumor cells of a patient with
¢.824G>T mutation. DNA was isolated from tumor
cells as described in the Materials and Methods and
sequenced. As shown in Fig. 3, only the mutant allele
was detectable in tumor cells, confirming the loss of
the wild type allele.

Discussion

Identification ofthe MEN gene in 1997 enabled early
diagnosis of MEN1 even when patients had developed
only a single tumor [4]. Moreover, early or presymp-
tomatic diagnosis of at risk relatives became possible.
In the case of frameshift mutation, nonsense mutation
or large deletion, it is relatively straightforward to con-
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Fig. 3 Loss of the wild type allele of the AMMENI gene in the
parathyroid gland obtained from a patient with ¢.824G>T
mutation
DNA isolated from parathyroid tissue was amplified and
sequenced. Note that only mutant allele was seen in the
tumor. Compare the sequence to that shown in Fig. 1A.

sider those lesions as pathogenic because MEN] gene
is a tumor suppressor gene. However, when identified
mutations are missense mutations or in-frame dele-
tions, molecular diagnosis of MENI is not so simple,
since the pathogenicity of these mutations is not clear
per se. Furthermore, when the mutation exists near
exon-intron junction, possible deleterious effects of the
mutation on splicing have to be considered. Indeed,
pathogenic aberrant splicing caused by point mutations
are often overlooked as routine genetic testing exam-
ines only genomic DNA [23].

In the present report, we examined the pathogenic-
ity of nucleotide substitution of the MENI gene which
exists at the last nucleotide of the exon 5. Using analy-
sis of leukocyte mRNA and minigene experiments, our
present study clearly demonstrated that the ¢.824G>T
mutation is a splice site mutation causing protein trun-
cation, rather than a missense mutation. Because of
nonsense-mediated mRNA decay, it is often diffi-
cult to detect aberrantly spliced mRNAs transcribed
from a mutant tumor suppressor gene in leukocytes.
Nevertheless, the leukocyte mRNA analysis in our
case proved useful in demonstrating a splicing muta-
tion of the MENI gene. Analysis of the MENI muta-
tion database revealed that 9% and 14% of MEN] ger-
mline mutations identified in patients with MEN1 and
familial isolated hyperparathyroidism, respectively,
were splice mutations [5]. Also in our recent report on
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Japanese patients with MEN1, 5.6% (10/180) of ger-
mline MENI mutations were splice mutations [24].
However, evidence of aberrant splicing has not always
been demonstrated.

In our case, the patient had PHPT but no other
MENI-related tumors. Screening of family mem-
bers revealed that her father also had PHPT. . Since her
father declined any further examination, it is unknown
whether he had other MEN1-related diseases. 'Results
of our mRNA analysis gave us a rationale to survey the
patient with the same protocol as that for patients with
typical MEN1. :

Menin'is considered to function as a scaffold protein
for other cellular proteins, and its physiological func-
tion appears to be diverse including regulation of cell
cycle, transcription, DNA repair, chromatin remodel-
ing, and apoptosis [6-10]. Tissue-specific regulation of
endocrine function and cellular proliferation by menin
has also been reported [25-29]. There have been stud-
ies that examined molecular and physiological func-
tion of menin, but these studies examined only specific
functions among diverse roles of menin and none of the
methods used in these reports are capable of evaluating
the function of menin as a whole. In this regard, lack
of wild type protein in tumor cells may be the most reli-
able information which suggests pathogenicity of the
mutation. In our present study, we could clearly dem-
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onstrate that tumor cells have only mutant allele (Fig.
3), and that mutant allele does not produce normally
spliced mRNA, indicating no functional menin protein
in tumor cells (Fig. 2),

In conclusion, we examined the pathogenicity of
novel nucleotide substitution in the MENI gene iden-
tified in a patient with PHPT using a menin stability
test and analysis of menin mRNA. Our results clearly
demonstrated that the mutation, ¢.824G>T, is indeed
pathogenic.
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